1701.05108v1 [cs.MA] 18 Jan 2017

arxXiv

On the Computational Complexity of Variants of
Combinatorial Voter Control in Elections

Leon Kellerhals, Viatcheslav Korenwein, Philipp Zschoche*,
Robert Bredereck™, and Jiehua Chen

TU Berlin, Germany
{leon.kellerhals, viatcheslav.korenwein, zschoche}@campus.tu-berlin.de
{robert.bredereck, jiehua.chen}@tu-berlin.de

Abstract. Voter control problems model situations in which an external
agent tries to affect the result of an election by adding or deleting the
fewest number of voters. The goal of the agent is to make a specific
candidate either win (constructive control) or lose (destructive control)
the election. We study the constructive and destructive voter control
problems when adding and deleting voters have a combinatorial flavor:
If we add (resp. delete) a voter v, we also add (resp. delete) a bundle k(v)
of voters that are associated with v. While the bundle x(v) may have
more than one voter, a voter may also be associated with more than one
voter. We analyze the computational complexity of the four voter control
problems for the Plurality rule.

We obtain that, in general, making a candidate lose is computationally
easier than making her win. In particular, if the bundling relation is sym-
metric (i.e. Yw: w € k(v) < v € k(w)), and if each voter has at most
two voters associated with him, then destructive control is polynomial-
time solvable while the constructive variant remains NP-hard. Even if the
bundles are disjoint (i.e. Vw: w € k(v) & k(v) = k(w)), the constructive
problem variants remain intractable. Finally, the minimization variant
of constructive control by adding voters does not admit an efficient ap-
proximation algorithm, unless P = NP.

1 Introduction

Since the seminal paper by Bartholdi III et al. [3] on controlling an elec-
tion by adding or deleting the fewest number of voters or candidates with
the goal of making a specific candidate to win (constructive control), a lot
of research has been devoted to the study of control for different voting
rules [16, 14, 24, 23, 4, 21|, on different control modes [17, 18], or even
on other controlling goals (e.g. aiming at several candidates’ victory or a

* PZ was supported by the Stiftung Begabtenférderung berufliche Bildung (SBB).
** RB was from September 2016 to September 2017 on postdoctoral leave at the Uni-
versity of Oxford (GB), supported by the DFG fellowship BR 5207/2.

http://arxiv.org/abs/1701.05108v1

specific candidate’s defeat) [20, 26]. Recently, Bulteau et al. [8] introduced
combinatorial structures to constructive control by adding voters: When a
voter is added, a bundle of other voters is added as well. A combinatorial
structure of the voter set allows us to model situations where an external
agent hires speakers to convince whole groups of people to participate in
(or abstain from) an election. In such a scenario, convincing a whole group
of voters comes at the fixed cost of paying a speaker. Bulteau et al. [§]
model this by defining a bundle of associated voters for each voter which
will be convinced to vote “for free” when this voter is added or deleted.
Moreover, the bundles of different voters could overlap. For instance, con-
vincing two bundles of two voters each to participate in the election could
result in adding a total of four, three or even just two voters.

We extend the work of Bulteau et al. [8] and investigate the cases
where the agent wants to make a specific candidate win or lose by adding
(resp. deleting) the fewest number of bundles. We study one of the simplest
voting rules, the Plurality rule, where each voter gives one point to his
favorite candidate, and the candidate with most points becomes a winner.
Accordingly, an election consists of a set C' of candidates and a set V of
voters who each have a favorite candidate. Since real world elections typ-
ically contain only a small number of candidates, and a bundle of voters
may correspond to a family with just a few members, we are especially
interested in situations where the election has only few candidates and the
bundle of each voter is small. Our goal is to ensure that a specific candidate
p becomes a winner (or a loser) of a given election, by convincing as few
voters from an unregistered voter set W as possible (or as few voters from
V' as possible), together with the voters in their bundles, to participate
(or not to participate) in the election. We study the combinatorial voter
control problems from both the classical and the parameterized complex-
ity point of view. We confirm Bulteau et al.’s conjecture [8] that for the
Plurality rule, the three problem variants: combinatorial constructive con-
trol by deleting voters and combinatorial destructive control by adding
(resp. deleting) voters, behave similarly in complexity to the results of
combinatorial constructive control by adding voters: They are NP-hard
and intractable even for very restricted cases. We can also identify several
special cases, where the complexity of the four problems behave differently.
For instance, we find that constructive control tends to be computationally
harder than destructive control. We summarize our results in Table 1.

Related Work. Bartholdi III et al. [3| introduced the complexity study
of election control problems and showed that for the Plurality rule, the
non-combinatorial variant of the voter control problems can be solved in

linear time by a using simple greedy strategy. We refer the readers to the
work by Rothe and Schend [27], Faliszewski and Rothe [15] for general
expositions on election control problems.

In the original election control setting, a unit modification of the elec-
tion concerns usually a single voter or candidate. The idea of adding com-
binatorial structure to election voter control was initiated by Bulteau et al.
[8]: Instead of adding a voter at each time, one adds a “bundle” of vot-
ers to the election, and the bundles added to the election could intersect
with each other. They showed that combinatorial constructive control by
adding the fewest number of bundles becomes notorious hard, even for the
Plurality rule and for only two candidates. Chen [9] mentioned that even
if each bundle has only two voters and the underlying bundling graph is
acyclic, the problem still remains NP-hard. Bulteau et al. [8] and Chen [9]
conjectured that

“the combinatorial addition of voters for destructive control, and
combinatorial deletion of voters for either constructive or destruc-
tive control behave similarly to combinatorial addition of voters
for constructive control.”

The combinatorial structure notion for voter control has also been
extended to candidate control [10] and electoral shift bribery [7].

Paper Outline. In Section 2, we introduce the notation used through-
out the paper. In Section 3 we formally define the four problem variants,
summarize our contributions, present results in which the four problem
variants (constructive or destructive, adding voters or deleting voters) be-
have similarly, and provide reductions between the problem variants. Sec-
tions 4 to 6 present our main results on three special cases (1) when the
bundles and the number of candidates are small, (2) when the bundles are
disjoint, and (3) when the solution size could be unlimited. We conclude
in Section 7 with several future research directions.

2 Preliminaries

The notation we use in this paper is based on Bulteau et al. [8]. We assume
familiarity with standard notions regarding algorithms and complexity
theory. For each z € N we denote by [z] the set {1,...,z}.

Elections. An election E = (C,V) consists of a set C' of m candidates
and a set V of voters. Each voter v € V has a favorite candidate ¢ and we
call voter v a c-voter. Note that since we focus on the Plurality rule, we
simplify the notion of the preferences of voters in an election to the favorite

candidate of each voter. For each candidate ¢ € C and each subset V! C V
of voters, her (Plurality) score s.(V') is defined as the number of voters
from V' that have her as favorite candidate. We say that a candidate c is
a winner of election (C, V) if ¢ has the highest score s.(V'). For the sake
of convenience, for each C' C C, a C'-voter denotes a voter whose favorite
candidate belongs to C”.

Combinatorial Bundling Functions. Given a voter set X, a combina-
torial bundling function r: X — 2% (abbreviated as bundling function)
is a function that assigns a set of voters to each voter; we require that
x € k(x). For the sake of convenience, for each subset X’ C X, we define
K(X") = U,ex k(x). For a voter € X, x(x) is named x’s bundle; x is
called the leader of the bundle. We let b denote the mazimum bundle size
of a given k. Formally, b = maxgex |#(x)]. One can think of the bundling
function as subsets of voters that can be added at a unit cost (e.g. k(z)
is a group of voters influenced by z).

Bundling graphs. The bundling graph of an election is a model of how
the voter’s bundle functions interact with each other.

Let k: X — 2% be a bundling function. The bundling graph G, =
(V(Gg), E(Gg)) is a simple, directed graph: For each voter x € X there is
a vertex u, € V(G,). For each two distinct voters y, z € X with z € k(y),
there is an arc (uy, u;) € E(G,).

We consider three special cases of bundling functions/graphs which
we think are natural in real world. We say that a bundling function & is
symmetric if for each two distinct voters z,y € X, it holds that y € x(x)
if and only if x € k(y). The bundling graph for a symmetric bundling
function always has two directed arcs connecting each two vertices. Thus,
we can assume the graph to be undirected.

We say that k is disjoint if for each two distinct voters x,y € X, it
holds that either k(z) = k(y) or k(z) N k(y) = 0. It is an easy exercise
to verify that disjoint bundling functions are symmetric and the corre-
sponding undirected bundling graphs consist only of disjoint complete
subgraphs.

We say that x is anonymous if for each two distinct voters x and y
with the same favorite candidate, it holds that x(z) = k(y), and that for
all other voters z we have x € k(z) if and only if y € k(2).

Parameterized Complexity. An instance (I, r) of a parameterized prob-
lem consists of the actual instance I and of an integer r referred to as the
parameter [13, 19, 25]. A parameterized problem is called fized-parameter
tractable (in FPT) if there is an algorithm that solves each instance (I, 7)

in f(r)-|[I|°M) time, where f is a computable function depending only on
the parameter r.

There is also a hierarchy of hardness classes for parameterized prob-
lems, of which the most important ones are W[1] and W[2]. One can show
that a parameterized problem L is (presumably) not in FPT by devis-
ing a parameterized reduction from a W[1]-hard or a W[2]-hard problem
to L. A parameterized reduction from a parameterized problem L to an-
other parameterized problem L’ is a function that acts as follows: For two
computable functions f and g, given an instance (I,7) of problem L, it
computes in f(r) - [I|°) time an instance (I’,7’) of problem L’ so that
r" < g(r) and that (I,r) € L if and only if (I’,7’) € L'. For a survey of
research on parameterized complexity in computational social choice, we
refer to Betzler et al. [5] and Bredereck et al. [6].

3 Central Problem

We consider the problem of combinatorial voter control in four variants.
The variants differ in whether they are constructive or destructive, mean-
ing that the goal is to make one selected candidate win or lose the election.
This goal can be achieved by either adding voters to or deleting voters from
the given election. Due to space constraints, we only provide the definition
of constructive control. Destructive control is defined analogously.

COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING

(resp. DELETING) VOTERS |[C-CONs-ADD (resp. C-CONS-DEL)|

Input: An election E = (C,V), a set W of unregistered voters with
VW = (), a bundling function x: W — 2W (resp. x: V — 2V),
a preferred winner p € C, and an integer k € N.

Quest.: Is there a size-at-most k subset W/ C W (resp. V' C V) of
voters such that p wins the election (C, VUx(W’)) (resp. (C,V'\
K(V")))?

Throughout this work, when speaking of the “adding” or “deleting’
variants, we mean those variants in which voters are added or, respectively,
deleted. In similar fashion, we speak of the constructive and destructive
(abbr. by “ConNs” and by “DES”, respectively) problem variants. Further,
we refer to the set W’ of voters as the solution for the “adding” variants
(the set V' of voters for the “deleting” variants, respectively) and denote
k as the solution size.

)

Our Contributions. We study both the classical and the parameterized
complexity of the four voter control variants. We are particularly inter-
ested in the real-world setting where the given election has a small number

Table 1: Computational complexity of the four combinatorial voter con-
trol variants with the Plurality rule. The parameters are “the solution size
k”, “the number m of candidates” and “the maximum bundle size b”. We
refer to |I| as the instance size. The rows distinguish between different
maximum bundle sizes b and the number m of candidates. All parameter-
ized intractability results are for the parameter “solution size k”. ILP-FPT
means FPT based on a formulation as an integer linear program and the
result is for the parameter “number m of candidates”.
C-Cons-App C-Cons-DEL C-DEsS-ADD C-DEs-DEL References

K symmetric

b=2 o(|1)) P O(m|I]) O(mlI]) Obs 2, Thm 3
Thm 5
b=3
m=2 O(|1]%) o(|11°) o(|1°) o(|1°) Thm 2,
Cor 1+2
m unbounded NP-h NP-h Oo(m|I®) o(m|I®) Obs 1, Prop 2,
Cor 2
b unbounded
m=2 W[2]-h W[2]-h W[2]-h W[2]-h [8], Thm 1
m unbounded and
k disjoint WI[1]-h WI[2]-h O(m|I]) O(m|I|) Thm 4+5
K anonymous ILP-FPT ILP-FPT ILP-FPT ILP-FPT Thm 1

K arbitrary
b=3, m=2 WI[1]-h WI[1]-h WI[1]-h WI[1]-h Thm 1

of candidates and where only a few voters are associated to a voter. On the
one hand, we were able to confirm the conjecture given by Bulteau et al. [§]
and Chen [9] that when parameterized by the solution size, C-CONs-DEL,
C-DEs-ADD, and C-DES-DEL are all intractable even for just two candi-
dates or for bundle sizes of at most three, and that when parameterized by
the number of candidates, they are fixed-parameter tractable for anony-
mous bundling functions. On the other hand, we identify interesting spe-
cial cases where the four problems differ in their computational complexity.
We conclude that in general, destructive control tends to be easier than
constructive control: For symmetric bundles with at most three voters,
C-CoNs-ADD is known to be NP-hard, while both destructive problem
variants are polynomial-time solvable. For disjoint bundles, constructive
control is parameterized intractable (for the parameter “solution size k”),
while destructive control is polynomial-time solvable. Unlike for C-CONs-
DEL, a polynomial-time approximation algorithm for C-CONs-ADD does
not exist, unless P = NP. Our results are gathered in Table 1.

The following theorem summarizes the conjecture given by Bulteau
et al. [8] and Chen [9]. The proofs are deferred to Appendices A.1 to A.3.

Theorem 1. All four combinatorial voter control variants are
(i) W[2]-hard with respect to the solution size k, even for only two can-
didates and for symmetric bundling functions k
(i) W[1]-hard with respect to the solution size k, even for only two can-
didates and for bundle sizes of at most three.
(iii) fized-parameter tractable with respect to the number m of candidates
if the bundling function Kk is anonymous.

Relations between the four problem variants. We provide some re-
ductions between the problem variants. They are used in several sections
of this paper. The key idea for the reduction from destructive control to
constructive control is to guess the candidate that will defeat the distin-
guished candidate and ask whether one can make this candidate win the
election. The key idea for the reduction from the “deleting” to the “adding”
problem variants is to build the “complement” of the registered voter set.

Proposition 1. For each X € {ApD, DEL}, C-DES-X with m candi-
dates is Turing reducible to C-CONS-X with two candidates. For each
Y € {Cons, DEs}, C-Y-DEL with two candidates is many-one reducible
to C-Y-ADD with two candidates. All these reductions preserve the prop-
erty of symmetry of the bundling functions.

4 Controlling Voters with Symmetric and Small Bundles

In this section, we study combinatorial voter control when the voter bun-
dles are symmetric and small. This could be the case when a voter’s bun-
dle models his close friends (including himself), close relatives, or office
mates. Typically, this kind of relations is symmetric, and the number of
friends, relatives, or office mates is small. We show that for symmetric
bundles and for bundles size at most three, both destructive problem vari-
ants become polynomial-time solvable, while both constructive variants
remain NP-hard. However, if there are only two candidates, then we can
use dynamic programming to also solve the constructive control variants
in polynomial time. If we restrict the bundle size to be at most two, then
all four problem variants can be solved in polynomial time via simple
greedy algorithms.

As already observed in Section 2, we only need to consider the undi-
rected version of the bundling graph for symmetric bundles. Moreover, if
the bundle size is at most two, then the resulting bundling graph consists
of only cycles and trees. However, Bulteau et al. [8] already observed that
C-Cons-ADD is NP-hard even if the resulting bundling graph solely con-
sists of cycles, and Chen [9] observed that C-CONS-ADD remains NP-hard
even if the resulting bundling graph consists of only directed trees of depth
at most three.

Observation 1. C-CONSs-ADD is NP-hard even for symmetric bundling
functions with maximum bundle size b = 3.

It turns out that the reduction used by Bulteau et al. [8] to show
Observation 1 can be adapted to show NP-hardness for the deleting case.

Proposition 2. C-CoNs-DEL is NP-hard even for symmetric bundling
functions with maximum bundle size b = 3.

If, in addition to the bundles being symmetric and of size at most
three, we have only two candidates, then we can solve C-CONS-ADD in
polynomial time. First of all, due to these constraints, we can assume
that the bundling graph G, is undirected and consists of only cycles and
paths. Then, it is easy to verify that we can consider each cycle and each
path separately. Finally, we devise a dynamic program for the case when
the bundling graph is a path or a cycle, maximizing the score difference
between our preferred candidate p and the other candidate. The crucial
idea behind the dynamic program is that the bundles of a minimum-size
solution induce a subgraph where each connected component is small.

Lemma 1. Let (E = (C,V),W,k,p, k) be a C-CONS-ADD instance such
that C = {p, g}, and k is symmetric with G, being a path. Then, finding
a size-at-most-k subset W' C W of voters such that the score difference
between p and q in kK(W') is mazimum can be solved in O(|W|°) time,
where |W| is the size of the unregistered voter set W.

Proof. Since G, is a path, each bundle has at most three voters. We denote
the path in Gy by (w1, ws, ... ,w‘W|) and introduce some definitions for
this proof. The set W (s,t) := {w; € W | s <1i < t} contains all voters on
a sequence from wg to wy. For every subset W’ C W we define gap(W') =
sp(K(W')) — s4(k(W")) as the score difference between p and g. One can
observe that if W is a solution for (E = (C, V), W, k, p, k) then gap(W') >
s¢(V') — s,(V); note that we only have two candidates. An (s,t)-proper-
subset W' is a subset of W (s, t) such that x(W') C W(s,t). A mazimum

(s,t)-proper-subset W' additionally requires that each (s, t)-proper-subset
W"” C W with |[W”| = |W’| has gap(W") < gap(W').

We provide a dynamic program in which a table entry T'[r, s, t] contains
a maximum (s, t)-proper-subset W’ of size r. We first initialize the table
entries for the case where t — s+ 1 <9 and r <9 in linear time.

For t — s+ 1 > 9, we compute the table entry T'[r, s, t] by considering
every possible partition of W (s,t) into two disjoint parts.

Tlr,s,t] =Tr—1i,s,s+j]UT[i,s+j+ 1,t],
where i,j = argmax gap(T[r —1i,s,s+ j]) + gap(T[i,s + j + 1,t]).

0<:<r
0<j<t—s—2

Note that a maximum (1, |W])-proper-subset W' of size r — 1 could have
a higher gap than a maximum (1, |W|)-proper-subset W" of size r.

To show the correctness of our program, we define the maximization
and minimization function on a set of voters W', which return the largest
and smallest index of all voters on the path induced by W', respectively:

max(W') == argmax{w; € (W’')} and min(W') := arg min{w; € (W’)}.
ie|W/| e|W’|

First, we use the following claim to show that each maximum (s, ¢)-proper-
subset W' can be partitioned into two (s,t)-proper-subsets Wy, Wy such
that the two sets x(W1) and x(W2) are disjoint. (The formal proof of the
following claim can be found in the Appendix.)

Claim 1. Let W' be a mazimum (s,t)-proper-subset and (max x(W') —
min k(W')+1) > 9. Then, there is a j with s < j <t such that there is an
(s,7)-proper-subset Wy and a (j+1,t)-proper-subset Wy with |W1|+|Wa| <
|[W'| and k(W7 U W3) = (W').

Now, we show that the two subsets W7 and W5 from Claim 1 are indeed
optimal: There is a j such that W7 is a maximum (s, j)-proper-subset and
Wy is a maximum (j + 1, t)-proper-subset.

Assume towards a contradiction that Wy is a (j + 1,¢)-proper-subset
but not a maximum (j + 1,¢)-proper-subset. Therefore, there exists a
maximum (j+1, t)-proper-subset W3 where |Ws| = |W3|. This implies that
gap(W1 UW3) > gap(W; UWs). This is a contradiction to W/ = Wy U W,
being a maximum (s,t)-proper-subset. The case in which Wj is not a
maximum (s, j)-proper-subset is analogous.

Altogether, we have shown that we can compute T'[k, s,] in constant
time if t — s + 1 < 9, and that otherwise there exist an ¢ and a j such

that T'[k,s,t] = T[k —i,s,t — j|UT]i,t — j + 1,t]. The dynamic program
considers all possible i and j. The table entry T'[i, 1, |IW|] contains a subset
W' C W of size i with maximum gap such that x(W') C W (1, |W|), which
is identical to k(W') C W.

This completes the correctness proof of our dynamic program. The ta-
ble has O(k-|W|?) entries. To compute one entry the dynamic program ac-
cesses O(k-|W|) other table entries. Note that the value gap(7'[¢, s, t]) can
be computed and stored after the entry T[i,s,t] is computed. This takes
at most O(|]W|) steps. Thus, the dynamic program runs in O(|W|?) time.

O

The dynamic program can be used to solve the same problem on cycles.
Altogether, we obtain the following.

Theorem 2. C-CONS-ADD with a symmetric bundling function, maxi-
mum bundle size of three, and for two candidates can be solved in O(|W %)
time, where |W| is the size of the unregistered voter set.

Proof. Let (E = (C,V),W,k,p,k) be a C-CONS-ADD instance, where
the maximum bundle size b is three, k is symmetric, and C' = {p, g}. This
means that all connected components C1,...,Cy of G, are path or cycles.
Furthermore, all bundles only contain voters from one connected compo-
nent. We define a dynamic program in which each table entry Al s,
contains a solution W/ C W of size i, where x(W') C V(Cs)U---UV(C})
and 1 <s<t<{:
(i) If s =t =j, then A[i,s,t] = Ti, 1,|V(C})|], where T is the dynamic
program of C}, depending on whether C; is a path or cycle.
(ii) Otherwise, we build the table as follows:
Ald, s, t] = Ald —i,s,s + j] U Ali, s + j + 1,t], where
i,7 = argmax gap(Ald —1i,s,s+ j|) + gap(Ali,s + 7 + 1,1]).
0<i<d
1<j<t=s—1
Each of the table entries A[i, j,j] can be computed in O(i%-|V (C;)?) time
(see Lemmas 1 and B.1) and each of the table entries A[i, s, t] for s < ¢
can be computed in O(k - £) time. Since we have k - £2 entries, the total
running time is

S O - [V(CH)IP) = O(KY) S O([V(Cy)) = Ok - W). O

From the polynomial-time solvability of Theorem 2 and by Proposi-
tion 1, we obtain the following results:

Corollary 1. C-CoNS-DEL with a symmetric bundling function, a max-
imum bundle size of three and two candidates can be solved in O(|V]?)
time, where |V| is the size of the voters.

10

Corollary 2. C-DES-ADD and C-DES-DEL with a symmetric bundling
function and mazimum bundle size three can be solved in time O(m-|W|%)
and O(m - |V'|), respectively, where m is the number of candidates, and
|W| and |V| are the sizes of the unregistered and registered voter set, re-
spectively.

5 Controlling Voters with Disjoint Bundles

We have seen in Section 4 that the interaction between the bundles in-
fluences the computational complexity of our combinatorial voter control
problems. For instance, adding a voter v to the election may lead to adding
another voter v with v € k(v). This is crucial for the reductions used to
prove Theorem 1 and Observation 1. Thus, it would be interesting to know
whether the problem becomes tractable if it is not necessary to add two
bundles that share some voter(s). More specifically, we are interested in
the case where the bundles are disjoint, meaning that we do not need to
consider every single voter, but only the bundles as a whole, as it does
not matter which voters of a bundle we select.

First, we consider disjoint bundles of size at most two. This is the case
for voters who have a partner. If a voter is convinced to participate in or
leaves the election, then the partner is convinced to do the same. Note
that this is equivalent to having symmetric bundles of size at most two.
Bulteau et al. [8, Theorem 6] constructed a linear-time algorithm for C-
CoNs-ADD if the maximum bundle size is two and & is a full-d bundling
function (which implies symmetry). We can verify that their algorithm
actually works for disjoint bundles of size at most two. Thus, we obtain
the following.

Observation 2. C-CONS-ADD with a symmetric bundling function and
with bundles of size at most two can be solved in O(|I|) time, where |I| is
the input size.

If we want to delete instead of add voter bundles, the problem reduces
to finding a special variant of the f-FACTOR problem, which is a gener-
alization of the well-known matching problem and can still be solved in
polynomial time [1, 2].

Theorem 3. C-CONS-DEL with a symmetric bundling function and with
bundles of size at most two can be solved in polynomial time.

If we drop the restriction on the bundle sizes but still require the
bundles to be disjoint, then C-CONS-ADD and C-CONS-DEL become pa-
rameterized intractable with respect to the solution size.

11

Theorem 4. Parameterized by the solution size k, C-CONS-ADD and C-
Cons-DEL are W[1]-hard and W|[2]-hard respectively, even for disjoint
bundles.

Proof (with only the construction for the W[1]-hardness proof of C-CONs-
ADD). We provide a parameterized reduction from the W[1]-complete
problem INDEPENDENT SET (parameterized by the “solution size”) which,
given an undirected graph G = (V(G), E(G)) and a natural number h € N,
asks whether G admits a size-h independent set U C V(G), that is, all ver-
tices in U are pairwise non-adjacent. Let (G, h) be an INDEPENDENT SET
instance with E(G) = {e1,..., em—1} and V(G) = {uy, ..., u,}. Without
loss of generality, we assume that G is connected and h > 3. We construct
an election F = (C,V) with candidate set C':= {p} U {g; | ¢; € E(G)}.
For each edge e; € E, we construct h — 1 registered voters that all have g;
as their favorite candidate. In total, V' consists of (h — 1) - (m — 1) voters.

The unregistered voter set W is constructed as follows: For each ver-
tex u; € V(G), add a p-voter p;, and for each edge e; incident with w;,
add a g;-voter ag»z). The voters constructed for each vertex u; are bundled
by the bundling function . More formally, for each u; € V(G) and each
e; € E(G) with u; € ej, it holds that

k(pi) = n(ay)) ={pi} U {ag.l,) | ej € E(G) ANu; € eji}.
To finalize the construction, we set k = h. The construction is both
a polynomial-time and a parameterized reduction, and all bundles are
disjoint. To show the correctness, we note that p can only win if only if
her score can be increased to at least h without giving any other candidate
more than one more point. The solution corresponds to exactly to a subset
of h vertices that are pairwise non-adjacent. The detailed correctness proof
and the remaining proof for the W[2]-hardness result can be found in the
Appendix. a

For destructive control, it is sufficient to guess a potential defeater d
out of m — 1 possible candidates that will have a higher score than p in
the final election and use a greedy strategy similar to the one used for
Observation 2 to obtain the following result.

Theorem 5. C-DES-ADD and C-DES-DEL with a symmetric bundling
function and disjoint bundles can be solved in O(m - |I|) time, where |I|
s the input size and m the number of candidates.

12

6 Controlling Voters with Unlimited Budget

To analyze election control, it is interesting to know whether a solution
exist at all, without bounding its size. Indeed, Bartholdi III et al. [3] al-
ready considered the case of unlimited solution size for the constructive
candidate control problem. They showed that the problem is already NP-
hard, even if the solution size is not bounded. (The non-combinatorial
destructive control by adding unlimited amount of candidates is shown
to be also NP-hard by Hemaspaandra et al. [20].) In contrast, the non-
combinatorial voter control variants are linear-time solvable via simple
greedy algorithms [3]. This leads to the question whether the combi-
natorial structure increases the complexity. To this end, we relax the
four problem variants so that the solution can be of arbitrary size and
call these problems C-CONS-ADD-UNLIM, C-DES-ADD-UNLIM, C-CONS-
DEL-UNLIM and C-DES-DEL-UNLIM.

First of all, we observe that C-CONS-DEL-UNLIM becomes trivial if
no unique winner is required.

Lemma 2. Let I = (E = (C,V),k,p) be a C-CONs-DEL-UNLIM in-
stance. Then I is a yes-instance.

If we consider a voting rule R that only returns unique winners, then
C-DEs-DEL-UNLIM also becomes tractable since we only need to delete
all voters.

For the constructive adding voters case, we obtain NP-hardness. The
idea for the reduction derives from the W[1]-hardness proof of C-CONs-
ADD shown by Bulteau et al. [8].

Lemma 3. C-Cons-ADD-UNLIM s NP-hard.

Lemma 3 immediately implies the following inapproximability result
for the optimization variant of C-CONS-ADD (denoted as MIN-C-CONs-
ADD), aiming at minimizing the solution size.

Theorem 6. There is no polynomial-time approzimation algorithm for
MIN-C-CONS-ADD, unless P = NP.

7 Conclusion

We extend the study of combinatorial voter control problems introduced
by Bulteau et al. [8] and obtain that the destructive control variants tend
to be computationally easier than their constructive cousins.

13

Our research leads to several open questions and further research op-
portunities. First, we have shown hardness results for the adding candidate
case: if the bundling function consists of disjoint cliques, then parameter-
ized by the solution size, C-CoNs-ADD is W[1]-hard and C-DEs-ADD is
W/2]-hard. If one could also determine the complexity upper bound, that
is, under the given restrictions, if C-CONS-ADD would be contained in
WI[1], then this would yield another difference in complexity between the
destructive and the constructive variants. This also leads to the question
whether the problem variants in their general setting are not only W[2]-
hard, but W[2]-complete.

Second, we have only shown that MIN-C-CONS-ADD is inapproximable
and MIN-C-DEs-DEL is trivially polynomial-time solvable. For the other
two problem variants, we do not know whether they can be approximated
efficiently or not.

Another open question is whether there are FPT-results for any natural
combined parameters. As a starting point, we conjecture that all problem
variants can be formulated as a monadic second-order logic formula with
length of at most f(k,b,m) (where k is the solution size, b is the maxi-
mum bundle size, m is the number of candidates, and f is a computable
function). Courcelle and Engelfriet [11] showed that every graph problem
expressible as a monadic second-order logic formula p can be solved in
g(lpl,w) - || time, where w is the treewidth of the input graph and || is
the input size. Our conjecture would provide us with a fixed-parameter
tractability result with respect to the solution size, the maximum bun-
dle size, the number of candidates, and the treewidth of our bundling
graph G.

We have studied the Plurality rule exclusively. Thus it is still open
which of our results also hold for other voting rules, especially for the
Condorcet rule. Since with two candidates, the Condorcet rule is equiva-
lent to the strict majority rule, we can easily adapt some of our results
to work for the Condorcet rule as well. Other results (i.e., the Turing
reductions) cannot be easily adapted to work for the Condorcet rule.

References

1. R. P. Anstee. An algorithmic proof of Tutte’s f-factor theorem. Journal of Algo-
rithms, 6(1):112-131, 1985. 11

2. R. P. Anstee. Minimum vertex weighted deficiency of (g, f)-factors: A greedy
algorithm. Discrete Applied Mathematics, 44(1-3):247-260, 1993. 11, 33

3. J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is it to control an
election? Mathematical and Computer Modelling, 16(8-9):27-40, 1992. 1, 2, 13

14

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

N. Betzler and J. Uhlmann. Parameterized complexity of candidate control in
elections and related digraph problems. Theoretical Computer Science, 410(52):
43-53, 2009. 1

N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in computational
aspects of voting. In The Multivariate Algorithmic Revolution and Beyond, pages
318-363. Springer, 2012. 5

R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. J. Woeg-
inger. Parameterized algorithmics for computational social choice: Nine research
challenges. Tsinghua Science and Technology, 19(4):358-373, 2014. 5

R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. Large-scale election
campaigns: Combinatorial shift bribery. Journal of Artificial Intelligence Research,
55:603-652, 2016. 3

L. Bulteau, J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Combinatorial
voter control in elections. Theoretical Computer Science, 589:99-120, 2015. 2, 3,
6, 7,8, 11, 13, 17, 19, 21, 26, 27, 36, 37

J. Chen. Ezxploiting Structure in Computationally Hard Voting Problems. PhD
thesis, Technische Universitat Berlin, 2015. 3, 6, 7, 8

J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Elections with few voters:
Candidate control can be easy. In AAAI ’15, pages 2045-2051, 2015. 3

B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic: A
language-theoretic approach, volume 138. Cambridge University Press, 2012. 14
M. J. A. N. C. de Condorcet. Essai sur I’application de ’analyse a la probilite des
decisions rendues a la pluralite dex voix, 1785. 17

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. 4

G. Erdélyi, M. R. Fellows, J. Rothe, and L. Schend. Control complexity in Buck-
lin and fallback voting: A theoretical analysis. Journal of Computer and System
Sciences, 81(4):632-660, 2015. 1

P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Com-
putational Social Choice, chapter 7. Cambridge University Press, 2016. 3

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and
Copeland voting computationally resist bribery and constructive control. Journal
of Artificial Intelligence Research, 35:275-341, 2009. 1

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Multimode control at-
tacks on elections. Journal of Artificial Intelligence Research, 40:305-351, 2011.
1

P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Weighted electoral
control. Journal of Artificial Intelligence Research, 52:507-542, 2015. 1

J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006. 4

E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The
complexity of precluding an alternative. Artificial Intelligence, 171(5):255-285,
2007. 2, 13

L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze and ranked-pairs vot-
ing are fixed-parameter tractable to bribe, manipulate, and control. Annals of
Mathematics and Artificial Intelligence, 77(3-4):191-223, 2016. 1

H. W. Lenstra Jr. Integer programming with a fixed number of variables. Mathe-
matics of operations research, 8(4):538-548, 1983. 21, 23

H. Liu and D. Zhu. Parameterized complexity of control problems in Maximin
election. Information Processing Letters, 110(10):383-388, 2010. 1

15

24.

25.

26.

27.

H. Liu, H. Feng, D. Zhu, and J. Luan. Parameterized computational complexity
of control problems in voting systems. Theoretical Computer Science, 410(27-29):
2746-2753, 2009. 1

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford University
Press, 2006. 4

A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multi-winner elections: Com-
plexity of manipulation, control and winner-determination. In IJCAI ’07, pages
1476-1481, 2007. 2

J. Rothe and L. Schend. Challenges to complexity shields that are supposed to pro-
tect elections against manipulation and control: A survey. Annals of Mathematics
and Artificial Intelligence, 68(1-3):161-193, 2013. 3

16

Appendix

A Similarities in Complexity between the Problem
Variants

In this section we provide the theorems and proofs for results in which
the four problem variants behave similarly in complexity which are sum-
marized in the main text as Theorem 1.

First, we provide hardness results with different constraints on the pa-
rameters of the problem variants. Then, we show that the problem variants
are fixed-parameter tractable with respect to the number of candidates.

For this appendix, we introduce the Condorcet voting rule.

A candidate ¢ is a Condorcet winner if it wins against every other
candidate in a head-to-head contest [12]. Formally, ¢ is a Condorcet winner
v e C\{c}: {veV |c,d}|>{veV | =, c}| Condorcet’s
voting rule returns a set consisting of the unique Condorcet winner if it
exists. Otherwise, it returns the empty set.

Note that, for the Condorcet rule, the problem definitions stated in
Section 3 need to be modified as the preferred winner (loser) p needs to
win (lose) the election evaluated by the Condorcet rule.

A.1 W][2]-Hard for the Solution Size

Bulteau et al. [8] originally stated that C-CoNs-ADD is W[2]-hard with
respect to the solution size for the Plurality and for the Condorcet voting
rule. Theorem A.1 uses their proof concept and extends their result for
the other three variants of the combinatorial voter control problem.

Theorem A.1. For both Plurality and Condorcet, C-CONS-DEL, C-DES-
ADD and C-DES-DEL are all W[2]-hard with respect to the solution size
k, even if there are only two candidates and even if the bundling function
K 1s symmetric.

Proof. We first consider the Plurality rule and provide a parameterized
reduction from the W[2]-complete problem DOMINATING SET parameter-
ized by the solution size h.

DOMINATING SET

Input: An undirected graph G = (V(G), E(G)) and a natural
number h € N.

Question: Is there a dominating set of size at most h, that is, a
vertex subset U C V(G) with |U| < h such that each vertex from
V(G) \ U is adjacent to at least one vertex from U?

17

Let (G, h) be a DOMINATING SET instance. We construct an election
E = (C,V) with C = {p, g}, where p is our preferred candidate. We define
the voter set for our three problem variants differently.

For C-DES-ADD:

- The registered voter set V' consists of |V (G)| — 1 p-voters (and no
g-voters).
- The unregistered voter set W consists of one g-voter w; for each
vertex u; € V(Q).
For C-CoNs-DEL, we define the voter set V' such that
- V consists of one g-voter w; for each vertex u; € V(G) and
- no p—voters.1
For C-DEs-DEL, we define the voter set V' such that
- V consist of one p-voter w; for each vertex u; € V(G) and
- one g-voter w’ with bundle x(w’) = {w'}.

We define the bundle x(w;) as the closed neighborhood of u;, formally
k(w;) = w; U{w;j | {us,u;} € E(G)}. Finalizing our construction, we set
k= h.

It is clear that our construction is both a polynomial reduction and
a parameterized reduction with respect to k. Also, it is obvious that the
bundling function used in the construction is symmetric.

We exemplary show for C-CONs-DEL that there is a dominating set
of size h if and only if there is a subset V' of size at most k. The other
two variants can be proven analogously.

For the “only if” part, given a dominating set U of size at most h, we
define V' to be the corresponding voter set, that is, V' = {w; | u; € U}.
It is clear that |[V/| < h =k and p as well as g becomes winner, because
g loses |V (G)| points and has the same score as p.

For the “if” part, given a subset of the voters V' C V of size at most k
such that p is a winner of E' = (C,V \ k(V")), we define U to be the set of
vertices corresponding to the voters from V', that is, U := {u; | w; € V'}.
It follows that |U| < k = h and for each vertex u; € V(G) \ U there must
be a vertex u; € U which is a neighbor of u;, since otherwise we will still
have some g-voters and p will not become a winner.

Finally, we need to consider the Condorcet rule. For two candidates,
the Condorcet rule is equivalent to the strict majority rule and, hence,
the proof is analogous to the proof for the Plurality rule. We only need

! For simplicity, we assume that every candidate is a winner in an election without
voters. However, if one requires a non-empty voter set, then one can easily adjust the
construction by adding one p-voter w, and one g-voter wy with x(wp) = {w,} and
k(wq) = {wq}. This makes the argumentation in the proof slightly more complicated.

18

to adapt the C-DES-ADD such that the candidate p is the only winner.

We can accomplish that by adding to the V one p-voter w’ with bundle
k(w') = {w'}. 0

A.2 WIJ1l]-Hard for the Solution Size

From Bulteau et al. [8] we know that C-CONs-ADD is W[1]-hard with
respect to the solution size for the Plurality voting rule, even when the
maximum bundle size is three. We show this for three other variants of the
combinatorial voter control and additional for Condorcet’s voting rule.

Theorem A.2. For both Plurality and Condorcet, C-CONS-ADD, C-CONSs-
DEL, C-DES-ADD and C-DES-DEL are all W[1]-hard with respect to the
solution size k, even if the mazimum bundle size b is three and there are
only two candidates.

Proof. We first consider the Plurality rule and provide a parameterized
reduction from the W[1]-complete problem CLIQUE parameterized by the
solution size h.

CLIQUE

Input: An undirected graph G = (V(G), E(G)) and a natural
number h € N.

Question: Is there a clique of size at least h, that is, a complete
subgraph with i vertices?

Let (G, h) be a CLIQUE instance. Without loss of generality, we assume
h > 3. (If not, it can be solved in polynomial time.) We construct an
election £ = (C, V) with C = {p, g}, where p is our preferred candidate.
For each vertex u € V(G) we define one vertex voter w, with the bundle
k(wy) = {w,}. For each edge e = {u,u'} € E(G) we define one edge voter
we with the bundle k(w,) = {we, wy, w, }. Now, we finalize the voter set
definition which slightly differs for our three problem variants.
For C-CoNs-DEL, we define the voter set V' such that:
- Vertex voters are p-voters.
- Edge voters are g-voters.
- We add a set D, of dummy p-voters and a set D, of dummy g-voters
with x(w) = {w} for each w € D, UD,. We set set the cardinalities
of D, and D, such that s,(V) — s,(V) = (g) — h.
For C-DEs-DEL, we define the voter set V' such that
- Vertex voters are g-voters.
- Edge voters are p-voters.

19

- We add a set D, of dummy p-voters and a set D, of dummy g-voters
with k(w) = {w} for each w € D,UD,. We set set the cardinalities
of D, and Dy such that s,(V) — s4(V) = (g) —h—1

For C-DES-ADD:

- Vertex voters are unregistered g-voters.

- Edge voters are unregistered p-voters.

- There are no other voters in the unregistered voter set WW.

- The registered voter set V' consist of (g) — h — 1 p-voters.

Finally, we set k = (g)

It is clear that our construction is both a polynomial reduction and a
parameterized reduction with respect to k.

We exemplary show for C-CONS-DEL that there is a clique U of size
at least h if and only if there is a subset V' of size at most k such that p
becomes a winner of F. The other two variants can be proven analogously.

For the “only if” part, given a clique U of size h, we construct V'
by adding to it any edge voter w. with e € E(G[U]). It is clear that
V'] < (g) = k. Observe that candidate p as well as candidate g become
winners. Candidate g loses (g) points and candidate p loses h points. Thus,
g and p have the same score.

For the “if” part, given a subset of the voters V' C V of size at most k
such that p is a winner of E' = (C,V \ k(V")), we define U to be the set
of vertices corresponding to the voters from V', that is, U = {u € V(G) |
we € V' and u € e}. We observe that deletion of vertex voters doesn’t
reduce the score of g and removing a vertex voter from V'’ would lead to
a smaller solution. Hence, we can assume that V' does not contain any
vertex voters. In order to reduce the score of g, enough edge voters must
be removed, but a certain amount of vertex voters will be removed as well
since they are in the bundles of the edge voters. We denote the number of
indirectly removed vertex voters be x. Clearly « < h, because otherwise
p loses more than h points, g loses at most (g) points, and ¢ remains
the only winner. Assume towards a contradiction that x < h — 2. The
score of g decreases by at least (g) — h in E' (compared to E) so that
V' contains at least (g) — h edge voters. However, (g) < (hEQ) < (g) —h
for any h > 3. Hence, x > h — 2 implying that there are at least (g) -2
edge voters. Now, assume towards a contradiction that x = h — 1. Then,
(;C) < (h;l) < (g) — 2 for any h > 3. Thus, = h implying that there are
exactly k = (g) edge voters in V' with altogether h different vertex voters
in their bundles. In this case, U is a clique of size h, since otherwise we
cannot have (g) edges incident to h vertices.

20

Finally, we need to consider the Condorcet rule. For two candidates,
the Condorcet rule is equivalent to the strict majority rule and, hence,
the proof is analogous to the proof for the Plurality rule. We only need to
adapt the C-DES-ADD such that candidate p is the only winner. We can
accomplish that by adding to the V' one p-voter d with bundle x(d) = {d}.
Condorcet-C-CONS-ADD can be proved analogously. O

A.3 Fixed-Parameter Tractability for the Number of
Candidates

Bulteau et al. [8] provide an integer linear program (ILP) that solves
Plurality- and Condorcet-C-CONsS-ADD for the case when the bundling
function is anonymous (see Section 2 for the corresponding definition)
and exploit Lenstra’s theorem to show fixed-parameter tractability with
respect to the number of candidates. Their idea is to utilize the fact that
for anonymous bundling functions, voters with the same preference order
“lead” the same bundle of voters and “follow” the same voter as well. Thus,
with m candidates, we will have at most m! different bundles. By this ob-
servation, they introduce O(m!) variables, one variable for a bundle, to
encode whether to select a bundle to the solution. Indeed, as long as the
bundling function is anonymous, the same idea applies to the remaining
three combinatorial voter control variants. Although the technique is anal-
ogous, we provide the corresponding ILPs for Theorems A.3 to A.5 and
show the correctness for the sake of completeness.

Theorem A.3. For both Plurality and Condorcet, C-CONS-DEL is fized-
parameter tractable with respect to the mumber m of candidates, if the
bundling function k is anonymous.

Proof. Given a C-CoNs-DEL instance ((C,V), k,p, k) with m candidates
and anonymous bundling function k, we construct an integer linear pro-
gram (ILP) with at most O(m!) variables and at most O(|V| 4+ m) con-
straints for C-CONS-DEL similar to Bulteau et al. [8] for C-CONs-ADD.
Fixed-parameter tractability follows because every ILP with p variables
and L input bits is solvable in O(p>5P*+°(°) L) time [22].

Since m candidates are given, there are at most m! voters with pair-
wise different preference orders. We denote these as =1, >2,..., =, and
note that there are at most m! different bundles, because k is leader-
anonymous.

We will use the following notation for the construction of the ILP:

21

1. Define k(>-;) as the set of preference orders of the voters included in
the bundle of the voters with preference order >;; note that by the
anonymity, if k(>;) contains a preference order >, then every voter
with preference order > is in the bundle of the voter that has preference
order >=;.

2. Define k7 1(=;) == {=;]>;€ k(=) } as the set of preference orders that
include >; in their bundles.

3. Define N; as the number of voters with preference order >; in V.

4. For each candidate a € C, define F'(a) as the set of preference orders
in which a € C is ranked first and

5. let s(a) be the initial score in election (C,V).

To encode a solution W', for each preference order »;,i € [m!], we intro-

duce two Boolean variables, x; and y;. The intended meaning of x; = 1 is

that the sought solution contains a voter with preference order ;. The
intended meaning of y; = 1 is that x(V”) contains a voter with preference
order ;.

Now, we are ready to state the integer linear problem. Note that it
suffices to find a feasible solution. Thus, we do not need to specify any
objective function.

i€[m!]
z; < Nj, Vi € [m!] (2)
S m<mly, viem] (3)
=€ 1(>=5)
Z Ti > Yj, Vj € [ml] (4)
i€ 1(>=5)
s(p)— Y. Nj-yj=s(@)— Y. Ny Va € C'\ {p} (5)
~;€F(p) ~;€F(a)
zi,y; € {0,1}, Vi € [ml] (6)

Constraint (1) ensures that at most k voters are added to the solution.
Constraint (2) ensures that the voters added to the solution are indeed
present in V. Constraints (3) and (4) ensure that variables y;,1 < j < ml,
have correct values. Indeed, if for some preference order »; we have x; = 1
and >;€ k(>;), then constraint (3) ensures that y; = 1. On the other
hand, if for some preference order ~; we have that for each preference
order >; with >;€ k(>;) it holds that ; = 0, then constraint (4) ensures
that y; = 0. Constraint (5) ensures that p has a (plurality) score which is

22

at least as high as the score of every candidate (which makes p a winner).
Clearly, there is a solution for this integer linear program if and only if
there is a solution for C-CoONS-DEL with the Plurality rule.

For the case of the Condorcet rule, we need to define the following
additional parameters: Let s(a,b) = [{v € V | a >, b}| denote the
number of voters that prefer candidate a over candidate b and P(a,b)
denote the set of preference orders in which a is preferred to b. We modify
only constraint (5) as follows:

s(p,a)—ZNj-yjZs(a,p)—ZNj-yj+1 Vae C\{p} (7)

~;i€P(p,a) ~;i€P(a,p)

This ensures that p can beat every other given candidate a in a head-to-
head contest if and only if there is a solution to the ILP.

As for the running time, it is clear that both ILPs have O(m) variables
and O(|V |4+ m) constraints. By the famous result of Lenstra Jr [22], fixed-
parameter tractability follows. a

Theorem A.4. For both Plurality and Condorcet, C-DES-ADD is fized-
parameter tractable with respect to the number m of candidates, if the
bundling function k is anonymous.

Proof. As in the proof for Theorem A.3, we construct an integer linear
program (ILP) with at most O(m!) variables and constraints, and use the
same notation, except the following two:

— N; denotes the number of voters with preference order =; in W.
— The intended meaning of y; = 1 is that x(WW') contains a voter with
preference order >;.

The constraints for the ILP are as follows:

> oz <k, (8)

i€[m!]
z; < N, vie [ml] (9)
> m<mly, vj € [ml] (10)
=i €RTL(5)
> x>y vj € [ml] (11)
—i€RT1(>-5)
ca(s) + DNy +1) < au(s(@) + Yo Njy;), VaeC\{p} (12)
>-j€F(p) >j€F(a)

23

Y aa>1, (13)

a€C\{p}
xi, Yi, o € {0,1}, Vi € [m!] (14)

If ag = 0, constraint (12) is valid. If a,, = 1, constraint (12) ensures that
p loses against candidate a. Constraint (13) ensures that at least one of
the Boolean variables «, has value 1 and, therefore, there exists at least
one candidate a € C such that a wins against p.

For the Condorcet rule, alter constraint (12) as follows:

aa(s(p,a) +ZN] *Yj + 1) < aa(s(a,p) +ZNJ y]>’ Va € C\{p}
~;€0(p,a) ~i€0(ap)
(15)

Here s(a,b) = [{w € W | a >, b}| is the number of unregistered voters
that prefer candidate a over candidate b.

Constraint (13) ensures that at least one of the Boolean variables oy,
has value 1 while constraint (15) ensures that p loses against at least one
of the candidates a in a head-to-head contest.

We omit the reasoning for the running time as it is the same as the
one shown for Theorem A.3. ad

Theorem A.5. For both Plurality and Condorcet, C-DES-DEL is fized-
parameter-tractable with respect to the number m of candidates, if the
bundling function k is anonymous.

Proof. This ILP is almost the same as the one for C-DES-ADD. The only
difference is that we use “—" instead of “4+” in constraint (12):

oca<8(p) —ZNj'yj+1) < aa(S(a) > N 'yj)NaG C\{p} (16)

~;EF(p) ~;EF(a)

Note that, in this problem variant, we do not try to find a subset of
unregistered voters W’ C W to add to the election, but a subset of the
registered voters V' C V to remove from the election. The definitions for
N; and y; change accordingly.

For the Condorcet rule, alter constraint (16) as follows:

o (s(p,0) = SNy g+ 1) < au(s(ap) = YN), Ya € O\ {p}
= ,€0(p,a) ~3€0(ap)
(17)

24

Here s(a,b) = {w € W | a > b}| is the number of unregistered voters
that prefer candidate a over candidate b. We omit the reasoning for the
running time as it is the same as the one shown for Theorem A.3. ad

B Missing Proofs

B.1 Proof of Proposition 1

Proposition B.1. For each X € {ApD, DEL}, C-DES-X with m candi-
dates is Turing reducible to C-CONs-X with two candidates.

Proof. First, we provide a Turing reduction from C-DES-ADD to C-CONs-
ApD. Let I = (F = (C,V),W,k,p, k) be a C-DES-ADD instance with

candidate set C' = {p, g1,...,9m—1}. We compose m — 1 instances of the
problem C-CoNs-ADD J; = (E; = (Cy, Vi), W', k4, gi, k), where
- Ci = 1{p, g9},

— V; = {v € V| v’s more preferred candidate is either p or g;} U {v4},
where v4 is an additional p-voter,

— W, :=={w € W | w’s more preferred candidate is either p or g;}, and

— ki Wi = 2Wi with ki (w) = k(w) N W;.

We show that I has a solution of size at most k if and only if at least one
of the instances J; has a solution of size at most k.

For the “only if” part, let W/ C W; be a solution for J;. Since J; has
only two candidates p and g;, this implies s,(V;Uk;(W/)) < sg,(ViUri(W)))
in J;. Since we added an additional p-voter to J;, s,(VUK(W))) < sg,(VU
k(W) in I. Thus p loses election (C, VUkK(W/)) and W/ C W is a solution
for I.

For the “if” part, let W’ C W be a solution for I, meaning that p loses
election (V U k(W")). Thus, there exists a g; € C' with sg,(V U k(W) >
sp(VUK(W')). Let W/ := W'NW;. Since g; and p are the only candidates in
C;, and since V; has one additional p-voter compared to V, it follows that
Sq; (ViUrki(W))) > s,(ViUk;(W)). Thus, g; wins election (Cj, V;Uk;(W))),
and W/ is a solution for J;.

For the Turing reduction from C-DES-DEL to C-CONs-DEL, the con-
struction of the reduction is similar to the one from C-DES-ADD to
C-CONS-ADD. Set the bundling functions x;: V; — 2V with k;(v) =
k(v) NV, and k;(vg) = {vaq}. 0

Proposition B.2. For each Y € {Cons, DEs}, C-Y-DEL with two can-
didates is many-one reducible to C-Y-ADD with two candidates.

25

Proof. First, we provide a polynomial-time reduction from C-CONS-DEL
to C-CoNs-ADD. Let I = (E = (C,V),k,p, k) be a C-CONs-DEL in-
stance with C' = {p,g}. We define V to be the complement voter set,
that is, it contains the same voters as V' but all p-voters become g-voters
and all g-voters become p-voters. We construct a C-CONS-ADD instance
J = (E = (C,V),W,k,p, k), where W = V. Clearly, the construction
of J can be implemented in polynomial time. We now claim that V' is a
size-k solution for I if and only if W’ := V' is a size-k solution for J.

First, we observe that for V'’ to be a solution for I, it must hold that
sp(V) = sp(k(V')) > 54(V) — s¢4(x(V")). Similarly for W’ to be a solution
for I, it must hold that s,(V) + sp(k(W')) > s4(V) + s¢(k(W')). As per
definition of the complement voter set and because of V/ = W', we know
that

sp(R(V) = sg(k(W")) and s4(k(V")) = sp(k(W)).
Thus, it holds that
sp(V) = sp(k(V')) = 5¢(V) = sg(r(V"))
if and only if s,(V) 4 sg(k(V")) > s4(V) + sp(k(V'))
if and only if s,(V) 4 sp(k(W')) > s4(V) + sy(k(W")),
implying that V"’ is a solution for I if and only if W’ is a solution for J.

The reduction from C-DES-DEL to C-DES-ADD works analogously.
O

B.2 Proof of Observation 1

Observation 1. C-CoNs-ADD is NP-hard even for symmetric bundling
functions with maximum bundle size b = 3.

Proof. Bulteau et al. [8, Theorem 7| have shown NP-hardness of C-CONSs-
ADD for full-d bundling functions? and maximum bundle size b = 3. Since
a full-d bundling function is symmetric |8, Observation 1|. Thus, NP-
hardness of C-CONS-ADD for symmetric bundling functions and b < 3
follows. O

B.3 Proof of Proposition 2

Proposition 2. C-Cons-DEL is NP-hard even for symmetric bundling
functions with maximum bundle size b = 3.

2 Full-d bundling functions are defined by Bulteau et al. [3, Section 2].

26

Proof. Bulteau et al. [8, Theorem 7| have shown NP-hardness of C-CONSs-
ADD for full-d bundling functions® and maximum bundle size b < 3. Their
idea was to construct a cycle for each variable x: The cycle contains ver-
tices that correspond to the clauses containing either x or * and are con-
nected through some p-voters in such a way that one must take the vertices
corresponding to the clauses with the same literal, that is, either x or .

We utilize this construction to show the hardness for the deleting case
by reducing from the following NP-complete 3SAT problem [§].

(2-2)-3SAT
Input: A collection F of size-two-or-three clauses over the variable
set X = {x1,...,x,}, such that each clause has either two or three

literals, and each variable appears exactly four times, twice as a
positive literal and twice as a negative literal.

Question: Is there a truth assignment that satisfies all the clauses
in F7

Let I = (F,X) be a (2-2)-3SAT instance. Now, we construct an
instance for C-CoONs-DEL as follows: Let p be the candidate whose victory
we want to ensure and let d be the winner of the original election. For
each clause f; = (Ejl Y E? \Y 6?) € F, we introduce a candidate ¢;. Thus,
the candidate set is C' = {p,d} U{c; | f; € F}.

The voter set is composed of three groups:

1. For each variable x;, for each clause f; that contains z; as a literal
(that is, either positive or negated variable), we introduce a d-voter,
denoted as v} (we call him a variable voter), and a ¢;-voter, denoted as
uf (we call him a clause voter). Now, let f;, fr, j <r, be the clauses
containing x;, and let fs, fi, s < t be the two clauses containing
;. We construct the bundles of these the clause voters corresponding
to f;, fr, fs, ft and the variable voters such that the bundling graph
forms a cycle with the d-voters between each two clause voters. More
precisely, let

w(u]) = {ul o] 0f}, m(]) = {0 uf)
r(ui) = A{ui v v}, w(vi) = {ui, v, ui}
w(up) = {uf, o], v}, K(v]) = {v],uf, ui}
r(ul) = {ug,vf,vf , ﬁ(vf):: {vf,uf,ug}

3 See footnote 2.

27

2. For each clause C; that contains only two literals, we introduce a c;-
voter u and set his bundle to be the singleton r(ul) = {ul}.

3. We introduce two p-voters w; ,w> and two d-voters v:{,v; with the
following bundles:

p

w(wy) = {wp,vg}, wwy)={w, v},

f@(vj) = {vj,w;'}, k(v))= {v;,w;}.

The bundling graph for the first group of voters is depicted in the left
figure and the bundling graph for the second group of voters is depicted
in the middle figure, and the bundling graph for the last group of voters
is depicted in the right figure.

o
s

@ @

D.g @

This completes the construction of the voters and their bundles. It is
straight forward that the construction runs in polynomial time.

By simple calculation, we have that the score difference between can-
didate d and p is 4 - n and the score difference between candidate c¢; and
p is one.

Now, we show that the given (F,X) is a yes instance for (2-2)-3SAT
if and only if the constructed instance (C,V, k,p,k = 2n) is a yes instance
for C-CoONs-DEL.

For the “only if” part, let o: X — {0,1} be a satisfying assignment
for I. Consider some variable x;. Let f;, f., 7 < r, be the clauses con-
taining z; and let fs, f;, s <t be the two clauses containing z;. Now, if
o(z;) =1, then we add to V’ the two clause voters u] and u]; otherwise we
add to V’ the two clause voters uf and uf We do this for each variable z;.
Since each of the bundles of uf and u! contains two p-voters and o is a
satisfying assignment, one can verify that |[V'| = 2 and, after deleting the
bundles corresponding to V', only two d-voters and for each clause C; at
most two c¢j-voters remain. Since there are in total two p-voters, p will
co-win with d (and with some clause candidates).

28

For the “if” part, let V' be set of at most 2-n voters, such that p wins
election (C,V \ k(V’)). First of all, we observe that the score difference
between d and p is 4 - n and deleting voters will not increase the score of
any candidate. Thus, in order to make p win, d has to lose at least 4 - n
points. Since each bundle contains at most two d-voters, it follows that
|V/| = 2n and for each voter v € V', it must be that x(v) contains two d-
voters. This precludes including any voter from the last two groups to V.
Moreover, for each two voters u,v € V' that are on the same cycle (of the
bundling graph), by the construction of the bundles, we must have that
k(u) N k(v) = 0 since otherwise we will not delete enough d-voters. This
implies that, for each variable x, V'’ contains the two clause voters that
correspond to the clauses with either x or Z. Now, if it is the case for x,
then we set o(x) = 1; otherwise o(z) = 0. The assignment o is obviously
valid. It remains to show that o satisfies 7. Now, observe that each clause
candidate ¢; has to lose at least one point because of the original score
difference. This implies that there must be some literal ¢; from C; such
that uf € V', by our assignment we also set ¢; to 1, satisfying C;. Thus,
our constructed o satisfies all clauses.

B.4 Proof of Claim 1

Claim 1. Let W’ be a maximum (s, t)-proper-subset and (max x(W')—
min k(W') + 1) > 9. Then, there is a j with s < j < ¢, such that there
is a (s, j)-proper-subset Wi and a (j + 1, t)-proper-subset Wo with |W; |+
|Wa| < |[W'| and k(W7 UWs) = k(W').

Proof. Let s’ = mink(W') and ¢ := maxk(W’). We split this in two
cases.

First, we consider the case in which £ < 3. Note that t/ — s’ +1 > 9
and s < ¢ <t/ < t. Therefore, |W(s',t')] > 9. Since the maximum
bundle size is 3, we know that |<(W’)| is at most 9. This implies that
there is a w; € W(s',t') \ k(W'). Weset Wy :={ w; e W' | i <j } and
Wy = {wi ew’ | 7 <1 } Thus, |W1|—|—|W2| = |W/|, K/(WIUWQ) = K(W’)
and Wy is a (s, j)-proper-subset and Wy is a (j + 1, t)-proper-subset.

Now, let us consider the case in which k > 3. If the set W' can be
partitioned into two disjoint subsets W7 and Wy where W7 U Wy = W/,
WinWy = W, k(W) Nk(Ws) = 0 and x(W') = k(W1 U Wa), we
are done. So assume there is no such partition. That means there is no
wj € W(s',t')\ k(W’), otherwise we could split (W) at position i as
we did in case k < 3. Therefore, W(s',t') = x(W’). Furthermore, we
can conclude that there are two bundles of size 2 (the endpoints of the

29

path) and that all other bundles are of size 3, because of the maximum
bundle size and G, being a path. At least every second voter on the path
is in W', otherwise we could split x(W') at position i or i 4+ 1, where
w;, wir1 &€ W'. Therefore, |W'\ {wys, wgy1,...,wgig}| < |W’/|—4. One
can observe that k({wg i1, ws 14, We17}) = {Wg, Wer11,...,wegyg}. For
the set W == (W'\{wg, w11, ..., wgyg})U{wg 11, ws 4, ws 7} it holds
that [W”| < |W'| and k(W) = k(W"). Furthermore, one can observe that
Wy y4 is the only element which has wg 5 in its bundle and wy 7 is the
only element which has wy g in its bundle. That means we can split
W at this point. We set j = s +5 Wy ={ w; € W | i <j} and
Wy = {w; € W | j <i}. Thus, |Wi|+|Ws| < |W'|, s(W1UW3) = (W)
and W7 is a (s, j)-proper-subset and W5 is a (j, t)-proper-subset. O

The idea for cycles is similar.

Lemma B.1. If C-CONS-ADD has only two candidates p,q and symmet-
ric bundling function k with bundles of size at most three such that the
bundling graph G is a cycle, then finding a size-at-most-k subset W' C W
of voters such that the score difference between p and q in K(W') is maz-
imum can be solved in O(|W|>) time, where |W| is the size of the set W
of unregistered voters.

Proof. Let I = (E = (C,V),W, k,p, k) be a C-CONS-ADD instance, where
b = 3, k is symmetric and C' = {p, g}. Let wy ... wy w1 be the cycle in
Gy. Suppose that |[W| < 9. We compute s,(V) and s4(V) in linear time.
Every W/ C W of size at most k < |[W| < 9 is a solution if x(W’) contains
s¢(V') — sp(V) more p-voter than g-voter. Since |IW| is upper bounded by
a constant, the size of the power set of W is also upper bounded by a
constant. Therefore, we can check in constant time whether one of the
subsets of W is a solution.

Now let us consider the interesting case. Suppose that |W| > 9. The
idea is to break the cycle into a path and solve it with Lemma 1. We create
nine C-CONS-ADD instances Iy,...,Ig where I; == (E = (C,V),W U
{wp, we}, ki, p, k), and wy and w, are g-voters and

({wb,wi}, if w=wy
{we, wiy1}, if w=w,
wi W =2 w e (k(w) \ {wi) Ufwe}, if w = w;
(k(w) \{wi}) U{wp}, i w=wis
K(w), otherwise,

where i € [9]. The bundling function x; is modified in such a way that the

30

Fig. 1: Part of the construction used in Lemma B.1. Specifically, it shows
how the cycle is reduced to a path in I5.

instance I; becomes a path and has g-voter on its endpoints, depicted in
Figure 1. Therefore, we can solve all 9 instances I; in O(|W|?), where |W|
is the size of the unregistered voters (see Lemma 1).

It remains to be shown that I is a yes-instance if and only there it
exists an ¢ € [9] such that I; is a yes-instance.

For the “only if” part, let I;, for some i € [9], be a yes-instance. Thus,
there is a set W/ C W U {wp, we} of size at most k such that p € PLU-
RALITY(C,V U k;(W’)). One can observe that the bundles of wy and w,
are useless, because they each have only two voters and at least one of
them is a g-voter. For this reason we assume without loss of generality
that W’ C W. Since we replaced an edge between w; and w;y; with
two g-voters wy and w, that are not connected, we can conclude that
wy € ki(W') & w; € W and w, € k;(W') & wir1 € W’. We now check
what happens when w; or w;,1 is in W’.

(i) Assume w;, w;r1 € W’'. Then x;(W') \ {wp, we} = k(W'). The set
k(W') has 2 g-voter less than ;(W'). Thus, p € PLURALITY(C,V U
rk(W)).

(i) Assume w; € W’ and w;y1 € W’. Then k(W') = (k;(W') \ {wp}) U
{wis1}. In contrast to x;(W'), k(W') loses the g-voter wy, and may
win the voter w;1. It does not matter whether w; 1 is a p-voter
or g-voter, as sq(k(W')) < sq(ki(W')) and sp(k(W')) > sp(k:i(W')).
Thus, p € PLURALITY(C, V U s(W")).

(iii) Assume w;41 € W’ and w; ¢ W’. This case is analogous to (ii).

In the case where neither w; nor w;y; is in W/, we immediately get
ki(W') = k(W') from the definition of ;. Therefore, I is a yes-instance.

For the “if” part, let I be a yes-instance. Thus, there is a set W’/ C W
of size at most k such that p € PLURALITY(C,V Uk(W')). It is sufficient
to show that for some 4, 1 <7 < 9 it holds that w;, w;+1 & W', because
these are the only cases in which k; differs from k. Thus, k(W') = k;(W'),
which means that I; is a yes-instance.

Now, assume that such an 7 does not exist. Then, on the path wy ... wg
at least every second voter is in W’. Therefore, |[W’'\ {w1,...,wo}| <
|[W’| — 4. One can observe that x({we,ws,ws}) = {w1,...,wy}. For the

31

set W= (W' \ {w1,...,we}) U {ws, ws, ws} it holds that |[W”"| < [W'|
and k(W) = k(W"), where |W”| < |W’|. Furthermore, one can observe
that we, w7 € W”. That means k(W") = k5(W") and hence p € PLURAL-
ITY(C,V U k5(W")). This implies that I5 is a yes-instance. O

B.5 Proof of Corollary 2

Corollary 2. C-DES-ADD and C-DEs-DEL with a symmetric bundling
function and maximum bundle size three can be solved in time O(m-|W|?)
and O(m - |V|?), respectively, where m is the number of candidates, and
|W| and |V| are the sizes of the unregistered and registered voter set,
respectively.

Proof. To obtain the result for C-DES-ADD, use the Turing reduction
from C-DES-ADD to C-CONS-ADD (Proposition 1). Note that the in-
stances produced by the Turing reduction only have two candidates. Thus,
we can use Theorem 2.

Analogously, we can use Corollary 1 to obtain the result for C-DES-
DEL.

As in both Turing reductions we create O(m) instances, we need to
solve O(m) instances, resulting in a running time of O(m - n%) in both
cases, where n is the number of either the unregistered (for C-DES-ADD)
or the registered (for C-DES-DEL) voters . 0

B.6 Proof of Theorem 3

Theorem 3. C-CONS-DEL with a symmetric bundling function and with
bundles of size at most two can be solved in polynomial time.

Proof. Let I = ((C,V),k,p,k) be a C-CONS-DEL instance, where the
bundling function k is symmetric and each bundle has at most two voters.
We first consider the case where each bundle has size exactly two. Since
deleting bundles never increases any candidate’s score, we can assume
that we do not delete any bundle that contains a p-voter. Under this
assumption, the original score of p equals her score in the final election.
Furthermore, if we know the score of p in the final election, then we know
for each remaining candidate ¢; # p how many c¢;-voters we need to delete
to make her have no more score than p; let d; be the score difference
between ¢; and p. Due to this observation, we can construct a multigraph
(with loops), which contains a vertex wu; for each candidate ¢; except p,
and where for each bundle with two voters supporting ¢; and ¢; there is
an edge incident to the vertices v; and v; (note that if ¢; = ¢;, then the

32

edge is a loop). Now, deleting minimum bundles to make each candidate ¢;
lose at least d; points is equivalent to finding a subgraph with minimum
number of edges where each vertex has degree d;. Anstee [2| showed that
the latter problem can be solved in polynomial time.

To handle the case where some bundle has only one voter, we first
observe that if our preferred candidate p has zero points, then we need to
delete all bundles. Note that the underlying bundling graph consist of only
disjoint edges and isolated vertices. The minimum number of bundles to
be deleted equals the number of edges plus the number of isolated vertices.

Now, we consider the case where our preferred candidate p has at least
one point. For each bundle with only one voter v;, we introduce a dummy
candidate d; and a dummy d;-voter, and bundle the voter with v; together.
Since each of the dummy candidates has exactly one point, the original
instance (with p having at least one point) is a yes instance if and only
if the modified instance is a yes instance. In the modified instance, every
bundle has size exactly two. The first case applies.

B.7 Proof of Theorem 4

In order to prove Theorem 4, we first show W([1]-hardness of C-CONSs-ADD
(Lemma B.2) and then W[2]-hardness of C-CONs-DEL (Lemma B.3).

Lemma B.2. C-CoNs-ADD is W[1]-hard, even for disjoint bundling func-
tion.

Proof. We provide a parameterized reduction from the W[1]-complete
problem INDEPENDENT SET (parameterized by the “solution size”), de-
fined as follows:

INDEPENDENT SET

Input: An undirected Graph G = (V(G), E(G)) and a natural
number h € N.

Question: Does G admit a size-h independent set, that is, all ver-
tices in U are pairwise non-adjacent.?

Let (G,h) be an INDEPENDENT SET instance with E(G) = {ey,...,
em—1} and V(G) = {uy,...,u,}. Without loss of generality, we assume
that G is connected and h > 3. We construct an election £ = (C,V)
with candidate set C := {p} U{ g; | ¢; € E(G) }. For each edge ¢; € E,
we construct h — 1 registered voters that all prefer g; most. In total, V'
consists of (h — 1)(m — 1) voters.

The unregistered voter set W is constructed as follows: For each vertex
u; € V(G), add a p-voter p;, and for each edge e; incident with wu;, add

33

a gj-voter ay). The voters constructed for each vertex u; are bundled by
k. More formally, for each u; € V(G) and each e; € F(G) with u; € ej, it

holds that
k(pi) = /ﬁ(ag-i)) ={pi} U {ay) |e; € E(G) Au; € ej}.

To finalize the construction, we set k := h.

The construction is both a polynomial-time and a parameterized re-
duction, and all bundles are disjoint. To show the correctness, we note
that p can only win if only if her score can be increased to at least h
without giving any other candidate more than one more point. The so-
lution corresponds to exactly to a subset of h vertices that are pairwise
non-adjacent.

Now, it remains to show that G has a size-h independent set if and
only if ((C,V), W, k,p, k) is a yes-instance for C-CONS-ADD.

For the “only if” part, suppose that U C V(G) is a size-h independent
set for G. Define the subset W’ as the voters p; € W corresponding to the
vertices u; € U. Obviously, |W’'| = h = k. As per definition, U does not
contain adjacent vertices, each candidate g; may achieve a score increase of
at most one, while p achieves a score increase of k. As the initial difference
in scores between p and every candidate g; is k — 1, p co-wins the final
election with each candidate g; such that u; € e; for some voter p; € W'.

For the “if” part, suppose that there is a subset W’ of size at most &
such that p is a winner of the Plurality election (C,V U x(W’)). First,
we claim that |[W'| = k and (W) contains exactly k p-voters: Since the
original score difference between p and any other candidate g; is k—1 and
since each unregistered voter’s bundle contains exactly one p-voter and
at least one non-p-voter, it follows that in the final election at least one
non-p-candidate has score of at least k, but p can have a score increase of
at most k. This means

(1) that p’s final score must increase to k, that is, x(W') must have exactly
k p-voters, and
(2) that no other candidate can have a score increase of more than one.

Now, define U := {u; | p; € k(W’')}. Due Observation (1) we have
that |U| = k = h. To show that U is also an independent set, we con-
sider two arbitrary vertices u;,uy € U. Suppose for the sake of contradic-

tion that {u;,u¢} € E(G), denote this edge by e;. By the construction
of our bundling function, it must hold that ay),ag@ € k(W'). Then, g;
would have a score increase of at least two—a contradiction to our obser-
vation (2). 0

34

Lemma B.3. C-Cons-DEL is W[2]-hard, even for disjoint bundling func-
tion.

Proof. We provide a parameterized reduction from the W[2]-complete
problem DOMINATING SET (see Appendix A.1 for the corresponding def-
inition).

Let (G = (V(G),E(G)),h) be a DOMINATING SET instance with
E(G) = {e1,..., epy} and V(G) = {u1,...,up}. Let Ayg, denote the
maximum degree of G. We construct an election E = (C, V') with candi-
date set C' = {p,g1,..., 90}

The voter set V' consists of two groups:

(@)

1. For each vertex u; € V(G), add a g;-voter, denote as vertex voter v,
and for each of its neighbors u; € N(u;) add agj-voter, denote as
neighbor voter »%. Note that, for each vertex u;, we have added ex-
actly |N|u;]| voters that all most prefer g;. The vertex voters and
neighbor voters constructed due to vertex u; are contained in one bun-

dle. Formally, the bundling function for these voters looks as follows.
Vu; € V(G): /{(vi(i)) = {v](.i) | uj € Nu;|}, and
Vu; € N(u;): /ﬁ;(?}](-i)) = /ﬁ;(?}i(i))

2. For each vertex u; € V(G), add Apar + 1 — |Nu)| gi-voters. Further-
more, add A4 p-voters to V. All these voters are bundled together.
Note that in this bundle, each candidate g; has exactly |N[u;]| points
less than p.

We use D to denote the set of all voters constructed in the second group.
Finalizing the construction, set k := h.

The construction is both a polynomial-time and a parameterized re-
duction, and the bundling function is disjoint. Note that for all candidates
g; have score s4,(V) = Az +1, and the difference in score between every
g; and the candidate p is s, (V) — sp(V) = Az + 1 — Arpaz = 1.

It remains to show that there is a dominating set of size at most h
if and only if there is a subset V' of voters of size at most k, such that
if their respective bundles are deleted from the election, p becomes a
Plurality winner of the election.

For the “only if” part, given a dominating set U of size at most h, we
define V' to be the corresponding voter set, that is, V' := {vi(i) | u; € U}.
It is easy to verify that |V/| < h = k and p has a score of A4, while
all other candidates have a score of at most A,,4;. Thus, p is a Plurality-
winner of the election (C,V \ k(V")).

35

For the “if” part, suppose that there is a subset V/ C V of size at most
k such that p is a winner of the Plurality election (C, V' \x(V")). First of all,
since all voters in D are bundled together such that p has more supporters
than any other candidate in this bundle, by the disjoint property of the
bundles, we know that p will also win the election (C,V \ (V' \ D).
Thus, we can assume that ¥V’ does not contain any voter from the second
group D This means that in the final election, p will have score Apax,
implying that each g; has to lose at least one point. In other words,

k(V') contains at least one g;-voter for each candidate g;. (%)

Now, we define the vertex subset U = {u; | ugl) € k(V')} and show
that it is a dominating set of size at most h. Since all bundles are disjoint
and |V'| <k, it is clear that |U| < k = h. To show that U is a dominating
set, we consider an arbitrary vertex u; ¢ U. By (*), we know that (V")
contains a g;-voter; note that he is from the first group. Let this voter be
i)

v](. Due to the construction of our bundling function, it follows that (V")

also contains UZ@, implying that U contains u;. Thus u; is dominated by

u; € U. g

B.8 Proof of Theorem 5

Theorem 5. C-DES-ADD and C-DES-DEL with a symmetric bundling
function and disjoint bundles can be solved in O(m - |I]) time, where |[]
is the input size and m the number of candidates.

Proof. We consider C-DEs-ADD first. Let I = (E = (C,V),W,k,p, k)
be a C-DES-ADD instance with &k being symmetric. To make p lose, it
is enough to add voters such that there is some other candidate c that
has a higher score than p in the final election. Due to this observation,
we “guess” the defeater ¢ € C'\ {p} and we use an even simpler greedy
strategy than the one used for Observation 2 (see Theorem 6 by Bulteau
et al. [8]) to add voters to maximize the score difference between ¢ and
p: Since the bundles are disjoint, we greedily add bundles that maximally
improve the score difference between ¢ and p (in favor of ¢). If using up
k bundles, we can make ¢ have at least the same score as p, then return
yes; otherwise we continue with the next defeater. It is easy to verify that
this approach is correct and the running time is O(m - |I|).
The strategy for C-DES-DEL works analogously.

36

B.9 Proof of Lemma 2

Lemma 2. Let [= (F = (C,V),k,p) be a C-CONS-DEL-UNLIM in-
stance. Then [is a yes-instance.

Proof. Let I = (E = (C,V),k,p, k) be a C-COoNs-DEL-UNLIM instance.
Set V’ := V. Since there is no voter in the election (C,V \ x(V")), all
candidates have the same score. Thus p € PLURALITY(C,V \ V). 0

B.10 Proof of Lemma 3
Lemma 3. C-CoNs-ADD-UNLIM is NP-hard.

Proof. To prove NP-hardness, we extend the proof idea for W[1]-hardness
from Bulteau et al. [8]. Let (G = (V(G), E(G)),h) be a CLIQUE instance.
(The definition of CLIQUE can be found in Appendix A.2.) Without loss of
generality, we assume h > 4. We construct an election F := (C, V') where
C = {p,g,x}. V consists of (g) p-voters and (2 - (g) — h) g-voters. The
set of unregistered voters W is composed as follows:

- For each vertex u € V(G), add a g-voter w,, € W with k(w,,) = {wy}.
We call w,, a vertez-voter.

- For each edge e = {u,u'} € F(G) we add a p-voter w, € W and two
z-voters w,, w € W such that k(we) = {we, Wy, Wy, wl,w!}, K(w) =
{wl} and k(w!) = {w!}. We call w, an edge-voter.

Obviously, our construction is a polynomial reduction. It remains to show

that there is a clique of size at least h if and only if there is a subset W’

such that p is a winner of the Plurality election (C,V U x(W')).

For the “if” part, suppose that there is a subset W/ C W such that

p € PLURALITY(C,V U k(W')). We show that the vertex set U := { u €

V(GQ) | we € W/ Au € e} is aclique of size h in G. First, we observe that

a solution W’ C W cannot have more than (g) edge-voters, otherwise x

achieves a higher score than p. Second, a solution W’ must have (g) edge-

voters which have only h different vertex-voters in its bundles (a clique in

G). For a precise argumentation see the proof of Theorem A.2.

For the “only if” part, suppose that U C V(G) is a size-h clique for

G. We construct the subset W’ by adding any edge voter w. with e €

E(G|U']). Now it is easy to check that p € PLURALITY(C,V U k(W")).

(Compare with the proof of Theorem A.2.) O

B.11 Proof of Theorem 6

Theorem 6. There is no polynomial-time approximation algorithm for
MIN-C-CoONS-ADD, unless P = NP.

37

Proof. Assume towards a contradiction that there is an approximation
algorithm A, for MIN-C-CONS-ADD which runs in polynomial time and
provides a solution W, such that « - |OPT| > |W,|, where OPT is a
solution of minimum size. Let (E, W, k,p) be an C-CONs-ADD-UNLIM
instance. One can create a MIN-C-CONS-ADD instance (E, W, k,p) and
compute a solution W, of size a - |OPT| in polynomial time. W, is a
solution for the instance (E,W,k,p) of the NP-hard problem C-CONs-
ADD-UNLIM. This is a contradiction unless P = NP. ad

38

