
Parameterized complexity of fair deletion
problems.?

Tomáš Masař́ık1?? and Tomáš Toufar2

1 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic,

masarik@kam.mff.cuni.cz
2 Computer Science Institute of Charles University, Faculty of Mathematics and

Physics, Charles University, Prague, Czech Republic
toufi@iuuk.mff.cuni.cz.

Abstract. Deletion problems are those where given a graph G and a
graph property π, the goal is to find a subset of edges such that after its
removal the graph G will satisfy the property π. Typically, we want to
minimize the number of elements removed. In fair deletion problems we
change the objective: we minimize the maximum number of deletions in
a neighborhood of a single vertex.
We study the parameterized complexity of fair deletion problems with
respect to the structural parameters of the tree-width, the path-width,
the size of a minimum feedback vertex set, the neighborhood diversity,
and the size of minimum vertex cover of graph G.
We prove the W[1]-hardness of the fair FO vertex-deletion problem with
respect to the first three parameters combined. Moreover, we show that
there is no algorithm for fair FO vertex-deletion problem running in time

no(
3√
k), where n is the size of the graph and k is the sum of the first three

mentioned parameters, provided that the Exponential Time Hypothesis
holds.
On the other hand, we provide an FPT algorithm for the fair MSO edge-
deletion problem parameterized by the size of minimum vertex cover and
an FPT algorithm for the fair MSO vertex-deletion problem parameter-
ized by the neighborhood diversity.

1 Introduction

We study the computational complexity of fair deletion problems. Deletion prob-
lems are a standard reformulation of some classical problems in combinatorial
optimization examined by Yannakakis [20]. For a graph property π we can for-
mulate an edge deletion problem. That means, given a graph G = (V,E), find
the minimum set of edges F that need to be deleted for graph G′ = (V,E \ F)
to satisfy property π. A similar notion holds for the vertex deletion problem.

? Research was supported by the project GAUK 338216 and by the project SVV-2016-
260332.

?? Author was supported by the project CE-ITI P202/12/G061.

ar
X

iv
:1

60
5.

07
95

9v
2

 [
cs

.D
S]

 4
 J

an
 2

01
7

II

Many classical problems can be formulated in this way such as minimum
vertex cover, maximum matching or minimum feedback arc set. For
example minimum vertex cover is formulated as a vertex deletion problem
since we aim to find a minimum set of vertices such that the rest of the graph
forms an independent set. An example of an edge deletion problem is perfect
matching: we would like to find a minimum edge set such that the resulting
graph has all vertices being of degree exactly one. Many of such problems are
NP-complete [19,1,13].

Fair deletion problems are such modifications where the cost of the solution
should be split such that the cost is not too high for anyone. More formally, the
fair edge deletion problem for a given graph G = (V,E) and a property π
finds a set F ⊆ E which minimizes the maximum degree of the graphG∗ = (V, F)
where the graph G′ = (V,E \ F) satisfies the property π. Fair deletion problems
were introduced by Lin and Sahni [17].

Minimizing the fair cost arises naturally in many situations, for example in
defective coloring [5]. A graph is (k, d)-colorable if every vertex can be assigned
a color from the set {1, . . . , k} in such a way that every vertex has at most d
neighbors of the same color. This problem can be reformulated in terms of fair
deletion; we aim to find a set of edges of maximum degree d such that after its
removal the graph can be partitioned into k independent sets.

We focus on fair deletion problems with properties definable in either first
order (FO) or monadic second order (MSO) logic. Our work extends the result
of Kolman et al. [12]. They showed an XP algorithm for a generalization of fair
deletion problems definable by MSO2 formula on graphs of bounded tree-width.

We give formal definitions of the problems under consideration in this work.

Definition 1 (Fair FO edge-deletion).

Input: An undirected graph G, an FO sentence ψ, and a positive inte-
ger k.

Question: Is there a set F ⊆ E(G) such that G \ F |= ψ and for every
vertex v of G, the number of edges in F incident with v is at
most k?

Similarly, fair vertex deletion problem finds, for a given graph G = (V,E)
and a property π, the solution which is the minimum of maximum degree of
graph G[W] where graph G[V \W] satisfy property π. Those problems are NP-
complete for some formulas. For example Lin and Sahni [17] showed that deciding
whether a graph G has a degree one subgraph H such that G \H is a spanning
tree is NP-complete.

Definition 2 (Fair FO vertex-deletion).

Input: An undirected graph G, an FO sentence ψ, and a positive inte-
ger k.

Question: Is there a set W ⊆ V (G) such that G \W |= ψ and for every
vertex v of G, it holds that |N(v) ∩W | ≤ k?

III

Both problems can be straightforwardly modified for MSO1 or MSO2.
The following notions are useful when discussing the fair deletion problems.

The fair cost of a set F ⊆ E is defined as maxv∈V |{e ∈ F | v ∈ e}|. We refer to
the function that assigns each set F its fair cost as the fair objective function.
In case of vertex-deletion problems, the fair cost of a set W ⊆ V is defined as
maxv∈V |N(v)∩W |. The fair objective function is defined analogously. Whenever
we refer to the fair cost or the fair objective function, it should be clear from
context whether we mean the edge or the vertex version.

We now describe the generalization of fair deletion problems considered by
Kolman et al. The main motivation is that sometimes we want to put additional
constraints on the deleted set itself (e.g. Connected Vertex Cover, Inde-
pendent Dominating Set). However, the framework of deletion problems does
not allow that. To overcome this problem, we define the generalized problems as
follows.

Definition 3 (Generalized Fair MSO edge-deletion).

Input: An undirected graph G, an MSO formula ψ with one free edge-
set variable, and a positive integer k.

Question: Is there a set F ⊆ E(G) such that G |= ψ(F) and for every
vertex v of G, the number of edges in F incident with v is at
most k?

Definition 4 (Generalized Fair MSO vertex-deletion).

Input: An undirected graph G, an MSO formula ψ with one free vertex-
set variable, and a positive integer k.

Question: Is there a set W ⊆ V (G) such that G |= ψ(W) and for every
vertex v of G, it holds that |N(v) ∩W | ≤ k?

In this version, the formula ψ can force that G has the desired property after
deletion as well as imposing additional constraints on the deleted set itself.

Courcelle and Mosbah [4] introduced a semiring homomorphism framework
that can be used to minimize various functions over all sets satisfying a given
MSO formula. A natural question is whether this framework can be used to min-
imize the fair objective function. The answer is no, as we exclude the possibility
of an existence of an FPT algorithm for parameterization by tree-width under
reasonable assumption. Note that there are semirings that capture the fair ob-
jective function, but their size is of order O(ntw (G)), so this approach does not
lead to an FPT algorithm.

1.1 Our results

We prove that the XP algorithm given by Kolman et al. [12] is almost optimal
under the exponential time hypothesis (ETH) for both the edge and the vertex
version. Actually we proved something little bit stronger. We prove the hardness
of the classical (weaker) formulation of fair deletion problems described in
(weaker as well) FO logic.

IV

Theorem 1. If there is an FPT algorithm for Fair FO vertex-deletion pa-
rameterized by the size of the formula ψ, the pathwidth of G, and the size of
minimum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G)+fvs(G). If there is an algorithm for Fair FO vertex-deletion

with running time f(|ψ|, k)no(
3√
k), then Exponential Time Hypothesis fails.

Theorem 2. If there is an FPT algorithm for Fair FO edge-deletion pa-
rameterized by the size of the formula ψ, the pathwidth of G, and the size of
minimum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G) + fvs(G). If there is an algorithm for Fair FO edge-deletion

with running time f(|ψ|, k)no(
3√
k), then Exponential Time Hypothesis fails.

By a small modification of our proofs we are able to derive tighter (
√
k instead

of 3
√
k) results using MSO2 logic or MSO1 logic respectively. However, there is

still a small gap that has been left open.

Theorem 3. If there is an FPT algorithm for Fair MSO1 vertex-deletion
parameterized by the size of the formula ψ, the pathwidth of G, and the size
of minimum feedback vertex set of G combined, then FPT = W[1]. Moreover,
let k denote pw(G) + fvs(G). If there is an algorithm for Fair MSO1 vertex-

deletion with running time f(|ψ|, k)no(
√
k), then Exponential Time Hypothesis

fails.

Theorem 4. If there is an FPT algorithm for Fair MSO2 edge-deletion
parameterized by the size of the formula ψ, the pathwidth of G, and the size of
minimum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G)+fvs(G). If there is an algorithm for Fair MSO2 edge-deletion

with running time f(|ψ|, k)no(
√
k), then Exponential Time Hypothesis fails.

On the other hand we show some positive algorithmic results for the gener-
alized version of the problems.

Theorem 5. Generalized Fair MSO1 vertex-deletion is in FPT with re-
spect to the neighborhood diversity nd(G) and the size of the formula ψ.

We also provide an algorithm for the MSO2 logic (strictly more powerful than
MSO1), however we need a more restrictive parameter because model checking of
an MSO2 formula is not even in XP for cliques unless E = NE [3,15]. We consider
the size of minimum vertex cover that allows us to attack the edge-deletion
problem in FPT time.

Theorem 6. Generalized Fair MSO2 edge-deletion is in FPT with respect
to the size of minimum vertex cover vc(G) and the size of the formula ψ.

2 Preliminaries

Throughout the paper we deal with simple undirected graphs. For further stan-
dard notation in graph theory, we refer to Diestel [6]. For terminology in param-
eterized computational complexity we refer to Downey and Fellows [7].

V

2.1 Graph parameters

We define several graph parameters being used throughout the paper.

cw

tw

pwfvs

nd

vc

Fig. 1. Hierarchy of graph parameters. An
arrow indicates that a graph parameter
upper-bounds the other. Thus, hardness re-
sults are implied in direction of arrows and
FPT algorithms are implied in the reverse
direction.

We start by definition of vertex cover being a set of vertices such that its
complement forms an independent set. By vc (G) we denote the size of a smallest
such set. This is the strongest of considered parameters and it is not bounded
for any natural graph class.

A feedback vertex set is a set of vertices whose removal leaves an acyclic
graph. Again, by fvs (G) we denote the size of a smallest such set.

Another famous graph parameter is tree-width introduced by Bertelé and
Brioshi [2].

Definition 5 (Tree decomposition). A tree decomposition of a graph G is
a pair (T,X), where T = (I, F) is a tree, and X = {Xi | i ∈ I} is a family of
subsets of V (G) such that:

– the union of all Xi, i ∈ I equals V ,

– for all edges {v, w} ∈ E, there exists i ∈ I, such that v, w ∈ Xi and

– for all v ∈ V the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition is max(|Xi| − 1). The tree-width of a graph
tw (G) is the minimum width over all possible tree decompositions of the graph
G. The parameter of path-width (analogously pw (G)) is almost the same except
the decomposition need to form a path instead of a general tree.

A less known graph parameter is the neighborhood diversity introduced by
Lampis [14].

Definition 6 (Neighborhood diversity). The neighborhood diversity of a
graph G is denoted by nd (G) and it is the minimum size of a partition of vertices
into classes such that all vertices in the same class have the same neighborhood,
i.e. N(v) \ {v′} = N(v′) \ {v}, whenever v, v′ are in the same class.

It can be easily verified that every class of neighborhood diversity is either a
clique or an independent set. Moreover, for every two distinct classes C and C ′,
either every vertex in C is adjacent to every vertex in C ′, or there is no edge
between them. If classes C and C ′ are connected by edges, we refer to such
classes as adjacent.

VI

2.2 Parameterized problems and Exponential Time Hypothesis

Definition 7 (Parameterized language). Let Σ be a finite alphabet. A pa-
rameterized language L ⊆ Σ∗ × N set of pairs (x, k) where x is a finite word
over Σ and k is a nonnegative integer.

We say that an algorithm for a parameterized problem L is an FPT algorithm
if there exist a constant c and a computable function f such that the running
time for input (x, k) is f(k)|x|c and the algorithm accepts (x, k) if and only if
(x, k) ∈ L.

A standard tool for showing nonexistence of an FPT algorithm is W[1]-
hardness (assuming FPT 6= W[1]). For the definition of W[1] class and the notion
of W[1]-hardness, we refer the reader to [7].

A stronger assumption than FPT 6= W[1] that can be used to obtain hardness
results is the Exponential Time Hypothesis (ETH for short). It is a complexity
theoretic assumption introduced by Impagliazzo, Paturi and Zane [11]. We follow
a survey on the topic of lower bounds obtained from ETH by Lokshtanov, Marx,
and Saurabh [18], which contains more details on this topic.

The hypothesis states that there is no subexponential time algorithm for 3-
SAT if we measure the time complexity by the number of variables in the input
formula, denoted by n.

Exponential Time Hypothesis (ETH) [11] There is a positive
real s such that 3-SAT with parameter n cannot be solved in time
2sn(n+m)O(1).

Definition 8 (Standard parameterized reduction). We say that parame-
terized language L reduces to parameterized language L′ by a standard parame-
terized reduction if there are functions f, g : N→ N and h : Σ∗ × N→ Σ∗ such
that function h is computable in time g(k)|x|c for a constant c, and (x, k) ∈ L
if and only if (h(x, k), f(k)) ∈ L′.

For preserving bounds obtained from the ETH, the asymptotic growth of the
function f need to be as slow as possible.

2.3 Logic systems

We heavily use graph properties that can be expressed in certain types of logical
systems. In the paper it is Monadic second-order logic (MSO) where monadic
means that we allow quantification over sets (of vertices and/or edges). In first
order logic (FO) there are no set variables at all.

We distinguish MSO2 and MSO1. In MSO1 quantification only over sets of
vertices is allowed and we can use the predicate of adjacency adj(u, v) returning
true whenever there is an edge between vertices u and v. In MSO2 we can ad-
ditionally quantify over sets of edges and we can use the predicate of incidence
inc(v, e) returning true whenever a vertex v belongs to an edge e.

VII

It is known that MSO2 is strictly more powerful than MSO1. For example, the
property that a graph is Hamiltonian is expressible in MSO2 but not in MSO1

[16].
Note that in MSO1 it is easy to describe several complex graph properties

like being connected or having a vertex of a constant degree.

3 Hardness results

In this section, we prove hardness of Fair FO vertex-deletion by exhibiting
a reduction from Equitable 3-coloring.

Definition 9 (Equitable 3-coloring).

Input: An undirected graph G.
Question: Is there a proper coloring of vertices of G by at most 3 colors

such that the size of any two color classes differ by at most one?

The following result was proven implicitly in [9].

Theorem 7. Equitable 3-coloring is W[1]-hard with respect to pw(G) and
fvs(G) combined. Moreover, if there exists an algorithm for Equitable 3-color-

ing running in time f(k)no(
3√
k), where k is pw(G)+fvs(G), then the Exponential

Time Hypothesis fails.

The proof in [9] relies on a reduction from Multicolored Clique [10]
to Equitable coloring. The reduction transforms an instance of Multi-
colored clique of parameter k into an Equitable coloring instance of
path-width and feedback vertex size at most O(k) (though only tree-width is
explicitly stated in the paper). Algorithm for Equitable coloring running in

time f(k)no(
3√
k) would lead to an algorithm for Multicolored Clique run-

ning in time f(k)no(k). It was shown by Lokshtanov, Marx, and Saurabh [18]
that such algorithm does not exist unless ETH fails.

We now describe the idea behind the reduction from Equitable 3-coloring
to Fair FO vertex-deletion. Let us denote by n the number of vertices of G
and assume that 3 divides n. The vertices of G are referred to as original vertices.
First, we add three vertices called class vertices, each of them corresponds to a
particular color class. Then we add edge between every class vertex and every
original vertex and subdivide each such edge. The vertices subdividing those
edges are called selector vertices.

We can encode the partition of V (G) by deleting vertices in the following
way: if v is an original vertex and c is a class vertex, by deleting the selector
vertex between v and c we say that vertex v belongs to the class represented by
c. If we ensure that the set is deleted in such a way that every vertex belongs to
exactly one class, we obtain a partition of V (G).

The equitability of the partition will be handled by the fair objective function.
Note that if we delete a subset W of selector vertices that encodes a partition

VIII

then |W | = n. Those n vertices are adjacent to 3 class vertices, so the best
possible fair cost is n/3 and thus a solution of the fair cost n/3 corresponds to
an equitable partition.

Of course, not every subset W of vertices of our new graph encodes a parti-
tion. Therefore, the formula we are trying to satisfy must ensure that:

– every original vertex belongs to exactly one class,
– no original or class vertex was deleted,
– every class is an independent set.

However, the described reduction is too naive to achieve those goals; we need to
slightly adjust the reduction. Let us now describe the reduction formally:

Proof (of Theorem 1). Let G be a graph on n vertices. We can assume without
loss of generality (by addition of isolated vertices.) that 3 divides n and n ≥ 6.

First we describe how to construct the reduction. All vertices of G will be
referred to as original vertices. We add three vertices called class vertices and
connect every original vertex with every class vertex by an edge. We subdivide
each such edge once; the vertices subdividing those edges are called selector
vertices. Finally, for every original vertex v, we add n new vertices called dangling
vertices and connect each of them by an edge to v. We denote the graph obtained
in this way as G′. For a schema of the reduction, see Figure 2.

· · ·

· · ·
︸ ︷︷ ︸

n

· · · · · ·

selector vertices

class vertices

original vertices

dangling vertices

G

Fig. 2. The schema of the reduction

Now, we wish to find a set W ⊆ V (G′) such that it encodes an equitable 3-
coloring of a graph G. The set is described by the following FO formula eq 3 col
imposed on a graph G \W . We claim that whenever this set satisfy following
claims it encodes an equitable 3-coloring. A set W can contain only selector
vertices and some dangling vertices (but those do not affect the coloring). For

IX

each vertex v of a graph there can be only one selector vertex in the set W and
that vertex has only one class vertex as a neighbor. That vertex determine the
color of v.

We use the following shorthand ∃=k meaning there are exactly k distinct
elements satisfying a given predicate:

(∃=kw)(pred(w)) ≡ (∃v1, . . . , vk)

(k∧

i=1

pred(vi) ∧
∧

1≤i<j≤k

(vi 6= vj)

∧ (∀v′)
(
pred(v′)→

k∨

i=1

(v′ = vi)
))

The building blocks for the formula are as follows:

isol(v) ≡ (∀w)(¬adj(v, w))

dangling(v) ≡ (∃w)
(
adj(v, w) ∧ (∀w′)(adj(v, w′)→ w = w′)

)

original(v) ≡ (∃w)(dangling(w) ∧ adj(v, w))

selector(v) ≡ (∃=2w)(adj(v, w))

class(v) ≡ ¬orig(v) ∧ ¬selector(v) ∧ ¬dangling(v)

belongs to(v, a) ≡ original(v) ∧ class(a) ∧ ¬(∃w)(adj(v, w) ∧ adj(w, a))

same class(v, w) ≡ original(v) ∧ original(w)

∧ (∃a)(class(a) ∧ belongs to(v, a) ∧ belongs to(w, a))

valid deletion ≡ (∀v)(¬isol(v))

∧ (∀v)
(
original(v)→ (∃=1c)(belongs to(v, c))

)

eq 3 col ≡ valid deletion ∧ (∀v, w)(same class(v, w)→ ¬adj(v, w))

The described reduction maps an instance G of an Equitable coloring
into an instance (G′, eq 3 col, n/3) of Fair FO vertex-deletion.

We claim that there exists a set W ⊆ V (G′) of the fair cost at most n/3 if
and only if G admits an equitable 3-coloring.

If we have an equitable 3-coloring of G then it is easy to see that the set
W ⊆ V (G′) corresponding to a partition into color classes has the fair cost
exactly n/3 and it is straightforward to check that G′ \W |= eq 3 col.

For the other implication we prove that if we delete a subset W ⊆ V (G′)
of the fair cost at most n/3, and the formula valid deletion is true, then we
obtained an equitable 3-coloring of a graph G. To get there we made a few basic
claims.

Claim 1: no original vertex was deleted: Suppose for the contradiction that
original vertex v was deleted. If we kept at least one of the dangling vertices
attached to v, but this vertex is now isolated and formula valid deletion is not
true. On the other hand if we delete all dangling vertices that were attached to
v, our deleted set has fair cost at least n.

X

Claim 2: if w has degree one in G′ \W , then its only neighbor is an original
vertex: If w is dangling, then its only neighbor is original vertex by the construc-
tion of G′. Suppose that w has degree one in G′ \W but is not dangling. Since
both class and original vertices have degree at least n in G′, we cannot bring
them down to degree one without exceeding the fair cost limit n/3. This leaves
the only possibility that w is a selector and exactly one of its two neighbors is
in the deleted set W . By Claim 1, the deleted neighbor must have been a class
vertex so the only remaining neighbor of w in G′ \W is an original vertex.

Claim 3: the formula original correctly recognizes original vertices: If v is
original, then at least one of its dangling neighbors is not in W , otherwise we
would exceed the fair cost. In this case the formula original(v) is true. The other
direction (original(v) is true implies v is original) is proved by Claim 2.

Claim 4: if v is a dangling vertex such that v /∈W then dangling(v) is true:
By Claim 1, we cannot delete the only neighbor of v, which means v has exactly
one neighbor and so dangling(v) is true.

Claim 5: the formula class(v) is true if and only if v is a class vertex that
was not deleted: Suppose that v /∈W is a class vertex. It cannot have neighbor of
degree one inG′\W , because that would mean that an original vertex was deleted
which violates Claim 1. This means that original(v) is false. Moreover, we cannot
decrease the degree of v to two or less by deleting at most n/3 neighbors of v,
so dangling(v) and selector(v) are false too. But then class(v) is true.

For the other direction suppose that v is not a class vertex. If it is original or
dangling, then original(v) or dangling(v) is true (by Claim 3 or Claim 4) and
hence class(v) is false. If v is a selector then either none of its neighbors were
deleted, v has degree two in G′ \W and selector(v) is true, or its class neighbor
was deleted, v has degree one in G′ \W and dangling(v) is true. Either way,
class(v) is false as required.

Claim 6: no class vertex was deleted: since valid deletion is true, we know
that for every original vertex v there is exactly one class vertex c such that there
is no path of length two between v and c (in other words, the selector vertex that
was on the unique path of length two between v and c was deleted). Suppose
for contradiction that one of the class vertices was deleted; then by Claim 5 we
have at most two class vertices. But the valid deletion formula implies that at
least n selector vertices were deleted. By pigeonhole principle, one of the class
vertices has at least n/2 deleted neighbors which means the fair cost is greater
than n/3, a contradiction.

The chain of claims we just proved guarantees that the deleted set W indeed
obeys the rules we required and corresponds to a partition (though we might have
deleted a small number of dangling vertices, this does not affect the partition in
any way). In order to meet the fair cost limit, each class of the partition must
have at most n/3 vertices and since no original vertex was deleted, it has exactly
n/3 vertices. Now it is easy to see that the formula eq 3 col forces that each class
of the partition is independent and so the graph G has an equitable 3-coloring.

Let us now discuss the parameters and the size of the Fair FO vertex-
deletion instance. If G has a feedback vertex set S of size k, then the union

XI

of S with the set of class vertices is a feedback vertex set of G′. Therefore,
fvs(G′) ≤ fvs(G) + 3. To bound the path-width, observe that after deletion of
the class vertices we are left with G with O(n2) added vertices of degree one;
the addition of degree one vertices to the original vertices can increase the path-
width by at most one and so we have pw(G′) ≤ pw(G) + 4. Moreover it is clear
that the size of instance is of size O(n2). It is obvious that the reduction can be
carried out in polynomial time. ut

Let us mention that if we are allowed to use MSO formulas, we are actually
able to reduce any equitable partition problem to fair vertex deletion. This allows
us to reduce for example Equitable connected partition to Fair MSO
vertex-deletion which in turn allows us to prove Theorem 3.

Definition 10 (Equitable connected partition).

Input: An undirected graph G, a positive integer r
Question: Is there a partition of V (G) into r sets such that each of them

induces a connected graph and the sizes of every two sets differ
by at most one?

Enciso et al. [8] showed that Equitable Connected Partition is W[1]-hard
for combined parameterization by fvs(G), pw(G), and the number of partitions

r. The part that f(k)no(
√
k) algorithm would refute ETH is again contained only

implicitly; the proof reduces an instance of Multicolored clique of parameter
k to an instance of Equitable connected partition of parameter O(k2).

Our reduction can be easily adapted to r parts (we just add r class vertices
and we set the fair cost limit to n/r). We define the formula eq conn as follows.

class set(W) ≡ (∃v ∈W) ∧ (∀v, w ∈W)(same class(v, w))

∧ (∀w ∈W, z /∈W)(¬same class(w, z))
eq conn ≡ (∀W)(class set(W)→ connected(W))

By the same argument as in the proof of Theorem 1, we can show that there
exists W ⊆ V of fair cost at most n/r such that G′ \W |= eq conn if and only
if G admits an equitable connected partition.

Sketch of proof of Theorem 2: We do not present the complete proof, as the
critical parts are the same as in proof of Theorem 1. The reduction follows the
same idea as before: we add three class vertices and connect each class vertex
to each original vertex by an edge. This time, we do not subdivide the edges, as
the partition is encoded by deleting the edges.

The protection against tampering with the original graph has to be done in
slightly different way: in this case, we add n/3 + 1 dangling vertices of degree
one to each original vertex. Note that if we delete a set F ⊆ E(G) of fair cost
at most n/3, at least one of the added edges from every original vertex survives

XII

the deletion, so we can recognize the original vertices by having at least one
neighbor of degree one. In our formula, we require that each vertex has at most
two neighbors of degree one. This forces us to delete all of those added edges
except two. Since at least one edge from the original vertex must be deleted to
encode a partition, by deleting an edge of the original graph G we would exceed
the fair cost limit n/3.

For the edge-deletion the formula eq 3 col is built as follows.

dangling(v) ≡ (∃w)
(
adj(v, w) ∧ (∀w′)(adj(v, w′)→ w = w′)

)

original(v) ≡ (∃w)(dangling(w) ∧ adj(v, w))

class(v) ≡ ¬orig(v) ∧ ¬dangling(v)

belongs to(v, a) ≡ original(v) ∧ class(a) ∧ ¬adj(v, a)

same class(v, w) ≡ original(v) ∧ original(w)

∧ (∃a)(class(a) ∧ belongs to(v, a) ∧ belongs to(w, a))

valid deletion ≡ (∀v)(∃≤2w)(adj(v, w) ∧ dangling(w))

∧ (∀v)
(
original(v)→ (∃=1c)(belongs to(v, c))

)

eq 3 col ≡ valid deletion ∧ (∀v, w)(same class(v, w)→ ¬adj(v, w))

The complete proof of correctness is omitted due to space considerations,
however, it is almost exactly the same as in the proof of Theorem 1. ut

The transition between the FO case and the MSO case of edge-deletion (The-
orem 4) is done in exactly the same way as before.

4 FPT algorithms

We now turn our attention to FPT algorithms for fair deletion problems.

4.1 FPT algorithm for parameterization by neighborhood diversity

Definition 11. Let G = (V,E) be a graph of neighborhood diversity k and let
N1, . . . , Nk denote its classes of neighborhood diversity. A shape of a set X ⊆ V
in G is a k-tuple s = (s1, . . . , sk), where si = |X ∩Ni|.

We denote by s the complementary shape to s, which is defined as the shape
of V \X, i.e. s = (|N1| − s1, . . . , |Nk| − sk).

Proposition 1. Let G = (V,E) be a graph, π a property of a set of vertices,
and let X,Y ⊆ V be two sets of the same shape in G. Then X satisfies π if and
only if Y satisfies π.

Proof. Clearly, we can construct an automorphism of G that maps X to Y . ut
Definition 12. Let r be a non-negative integer and let (s1, . . . , sk), (t1, . . . , tk)
be two shapes. The shapes are r-equivalent, if for every i:

XIII

– si = ti, or
– both si, ti are strictly greater than r,

and the same condition hold for the complementary shapes s, t.

The following proposition gives a bound on the number of r-nonequivalent
shapes.

Proposition 2. For any graph G of neighborhood diversity k, the number of
r-nonequivalent shapes is at most (2r + 3)k.

Proof. We show that for every i, there are at most (2r + 3) choices of si. This
holds trivially if |Ni| ≤ 2r + 3. Otherwise we have following 2r + 3 choices:

– si = k and si > r for k = 0, 1, . . . , r, or
– both si, si > r, or
– si > r and si = k for k = 0, 1, . . . , r. ut

The next lemma states that the fair cost of a set can be computed from its
shape in a straightforward manner. Before we state it, let us introduce some
auxiliary notation.

If a graph G of neighborhood diversity k has classes of neighborhood diversity
N1, . . . , Nk, we write i ∼ j if the classes Ni and Nj are adjacent. If the class Ni

is a clique, we set i ∼ i. Moreover, we set ηi = 1 if the class Ni is a clique and
ηi = 0 if it is an independent set. The classes of size one are treated as cliques
for this purpose.

Lemma 1. Let G = (V,E) be a graph of neighborhood diversity k and let Ni be
its classes of neighborhood diversity. Moreover, let X ⊆ V be a set of shape s.
Then the fair vertex cost of X is

max
i

((∑

j:i∼j
sj

)
− ηi

)
.

Proof. It is straightforward to check that vertex v ∈ Ni has exactly
∑

j:i∼j sj−ηi
neighbors in X. ut

Our main tool is a reformulation of Lemma 5 from [14]:

Lemma 2. Let ψ be an MSO1 formula with one free vertex-set variable, qE
vertex element quantifiers, and qS vertex set quantifiers. Let r = 2qSqE. If G =
(V,E) is a graph of neighborhood diversity k and X,Y ⊆ V are two sets such
that their shapes are r-equivalent, then G |= ψ(X) if and only if G |= ψ(Y).

The last result required is the MSO1 model checking for graphs of bounded
neighborhood diversity [14]:

Theorem 8. Let ψ be an MSO1 formula with one free vertex-set variable. There
exists an FPT algorithm that given a graph G = (V,E) of neighborhood diver-
sity k and a set X ⊆ V decides whether G |= ψ(X). The running time of the
algorithm is f(k, |ψ|)nO(1).

XIV

We now have all the tools required to prove Theorem 5.

Proof (Proof of Theorem 5). Let ψ be an MSO1 formula in the input of Fair
MSO1 vertex-deletion. Denote by qS the number of vertex-set quantifiers in
ψ, by qE the number of vertex-element quantifiers in ψ, and set r = 2qSqE .

By Proposition 1, the validity of ψ(X) depends only on the shape of X. Let
us abuse notation slightly and write G |= ψ(s) when “X has shape s” implies
G |= ψ(X). Similarly, Lemma 1 allows us to refer to the fair cost of a shape s.

From Lemma 2 it follows that the validity of ψ(s) does not depend on the
choice of an r-equivalence class representative. The fair cost is not same for all
r-equivalent shapes, but since the fair cost is monotone in s, we can easily find
the representative of the minimal fair cost.

Suppose we have to decide if there is a set of a fair cost at most `. The
algorithm will proceed as follows: For each class of r-equivalent shapes, pick a
shape s of the minimal cost, if the fair cost is at most ` and G |= ψ(s), output
true, if no such shape is found throughout the run, output false.

By the previous claims, the algorithm is correct. Let us turn our attention
to the running time. The number of shapes is at most (2r + 3)k by Proposi-
tion 2, and so it is bounded by f(|ψ|, k) for some function f . The MSO1 model
checking runs in time f ′(|ψ|, k)nO(1) by Theorem 8, so the total running time is
f(|ψ|, k)f ′(|ψ|, k)nO(1), so the described algorithm is in FPT. ut

4.2 FPT algorithm for parameterization by vertex cover

The FPT algorithm for parameterization by the size of minimum vertex cover
uses the same idea. We use the fact that every MSO2 formula can be translated
to MSO1 formula — roughly speaking, every edge-set variable is replaced by
vc (G) vertex-set variables.

We only sketch translation from MSO2 to MSO1, for the proof we refer
the reader to Lemma 6 in [14]. Let G = (V,E) be a graph with vertex cover
C = {v1, . . . , vk} and F ⊆ E a set of edges. We construct vertex sets U1, . . . , Uk

in the following way: if w is a vertex such that an edge in F connects w with
vi, we put w into Ui. It is easy to see that the sets U1, . . . , Uk together with the
vertex cover v1, . . . , vk describe the set F .

In this way, we reduce the problem of finding a set F to finding k-tuple of sets
(U1, . . . , Uk). We can define shapes and classes of r-equivalence in an analogous
way as we did in previous section. Since the number of r-equivalence classes
defined in this way is still bounded, we can use essentially the same algorithm:
for each class of r-equivalence, run a model checking on a representative of this
class. From those representatives that satisfy ψ, we choose the one with best fair
cost.

The translation from set of edges into k sets of vertices is captured by the
following definition.

Definition 13. Let G = (V,E) be a graph with vertex cover v1, . . . , vk. For a
set F ⊆ E, we define the signature of F with respect to v1, . . . , vk as the k-tuple

XV

U = (U1, . . . , Uk), where Ui = {w ∈ V | {w, vi} ∈ F}. We refer to it simply as
the signature of F and denote it by S(F) if the vertex cover is clear from the
context.

In the original problem, we had an MSO2 formula ψ2 with one free edge-set
variable. By the translation, we obtain an MSO1 formula ψ with k free vertex-set
variables and k free vertex-element variables (the vertex-element variables will
describe the vertex cover; the formula need to have access to a vertex cover and
it will be useful to fix one throughout the whole run of the algorithm).

We start by finding a vertex cover v1, . . . , vk (this can be solved by an FPT
algorithm [7]). We now want to find the sets U1, . . . , Uk such that:

G |= ψ(v1, . . . , vk, U1, . . . , Uk).

To find such k-tuple of sets, we need to extend the notion of shapes to signatures.

Definition 14. Let G = (V,E) be a graph with vertex cover v1, . . . , vk, and let
U = (U1, . . . , Uk) be a collection of k subsets of V . Denote by N1, . . . , N` the
classes of neighborhood diversity of G. For j ∈ {1, . . . , `} and I ⊆ {1 . . . k},
denote by I the set {1, . . . , k} \ I. Furthermore, we define SU (j, I) as

SU (j, I) =

∣∣∣∣Nj ∩
⋂

i∈I
Ui ∩

⋂

i∈I

(V \ Ui)

∣∣∣∣.

The mapping SU is called the shape of a signature U .

The shapes defined in this way have properties similar to those defined for
neighborhood diversity; we only state those properties without proofs.

Definition 15. Two shapes S, S′ are r-equivalent if for every j ∈ {1, . . . , k},
I ⊆ {1, . . . , k} it holds that

– S(j, I) = S′(j, I), or
– both S(j, I), S′(j, I) are strictly greater than r.

As in the neighborhood diversity case, the number of r-nonequivalent shapes
is bounded by a function of r and k.

Proposition 3. Let G = (V,E) be a graph with vertex cover v1, . . . , vk and
denote by ` the neighborhood diversity of G. The number of r-nonequivalent

shapes is at most (2r + 3)`2
k

.

We now state corresponding variants of Lemma 1 and Lemma 2.

Lemma 3. Let G = (V,E) be a graph with a vertex cover v1, . . . , vk and let
F ⊆ E.

The number of edges in F incident to vi is |Ui|. If w is a vertex different
from v1, . . . , vk, then the number of edges in F incident to w is |{i | w ∈ Ui}|.

Those quantities (and therefore the fair cost of F) can be determined from
the shape of S(F).

XVI

Lemma 4. Let G = (V,E) be a graph with a vertex cover v1, . . . , vk, let ψ
be an MSO1 formula with k free vertex-element variables and k free vertex-set
variables, and let U = (U1, . . . , Uk), W = (W1, . . . ,Wk) be two signatures. If the
shapes of U and W are r-equivalent, then G |= ψ(v1, . . . , vk, U1, . . . , Uk) if and
only if G |= ψ(v1, . . . , vk,W1, . . . ,Wk).

Proof (Proof of Theorem 6). The algorithm goes as follows:

– we translate the MSO2 formula ψ2 with one free edge-set variable to the
MSO1 formula ψ with k vertex-element variables and k vertex-set variables.

– We find a vertex cover c1, . . . , ck.
– For each class of r-equivalent shapes, we pick the one achieving the minimal

fair cost, determine the signature U1, . . . , Uk and check whether:

G |= ψ(c1, . . . , ck, U1, . . . , Uk).

Similarly to Theorem 5, the algorithm is correct. Moreover, we do only bounded
number (Proposition 3) of MSO1 model checking, so the whole algorithm runs
in FPT time. ut

5 Open problems

The main open problem is whether the bound in Theorems 2 and 1 can be
improved to f(|ψ|, k)no(k/ log k) or even to f(|ψ|, k)no(k).

The authors would like to thank Martin Koutecký and Petr Hliněný for
helpful discussions.

References

1. T. Ae, T. Watanabe, and A. Nakamura, On the NP-hardness of edge-deletion
and -contraction problems, Discrete Applied Mathematics, 6 (1983), pp. 63–78.

2. U. Bertelè and F. Brioschi, Nonserial Dynamic Programming, Mathematics in
science and engineering, Academic Press, 1972.

3. B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimiza-
tion problems on graphs of bounded clique-width, Theory of Computing Systems,
33 (2000), pp. 125–150.

4. B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-
decomposable graphs, Theor. Comput. Sci., 109 (1993), pp. 49–82.

5. L. J. Cowen, R. Cowen, and D. R. Woodall, Defective colorings of graphs in
surfaces: Partitions into subgraphs of bounded valency, Journal of Graph Theory,
10 (1986), pp. 187–195.

6. R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics,
Springer, 2012.

7. R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity,
Texts in Computer Science, Springer, 2013.

8. R. Enciso, M. R. Fellows, J. Guo, I. A. Kanj, F. A. Rosamond, and
O. Suchý, What Makes Equitable Connected Partition Easy, in IWPEC 2009,
2009, pp. 122–133.

XVII

9. M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A. Rosamond, S. Saurabh,
S. Szeider, and C. Thomassen, On the complexity of some colorful problems
parameterized by treewidth, in COCOA 2007, 2007, pp. 366–377.

10. M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette, On the
parameterized complexity of multiple-interval graph problems, Theor. Comput. Sci.,
410 (2009), pp. 53–61.

11. R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly expo-
nential complexity?, Journal Comput. Syst. Sci., 63 (2001), pp. 512–530.

12. P. Kolman, B. Lidický, and J.-S. Sereni, Fair edge deletion problems on treede-
composable graphs and improper colorings, 2010.

13. M. S. Krishnamoorthy and N. Deo, Node-deletion np-complete problems, SIAM
Journal on Computing, 8 (1979), pp. 619–625.

14. M. Lampis, Algorithmic meta-theorems for restrictions of treewidth, Algorithmica,
64 (2011), pp. 19–37.

15. M. Lampis, Model checking lower bounds for simple graphs, Logical Methods in
Computer Science, 10 (2014).

16. L. Libkin, Elements of Finite Model Theory, Texts in Theoretical Computer Sci-
ence. An EATCS Series, Springer, 2004.

17. L. Lin and S. Sahni, Fair edge deletion problems, IEEE Trans. Comput., 38
(1989), pp. 756–761.

18. D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the expo-
nential time hypothesis, Bulletin of the EATCS, 105 (2011), pp. 41–72.

19. M. Yannakakis, Node- and edge-deletion NP-complete problems, in ACM STOC
1978, 1978, pp. 253–264.

20. , Edge-deletion problems, SIAM J. Comput., 10 (1981), pp. 297–309.

	Parameterized complexity of fair deletion problems.

