Skip to main content

A Note on Effective Categoricity for Linear Orderings

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10185))

Abstract

We study effective categoricity for linear orderings. For a computable structure \(\mathcal {S}\), the degree of categoricity of \(\mathcal {S}\) is the least Turing degree which is capable of computing isomorphisms among arbitrary computable copies of \(\mathcal {S}\).

We build new examples of degrees of categoricity for linear orderings. We show that for an infinite computable ordinal \(\alpha \), every Turing degree c.e. in and above \(\mathbf {0}^{(2\alpha + 2)}\) is the degree of categoricity for some linear ordering. We obtain similar results for linearly ordered abelian groups and decidable linear orderings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre Dame J. Formal Logic. Advance Publication. doi: 10.1215/00294527-3496154

  2. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable structures. Ann. Pure Appl. Logic 42(3), 195–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ash, C.J.: Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Trans. Am. Math. Soc. 298, 497–514 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ash, C.J.: Stability of recursive structures in arithmetical degrees. Ann. Pure Appl. Logic 32, 113–135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V, Amsterdam (2000)

    MATH  Google Scholar 

  6. Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Logic 46(3), 211–234 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazhenov, N.: Autostability spectra for decidable structures. Math. Struct. Comput. Sci. (accepted)

    Google Scholar 

  8. Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic 53(6), 502–505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bazhenov, N.A.: Degrees of autostability for linear orderings and linearly ordered abelian groups. Algebra Logic (accepted)

    Google Scholar 

  10. Chisholm, J.: Effective model theory vs. recursive model theory. J. Symbolic Logic 55(3), 1168–1191 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chisholm, J., Fokina, E.B., Goncharov, S.S., Harizanov, V.S., Knight, J.F., Quinn, S.: Intrinsic bounds on complexity and definability at limit levels. J. Symbolic Logic 74(3), 1047–1060 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Formal Logic 54(2), 215–231 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Downey, R.G.: Computability theory and linear orderings. In: Ershov, Y., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.) Handbook of Recursive Mathematics, vol. 2, pp. 823–976. Elsevier Science B.V., Amsterdam (1998). Stud. Logic Found. Math., vol. 139

    Google Scholar 

  14. Downey, R.G., Kach, A.M., Lempp, S., Lewis-Pye, A.E.M., Montalbán, A., Turetsky, D.D.: The complexity of computable categoricity. Adv. Math. 268, 423–466 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)

    Book  MATH  Google Scholar 

  16. Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures. Notre Dame J. Formal Logic 57(1), 45–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing Ideas in Logic. Lecture Notes in Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  18. Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Logic 49(1), 51–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. London Ser. A 248, 407–432 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frolov, A.N.: Effective categoricity of computable linear orderings. Algebra Logic 54(5), 415–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic 136(3), 219–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goncharov, S.S.: Degrees of autostability relative to strong constructivizations. Proc. Steklov Inst. Math. 274, 105–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goncharov, S.S.: The quantity of nonautoequivalent constructivizations. Algebra Logic 16(3), 169–185 (1977)

    Article  MATH  Google Scholar 

  24. Goncharov, S.S., Dzgoev, V.D.: Autostability of models. Algebra Logic 19(1), 28–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mal’tsev, A.I.: Constructive algebras I. Russ. Math. Surv. 16, 77–129 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)

    MATH  Google Scholar 

  27. Melnikov, A.G.: Computable ordered abelian groups and fields. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 321–330. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13962-8_36

    Chapter  Google Scholar 

  28. Miller, R.: \(\mathbf{d}\)-computable categoricity for algebraic fields. J. Symb. Log. 74(4), 1325–1351 (2009)

    Article  MATH  Google Scholar 

  29. Remmel, J.B.: Recursively categorical linear orderings. Proc. Am. Math. Soc. 83, 387–391 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosenstein, J.G.: Linear Orderings, vol. 98. Academic Press, New York (1982). Pure Appl. Math

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Sergey Goncharov for fruitful discussions on the subject. The reported study was funded by RFBR, according to the research project No. 16-31-60058 mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov .

Editor information

Editors and Affiliations

A Appendix: Proof of Proposition 2

A Appendix: Proof of Proposition 2

For a non-zero countable ordinal \(\alpha \), we define the auxiliary formula \(Ord_{\alpha }(x,y)\). Suppose that the Cantor normal form of \(\alpha \) is equal to

$$\omega ^{\beta _0}\cdot n_0 + \omega ^{\beta _1}\cdot n_1 + \ldots + \omega ^{\beta _t} \cdot n_t,$$

where \(\beta _0>\beta _1>\ldots >\beta _t\) and \(0<n_i<\omega \) for all i. We set:

figure c

It is not difficult to prove the following claim.

Lemma 6

Assume that \(\beta \) is a computable ordinal, and \(\omega ^{\beta }< \alpha <\omega ^{\beta +1}\). For a well-ordering \(\mathcal {A}\) and elements \(a,b\in \mathcal {A}\), we have \(\mathcal {A}\models Ord_{\alpha }(a,b)\) iff the interval \([a,b[_{\mathcal {A}}\) is isomorphic to \(\alpha \). Moreover, the formula \(Ord_{\alpha }\) is logically equivalent to a computable \(\varSigma _{2\beta +2}\) formula.

Now suppose that \(\mathcal {L}_0\) is a computable copy of the ordinal \(\omega ^{\beta }\) with the following property: given a pair of elements \(a<_{\mathcal {L}_0} b\), one can effectively find the Cantor normal form of the interval \([a,b[_{\mathcal {L}_0}\). We may assume that \(\mathcal {L} = \mathcal {L}_0\cdot (1+\eta )\).

We describe the formally \(\varSigma ^0_{2\beta +1}\) Scott family \(\varPhi \) for the structure \(\mathcal {L}\). Let

It is easy to show that \(\psi \) is equivalent to a computable \(\varPi _{2\beta }\) formula.

First, we define the Scott formula \(\phi _a\) for an element \(a\in \mathcal {L}\). If a is the least element in \(\mathcal {L}\), then set \(\phi _a(x) = \forall y (x\le y)\). If a is not the least element and \(\mathcal {L} \models \psi (a)\), then define \(\phi _a = \psi \). Now assume that \(\mathcal {L}\not \models \psi (a)\). We find the element b such that . Let \(\gamma \) be the ordinal such that the interval \([b,a[_{\mathcal {L}}\) is isomorphic to \(\gamma \). Set

Let \(\bar{a} = a_0, a_1, \ldots , a_n\) be a tuple from \(\mathcal {L}\) such that \(a_0<_{\mathcal {L}} a_1<_{\mathcal {L}} \ldots <_{\mathcal {L}} a_n\). For \(i<n\), we set

It is straightforward to prove that \(\mathcal {L}\models \phi _{\bar{a}}(\bar{a})\). Moreover, for a tuple \(\bar{b}\) from \(\mathcal {L}\), \(\mathcal {L}\models \phi _{\bar{a}}(\bar{b})\) implies that the tuple \(\bar{b}\) is automorphic to \(\bar{a}\). Furthermore, the formula \(\phi _{\bar{a}}\) is logically equivalent to a computable \(\varSigma _{2\beta + 1}\) formula. We use the effective procedure for calculating Cantor normal forms to construct the formulas \(\phi _{\bar{a}}\) and to build the desired c.e. Scott family \(\varPhi \) consisting of computable \(\varSigma _{2\beta +1}\) formulas. Note that the formulas have no parameters. Hence, by Corollary 2, the structure \(\mathcal {L}\) is uniformly relatively \(\varDelta ^0_{2\beta +1}\) categorical.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bazhenov, N. (2017). A Note on Effective Categoricity for Linear Orderings. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55911-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55910-0

  • Online ISBN: 978-3-319-55911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics