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Abstract. This paper addresses the target tracking problem, by extracting
received signal strength (RSS) and angle of arrival (AoA) information from the
received radio signal, in the case where the target transmit power is considered
unknown. By combining the radio observations with prior knowledge given by
the target transition state model, we apply the maximum a posteriori (MAP)
criterion to the marginal posterior distribution function (PDF). However, the
derived MAP estimator cannot be solved directly, so we tightly approximate it
for small noise power. The target state estimate is then easily obtained at any
time step by employing a recursive approach, typical for Bayesian methods.
Our simulations confirm the effectiveness of the proposed algorithm, offering
good estimation accuracy in all considered scenarios.

Keywords: Target tracking, maximum a posteriori (MAP) estimator, received
signal strength (RSS), angle of arrival (AoA).

1 Introduction

1.1 Motivation

Locating a moving object in real-time has become an attractive topic in the academic
and research community worldwide recently, owing to its great applicability potential
in both military and commercial fields [1]-[5]. Taking advantage of the existing
technologies, e.g., terrestrial radio frequency sources, to provide a solution to the real-
time object localization problem is strongly encouraged, due to cost minimization.
These include for example, extracting time of arrival, received signal strength (RSS),
angle of arrival (AoA) information from the received radio signal, or a combination of
them [5]-[11]. Which approach to use depends mainly on the available hardware. In
this work, we employ combined RSS and AoA measurements, because nowadays,
practically all devices can measure the RSS information, and the AoA information
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can be extracted from RSS measurements by using rotating a directional antenna and
choosing the direction from which the highest RSS measurement is obtained
[12],[13].

1.2 Research Question

Designing real-time localization algorithms is a very difficult task, because of
numerous challenges that have to be taken into consideration, such as accuracy,
execution time and limited energy resources to name a few. Therefore, the research
question of this work can be formulated as:

How to design an efficient (highly accurate and computationally low complex)
localization algorithm, robust to network topology and channel characteristics,
applicable in real-time?

In order to address the research question, we have begun with the following
hypothesis:

An efficient real-time localization algorithm can be developed by linearizing the
considered non-linear measurement model and by following Bayesian approach,
where prior knowledge is integrated with observations to enhance the estimation
accuracy of an estimator.

1.3 Related Work

Works [6]-[11] investigated the classical target localization problem, where the
proposed estimators were based on radio measurements only, and prior knowledge
was disregarded. The authors in [2], [3] and [5] considered a problem of tracking of a
moving target, and they combined the available radio measurements with prior
knowledge given from the target state model. However, in [2], [3] and [5] only pure
RSS-based target tracking problem was investigated. In [4], the target tracking
problem which employs hybrid, RSS and AoA, measurements was considered. The
authors in [4] proposed a Kalman filter (KF) and a particle filter (PF) to solve the
tracking problem. Furthermore, they proposed a generalized pattern search method for
estimating the path loss exponent (PLE) for each link in every time step.

1.4 Contributions

In this paper, we investigate the RSS-AoA-based target tracking problem for
unknown target transmit power. This setting is of practical interest for low-cost
systems in which testing and calibration is not the priority. Also, due to sensor's
battery drain during time, the true value transmit power becomes not perfectly known
over time. By integrating prior knowledge given by the target transition model and by
employing the maximum a posteriori (MAP) approach, we propose a tight
approximation of the MAP estimator. Based on a well-known recursive approach,
typical for Bayesian methods, we develop an iterative algorithm which updates the
mean and covariance of the target state in each time step.
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2 Relationship to Smart Systems

Smart systems embrace functions of sensing, actuation, and control with a goal of
describing and analyzing an environment, and making decisions based on the
available data in a predictive or adaptive manner. A good example of such a system is
a wireless sensor network, composed of a number of scattered sensors that cooperate
between themselves in order to respond in an attentive, adaptive and active way to the
changes in the environment registered by sensors. However, in many applications, the
information gathered by the sensors is meaningless if not correlated to accurate
location of where the changes are occurring (e.g., a system might be set up to respond
locally to changes in sensor data).

Therefore, determining accurate location of sensors is a very important task in
forming a smart system. Moreover, accurate localization of objects and people in both
indoor and outdoor environments enables new applications in emergency and
commercial services that can improve safety and efficiency in everyday life (e.g.,
smart parking, monitoring of storage conditions and goods, assistance for elderly or
people with disabilities) [14].

Another important example where target localization helps building a smart system
is video surveillance. It has been used to monitor security sensitive areas such as
banks, highways, borders, efc. Owing to rapid advances high-speed network
infrastructure and computing power, as well as large capacity storage devices, multi
sensor video surveillance systems have been developed recently. However, traditional
video outputs that were controlled by human operators became overwhelming both
for operators and storage devices, due to the increased number of cameras. Therefore,
in order to filter out redundant information and increase the response time to forensic
events motivated the development of smart video surveillance systems. Such systems
require fast, reliable and robust algorithms for moving object detection, classification,
tracking and activity analysis. [15]

3 Problem Formulation

T T

Let *t = [IK’IF] and i = [ﬂ'ix’ u'l':-f] ,fort = L. **n"r, denote the unknown location
of a moving target at time instant! andknown location of the !-th static anchor,
respectivelyl. For simplicity, we assume a constant velocity target state transition
model [1]-[5], [16],[17], i.e.,

1
8. =56, , +r. M

where 8; = [x,.2,]" represents the target state at time ¢ (described by its location
and velocity, ¢, in a 2-dimensional plane) and r; is the state process noise [1]-[5].
This process noise is assumed to be zero-mean Gaussian with a covariance matrix @,
ie.,r:~MN{0,Q). Covariance @ and state transition matrix, ¥, are defined as

! For simplicity and without loss of generality, here we focus on 2-dimensional scenario. The
generalization to a 3-dimensional scenario is straightforward.
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with g and 4 denoting the state process noise intensity and the sampling interval
between two consecutive time steps [1], [3], [16], [17].

At each time step, £, the target emits a signal to the anchors which then withdraw
the RSS and AoA information from it. Thus, the observation model can be written as

z; = hix.) +n;, @

where 2, = [PI, 1] (z, e B™) ‘is the observation vector composed of RSS,

() ()
P, = [f[r] , and AoA, ¢ = [th-'r'] , measurements at time instant £. The function
h(x.) in (2) is defined as h; Gr;) = B, — 10y logso "4 for £ = 1,.... N [18], and
o

Eo—
h;(x.) = tan™? (I:'r . :'r) fori =N +1,...2N, [19], where Fy is the reference power

at a distance dg,and ¥ is the PLE. The measurement noise is modeled as
1, € W(0,C), where the noise covariance is defined as € = EHEEUG??L-J Hr:;iJ} ® 1,
with L'-r;fl. (dB) and r:r;‘;,i (rad) being the variances of the RSS and AoA measurement

noise, respectively, Iy representing the identity matrix of size M and symbol &
denoting the Kronecker product. Often in practice, testing and calibration are not the
priority in order to keep low network implementation costs; hence, the target transmit
power, Fr | is often not calibrated, i.e., not known. Not knowing P corresponds to not
knowing Py in (2) [18], [20].

We employ (1) and (2) to build the marginal posterior probability distribution
function (PDF), p(@;|z.), from which we can quantify the confidence we have in
the values of the state &; given all the past measurements £i... From p{8:|z..), we
can obtain an estimate at any desired time step.

Below we show a recursive procedure, typical for Bayesian methods [1]-[5], for
the evaluation of #{8;|2;.:} at any time instant.

e [nitialization: The marginal posterior PDF at £ = 0 is set to the prior PDF (&}
of 8.

e Prediction: According to the state transition model (3), the predictive PDF of the
state at £ is found as
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3)
p{Htlzl:t—L:] = J‘ P{Erlﬂr—ij p{Et—llzl:l.‘.L:] df._,.

e Update: By following the Bayes’ rule [1], [13], we have

p(8,]z.,) = p(2:|68:)p(0e|2e: o) . 4)
[ p(z;18.)p(8;)z,.._;)d B,

It is worth noting that the denominator in (4) is just a normalizing constant. In
general, the marginal PDF at £ — 1 cannot be calculated analytically, and the integral
in (3) cannot be obtained analytically if the state model is non-linear. Therefore, some
approximations are required in order to obtain p (8| zy.).

4 The Proposed MAP Algorithm

A state estimate, Eflf, of & can be obtained from ?{Er|zlzrjby employing the MAP
criteria [13], i.e., by maximizing the marginal posterior PDF

)

arIr = ar‘gﬂma}: F{Erlztrj Eﬂf’ﬁﬂmﬂ 2|8 )p(Be|2ee_s )

The problem in (5) resembles the maximum likelihood estimator, apart from the
existence of the prior PDF. This problem is highly non-convex and its analytical
solution cannot be obtained in general. Therefore, we approximate (5) by another
estimator whose solution is readily available.

First, for small noise power we can write from the RSS and AoA model
respectively

Allx, — all qdgfori = 1,...N, (6)

cl(x,—a;) = 0fori = N+1,...2N, )

e
L] "

- o . (£
where, A; =10t 5 =10t  and l:‘l-=[—Slt1¢l- L COS ; ] Next, by

transforming from  Cartesian to  polar  coordinates we  express

x,—a; =nu;:n = 0, llu;ll =1, and make use of the available azimuth angle
. W . 1 .

observations to define u; = [cos¢; ", sing; ], and rewrite (6) as

A = ndy.

By multiplying the left hand side of the above equation by ] 1;, we arrive at

)

] (x — a;) ® nd,,
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Hence, we can approximate the RSS and AoA measurement models by (8) and (7),
respectively, which written in a vector form and applying the weighted least squares
(WLS) criterion leads to

- . .
¥ee = arg min "W{A}rr_ b) 12, 9)
¥e= r.i’J-T
T F;r}
where W = I, @& diag(w), w = Lf':l] andw; =1 - ——
...[:11"E‘
A dyg Al a;
4= : b= H

T T
L 0 L

The solution of (9) is given by ¥y, = (A"WT WA} *(A"W7b). Once we have an
estimate of the target location, we can use it to find the maximum likelihood estimate
of Ay, Fy, from the RSS measurement model as

0 o (10)
R i F:r + 10y log,, Ideuﬂ !
B =

l.hhr

At this point, we can benefit from this estimated value by using it to resume the

Fo
estimation process as if F is known, i.e., we can compute §j = 10t%¥ in order to get
Al 0 0 A af +1dy
A= : 1 ilb= :
e 00 cf af

As far as the prior knowledge part in (5) is concern, we can assume that
p(8:_y|21:_1) has Gaussian distribution with mean B _1je-1 and covariance

ﬁr_,_|r_1[17]. Then, according to (3), we obtain

1 1 -~ T, — (11)
p(Blzy, ) = P [_;{Er - Eflt—i} MH—L{Er - Erlr—x}}s

where k is a constant, and at|r—1 and M t|t-1 are respectively the mean and
covariance of the one-step predicted state, obtained through (1) as

ahr|r—1 = Sar—ur—r
(12)
My, y = -!"'*"'fr—ur—1.-'--'{'r +@.

Therefore, (5) can be written as
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ﬁm = ar‘gﬂmin{zr - h.{.t:r:l}T €z, - hix.))

. (13)
+ {Er - i5'r|r—1}' Mﬁil{ﬂr - i5'r|r—1}' -
Similarly as in (9), the problem in (13) can be rewritten as
_ o : (14)
EIr|r = at‘gﬂmm "W{Hﬂr -f ” .
L L
where H= [A: Mg: | f= [b:Mn:r—LEflf-l]» W = I, ® diag (W),
z. |--'|:|-|'-';rJ
W=0]"% =1 -5, di =dp10 * . The solution to (14) is given by

Sp=1
B:c = (HTWTWH) "' (H'W' ).
The step by step proposed MAP algorithm for unknown Fr, is outlined in
Algorithm 1.
Algorithm 1.The Proposed MAP Algorithm Description

Require: Z;, for t=L...T, Q.5

1: Initialization: a,_\“_\ — ('?J:],ﬁmn — I,.B, « (10)

2: for t=1....T do

3: Prediction:
4: = By = (12)
5: = My (12)
6:Update:

7: - By = (14)
8: - jiﬂtﬁ-h

8: - B« (10)

10: end for

5 Simulation Results

This section validates the performance of the proposed algorithm through computer
simulation. All simulations in this work were performed in MATLAB.
5.1 Simulation Set-up

Two scenarios, in which the target takes sharp maneuvers and a smoother one, are
investigated. The state model (1) is used for the target state transition, and the radio
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measurements are acquired according to (2) at each time instant. Three anchors are

fixed at [[70,10]7, [40,70]7, [10*‘1‘0]T], and a sample is taken every A=1g during

I =150 =1000

s trajectory duration in each Monte Carlo, M, , run. The reference

distance is set to @0 = 1 m, the reference power to Py = —10 4Bm, and the PLE to
¥=3 On = ? dB, “m: = 4m 180 rad, and § = 2.5%107*m?/s* Tpe performance
metric used here is the root mean square error (RMSE), defined as

”xi_r'il;r"‘

_ e
RMSE_JEH .

, where “itrepresents the estimate of the true target
location, ®it, in the {-th Mc run at time instant .

The performance of the proposed MAP algorithm is compared with a classical
approach described by (9), which makes use of the radio measurements only and
disregards the prior knowledge, labeled here as WLS.

5.2 Results

Fig. 1 illustrates the true target trajectory in the two considered scenarios as well as
the estimated trajectories given by the considered approaches. In the first scenario, the
initial target’s location was set to [21.20]7, whereas in the second scenario the
starting point was set to [33.15]7. We can see that the proposed MAP estimator
performs considerably better in both scenarios than the WLS one. However, it seems
like there is still room for further improvement of the proposed approach, since the
results are not particularly smooth. This might be done by better utilization of the
prior knowledge, i.e., in the update step of the state covariance matrix, and is left for
future work. Fig. 2 illustrates the RMSE (m) versus £ (s) performance comparison of
the considered approaches. From it, one can see that the proposed algorithm performs
well in both scenarios, obtaining an average RMSE below 3 m. Furthermore, the
superiority of the Bayesian approach, which combines the observations with prior
knowledge, over the classical one, which utilizes the observations exclusively, is
clearly observed in every time step.

0 10 20 30 r
x (m)

b)

Fig. 1. The true target trajectory in: a) the first and b) the second considered scenario and the
estimated ones.
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Fig. 2. RMSE versus t (s) comparison for a) the first and b) the second considered scenario.

RMSE (m)
RMSE (m)

6 Conclusions

In this work, we have investigated the target tracking problem which makes use of the
combined RSS and AoA measurements, in which the target transmit power is
considered not known. By resorting to Bayesian approach and relying on the MAP
criterion, we proposed a tracking algorithm, which efficiently solves the target
tracking in all considered scenarios and significantly outperforms the considered
classical approach in every time instant. Although the proposed algorithm offers
excellent estimation accuracy, it seems that there is still room for further
improvement, which will be the topic of our future work.

This work is a part of our ongoing research, and we have validated the
performance of our algorithms by means of simulations only. As a part of our future
work, we plan to validate their performance using real measurements from [12] and
[13].
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