Skip to main content

Modelling of Glucose Dynamics for Diabetes

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Included in the following conference series:

Abstract

Diabetes is a heterogeneous group of diseases associated with elevated blood glucose level. Elevated glucose level continuously damages multiple organs, eventually leading to death. Diabetes is one of top 10 leading causes of death. Diabetes does not hurt nor manifests outwardly, until it is too late and the disease has developed. For example, type-1 diabetic patient depends on insulin. The patient takes insulin based on self-monitoring of blood glucose level. Motivated patient takes approximately 3-4 blood samples a day. This cannot capture all important events, e.g., nocturnal hypoglycemia with the risk of death. Therefore, the patient wears a system that continuously measures glucose level in the subcutaneous tissue. Nevertheless, these two glucose levels are not linearly proportional. They can differ considerably. Therefore, a model of glucose dynamics is needed to describe the non-linearity between these two levels. The model is important to estimate blood glucose level from the subcutaneous tissue glucose level and for a development of artificial pancreas. Number of models were developed. In this paper, we present the background, selected models of glucose dynamics, lessons learned and propose what minimal data researchers should share to stimulate further research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bliss, M.: Rewriting medical history: Charles best and the banting and best myth. J. Hist. Med. Allied Sci. 48, 253–274 (1993)

    Article  Google Scholar 

  2. World Health Organization: The top ten causes of death. Fact sheet No. 310 (2014)

    Google Scholar 

  3. Longo, D., Fauci, A., Kasper, A., Hauser, S., Jameson, J., Loscalzo, J.: Harrison’s Principles of Internal Medicine. Mc Graw-Hill, New York (2011)

    Google Scholar 

  4. Guyton, A.C., Hall, J.E.: Medical Textbook of Physiology. Elsevier Inc., Philadelphia (2006)

    Google Scholar 

  5. Poretsky, L.: Principles of Diabetes Mellistus. Springer, New York (2010)

    Book  Google Scholar 

  6. Bronzino, J.D.: The Biomedical Engineering Handbook. CRC Press, Boca Raton (2006)

    Google Scholar 

  7. Kansagara, D., Fu, R., Freeman, M., Wolf, F., Helfand, M.: Intensive insulin therapy in hospitalized patients: a systematic review. Ann. Intern. Med. 154, 268–282 (2011)

    Article  Google Scholar 

  8. Griesdale, D., de Souza, E., van Dam, R.J., Heyland, D., Cook, K., Malhotra, J., Dhaliwal, A., Henderson, R., Chittock, D., Finfer, D., Talmor, D., Chittock, D.: Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180, 821–827 (2009)

    Article  Google Scholar 

  9. Clarke, S., Foster, J.: A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69, 83–93 (2012)

    Google Scholar 

  10. Cengiz, E., Tamborlane, W.W.: A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol. Theret. 11, S11–S16 (2009)

    Article  Google Scholar 

  11. Vaddiraju, S., Lu, D., Burgess, Y., Jain, F.C., Burgess, D.: Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. 4, 1540–1562 (2010)

    Article  Google Scholar 

  12. Gani, A., Gribok, A.V., Lu, Y., Ward, W.K., Vigersky, R.A., Reifman, J.: Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans. Inf. Technol. Biomed. 14, 157–165 (2010)

    Article  Google Scholar 

  13. Bequette, B.W.: Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. J. Diabetes Sci. Technol. 4, 404–418 (2010)

    Article  Google Scholar 

  14. Guerra, S., Facchinetti, A., Sparacino, G., Nicolao, G., Cobelli, G.D.: Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach. IEEE Trans. Biomed. Eng. 59, 1658–1669 (2012)

    Article  Google Scholar 

  15. Rebrin, K., Steil, G.: Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Theret. 2, 461–472 (2000)

    Article  Google Scholar 

  16. Steil, G.M., Rebrin, K., Hariri, F., Jinagonda, S., Tadros, S., Darwin, C., Saad, M.F.: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 48, 1833–1840 (2005)

    Article  Google Scholar 

  17. Rebrin, K., Steil, G., van Antwerp, W., Mastrototaro, J.: Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am. J. Physiol. 277, E561–E571 (1999)

    Google Scholar 

  18. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., De Nicolao, G., Kovatchev, B.: Diabetes: models, signals, and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009)

    Article  Google Scholar 

  19. Basu, A., Dube, S., Slama, M., Errazuriz, I., Amezcua, J., Kudva, Y.C., Peyser, T., Carter, R.E., Cobelli, C., Basu, R.: Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 62, 4083–4087 (2013)

    Article  Google Scholar 

  20. Virtanen, K., Lönnroth, A., Parkkola, R., Peltoniemi, P., Asola, M., Tolvanen, T., Rönnemaa, T., Knuuti, J., Huupponen, R., Nuutila, P.: Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in non-obese and obese humans. J. Clin. Endocr. Metab. 87, 3902–3910 (2002)

    Article  Google Scholar 

  21. Bertoldo, A., Peltoniemi, P., Oikonen, V., Knuuti, J., Nuutila, P., Cobelli, C.: Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. Am. J. Physiol. Endocr. Metab. 281, E524–E536 (2001)

    Google Scholar 

  22. Thorn, S.L., de Kemp, R.A.T., Klein, R., Renaud, J.M., Wells, R.G., Gollob, M.H., Beanlands, H., DaSilva, N.: Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J. Nucl. Med. 54, 1637–1644 (2013)

    Article  Google Scholar 

  23. Haidar, A., Wilinska, M., Graveston, J.A., Hovorka, R.: Stochastic virtual population of subjects with type 1 diabetes for the assessment of closed loop glucose controllers. IEEE Trans. Biomed. Eng. 60, 3524–3534 (2013)

    Article  Google Scholar 

  24. Koutny, T.: Using meta-differential evolution to enhance a calculation of a continuous blood glucose level. Comput. Methods Progr. Biomed. 133, 45–54 (2016)

    Article  Google Scholar 

  25. Koutny, T.: Blood glucose level reconstruction as a function of transcapillary glucose transport. Comput. Biol. Med. 53, 171–178 (2014)

    Article  Google Scholar 

  26. Koutny, T.: Prediction of interstitial glucose level. IEEE Trans. Inf. Technol. Biomed. 16, 136–142 (2012)

    Article  Google Scholar 

  27. Koutny, T., Krcma, M., Kohout, J., Jezek, P., Varnuskova, J., Vcelak, P., Strnadek, J.: On-line blood glucose level calculation. Procedia Comput. Sci. 98, 228–235 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Koutny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Koutny, T. (2017). Modelling of Glucose Dynamics for Diabetes. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics