Skip to main content

Data Mining the Protein Data Bank to Identify and Characterise Chameleon Coil Sequences that Form Symmetric Homodimer β-Sheet Interfaces

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

  • 1834 Accesses

Abstract

A protein’s environment may affect its secondary structure. In this study, the focus is on homodimers with symmetric β-sheet interfaces resulting from the conversion of coil sequences into β-strands. All homodimers in the Protein Data Bank relying on those chameleon sequences have been identified. Initial analysis based on sequential and structural features has revealed that many of those dimers display specific properties which could contribute to their detection. Such result is important since it could provide some insight on dimerisation and possibly aggregation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen, C.B., et al.: The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 47, 1309–1314 (1961)

    Article  Google Scholar 

  2. Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., Kämper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21(7), 1069–1077 (2005)

    Article  Google Scholar 

  3. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  4. Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Ann. Rev. Biochem. 75, 333–366 (2006)

    Article  Google Scholar 

  5. Dalal, S., Balasubramanian, S., Regan, L.: Protein alchemy: changing β-sheet into α-helix. Nature Struct. Biol. 4(7), 548–552 (1997)

    Article  Google Scholar 

  6. Dobson, C.M.: The structural basis of protein folding and its links with human disease. Phil. Trans. R Soc. Lond. B. 356, 133–145 (2001)

    Article  Google Scholar 

  7. Eisenberg, D., Jucker, M.: The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012)

    Article  Google Scholar 

  8. Glazko, G.V., Mushegian, A.R.: Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns. Genome Biol. 5, R32 (2004)

    Article  Google Scholar 

  9. Golovanov, A.P., Barilla, D., Golovanova, M., Hayes, F., Lian, L.-Y.: Parg, a protein required for active partition of bacterial plasmids, has a dimeric Ribbon-Helix-Helix structure. Mol. Microbiol. 50, 1141–1153 (2003)

    Article  Google Scholar 

  10. Jauch, R., Yeo, H.C., Kolatkar, P.R., Clarke, N.D.: Assessment of CASP7 structure predictions for template free targets. Proteins Struct. Funct. Bioinfor. 69, 57–67 (2007)

    Article  Google Scholar 

  11. Kyte, J., Russell, F.: Doolittle. a simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  12. Lanara, Z., Giannopoulou, E., Fullen, M., Kostantinopoulos, E., Nebel, J.-C., Kalofonos, H.P., Patinos, G.P., Pavlidis, C.: Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. Hum. Genomics 7, 14 (2013)

    Article  Google Scholar 

  13. Larsen, T.A., Olson, A.J., Goodsell, D.S.: Morphology of protein–protein interfaces. Structure 6, 421–427 (1998)

    Article  Google Scholar 

  14. Nebel, J.-C., Herzyk, P., Gilbert, D.R.: Automatic generation of 3D motifs for classification of protein binding sites. BMC Bioinf. 8, 32 (2007)

    Article  Google Scholar 

  15. Piovesan, D., Minervini, G., Tosatto, S.C.E.: The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Research (2016)

    Google Scholar 

  16. Rasmussen, M.D., Deshpande, M.S., Karypis, G., Johnson, J., Crow, J.A., Retzel, E.F.: wCLUTO: a Web-enabled clustering toolkit. Plant Physiol. 133(2), 510–516 (2003)

    Article  Google Scholar 

  17. Roostaee, A., Cote, S., Roucou, X.: Aggregation and amyloid fibril formation induced by chemical dimerization of recombinant prion protein in physiological-like conditions. J. Biol. Chem. 284(45), 30907–30916 (2009)

    Article  Google Scholar 

  18. Rose, G., Creamer, T.: Protein folding: predicting predicting. Proteins Struct. Funct. Genet. 19(1), 1–3 (1994)

    Article  Google Scholar 

  19. Stanger, H.E., Syud, F.A., Espinosa, J.F., Giriat, I., Muir, T., Gellman, S.H.: Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure. Proc. Natl. Acad. Sci. U.S.A. 98, 12015–12020 (2001)

    Article  Google Scholar 

  20. Su, C.-H., Pal, N.R., Lin, K.-L., Chung, I.-F.: Identification of amino acid propensities that are strong determinants of linear b-cell epitope using neural networks. PLoS ONE 7(2), e30617 (2012). doi:10.1371/journal.pone.0030617

    Article  Google Scholar 

  21. Vapnik, V.N., Kotz, S.: Estimation of Dependences Based on Empirical Data. Springer, New York (2006). ISBN 0-387-30865-2

    Google Scholar 

  22. Winston, P.H.: Artificial Intelligence, 3rd edn. Addison-Wesley, Boston (1992)

    MATH  Google Scholar 

  23. Yang, W.Z., et al.: Conversion of a β-strand to an α-Helix induced by a single-site mutation observed in the crystal structure of Fis mutant Pro26Ala. Protein Sci. 7(9), 1875–1883 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Laibe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Laibe, J., Broutin, M., Caffrey, A., Pierscionek, B., Nebel, JC. (2017). Data Mining the Protein Data Bank to Identify and Characterise Chameleon Coil Sequences that Form Symmetric Homodimer β-Sheet Interfaces. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics