Skip to main content

Application of a Membrane Protein Structure Prediction Web Service GPCRM to a Gastric Inhibitory Polypeptide Receptor Model

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

A novel versatile tool named GPCRM has been developed. It targets structure prediction of a distinct protein family of G protein-coupled receptors (GPCRs). In principle, GPCRM builds a GPCR model using a MODELLER-based homology modeling procedure. In addition, that commonly used procedure was improved by using comparison of sequence profiles, multiple template structures and the extensive loop refinement in Rosetta. We applied our method to predict a three dimensional structure of a gastric inhibitory polypeptide receptor (GIPR) from the secretin-like class B of human GPCRs. The GIPR model was also tested in an ensemble docking study in which we investigated plausible interactions of four potential antagonists with that receptor. Out of those four ligands we suggested ChEMBL_1933363 as the most potent antagonist of GIPR based on the Glide docking results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wald, G.: The molecular basis of visual excitation. Nature 219(5156), 800–807 (1968)

    Article  Google Scholar 

  2. Unger, V.M., Hargrave, P.A., Baldwin, J.M., Schertler, G.F.: Arrangement of rhodopsin transmembrane alpha-helices. Nature 389(6647), 203–206 (1997). doi:10.1038/38316

    Article  Google Scholar 

  3. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M.: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480), 739–745 (2000)

    Article  Google Scholar 

  4. Yuan, S., Ghoshdastider, U., Trzaskowski, B., Latek, D., Debinski, A., Pulawski, W., Wu, R., Gerke, V., Filipek, S.: The role of water in activation mechanism of human N-formyl peptide receptor 1 (FPR1) based on molecular dynamics simulations. PLoS One 7(11), e47114 (2012). doi:10.1371/journal.pone.0047114

  5. Yuan, S., Wu, R., Latek, D., Trzaskowski, B., Filipek, S.: Lipid receptor S1P(1) activation scheme concluded from microsecond all-atom molecular dynamics simulations. PLoS Comput. Biol. 9(10), e1003261 (2013). doi:10.1371/journal.pcbi.1003261

    Article  Google Scholar 

  6. Munk, C., Isberg, V., Mordalski, S., Harpsoe, K., Rataj, K., Hauser, A.S., Kolb, P., Bojarski, A.J., Vriend, G., Gloriam, D.E.: GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol. 173(14), 2195–2207 (2016). doi:10.1111/bph.13509

    Article  Google Scholar 

  7. Latek, D., Pasznik, P., Carlomagno, T., Filipek, S.: Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS ONE 8(2), e56742 (2013). doi:10.1371/journal.pone.0056742

    Article  Google Scholar 

  8. Fridlyand, L.E., Philipson, L.H.: Pancreatic beta cell G-protein coupled receptors and second messenger interactions: a systems biology computational analysis. PLoS ONE 11(5), e0152869 (2016). doi:10.1371/journal.pone.0152869

    Article  Google Scholar 

  9. Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., Schioth, H.B.: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63(6), 1256–1272 (2003). doi:10.1124/mol.63.6.1256

    Article  Google Scholar 

  10. Suwa, M.: Bioinformatics tools for predicting GPCR gene functions. Adv. Exp. Med. Biol. 796, 205–224 (2014). doi:10.1007/978-94-007-7423-0_10

    Article  Google Scholar 

  11. Wallner, B.: ProQM-resample: improved model quality assessment for membrane proteins by limited conformational sampling. Bioinformatics 30(15), 2221–2223 (2014). doi:10.1093/bioinformatics/btu187

    Article  Google Scholar 

  12. Busato, M., Giorgetti, A.: Structural modeling of G-protein coupled receptors: an overview on automatic web-servers. Int. J. Biochem. Cell Biol. 77(Pt B), 264–274 (2016). doi:10.1016/j.biocel.2016.04.004

    Article  Google Scholar 

  13. Vass, M., Kooistra, A.J., Ritschel, T., Leurs, R., de Esch, I.J., de Graaf, C.: Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol. 30, 59–68 (2016). doi:10.1016/j.coph.2016.07.007

    Article  Google Scholar 

  14. van der Horst, E., Peironcely, J.E., Ijzerman, A.P., Beukers, M.W., Lane, J.R., van Vlijmen, H.W., Emmerich, M.T., Okuno, Y., Bender, A.: A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization. BMC Bioinform. 11, 316 (2010). doi:10.1186/1471-2105-11-316

    Article  Google Scholar 

  15. Zhang, J., Yang, J., Jang, R., Zhang, Y.: GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23(8), 1538–1549 (2015). doi:10.1016/j.str.2015.06.007

    Article  Google Scholar 

  16. Wang, C., Wu, H., Katritch, V., Han, G.W., Huang, X.P., Liu, W., Siu, F.Y., Roth, B.L., Cherezov, V., Stevens, R.C.: Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449), 338–343 (2013). doi:10.1038/nature12167

    Article  Google Scholar 

  17. Hollenstein, K., Kean, J., Bortolato, A., Cheng, R.K., Dore, A.S., Jazayeri, A., Cooke, R.M., Weir, M., Marshall, F.H.: Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459), 438–443 (2013). doi:10.1038/nature12357

    Article  Google Scholar 

  18. Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K.: Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011). doi:10.1038/nature09648

    Article  Google Scholar 

  19. Kufareva, I., Katritch, V., Stevens, R.C., Abagyan, R.: Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22(8), 1120–1139 (2014). doi:10.1016/j.str.2014.06.012

    Article  Google Scholar 

  20. Worth, C.L., Kleinau, G., Krause, G.: Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PLoS ONE 4(9), e7011 (2009). doi:10.1371/journal.pone.0007011

    Article  Google Scholar 

  21. Gutierrez-de-Teran, H., Bello, X., Rodriguez, D.: Characterization of the dynamic events of GPCRs by automated computational simulations. Biochem. Soc. Trans. 41(1), 205–212 (2013). doi:10.1042/BST20120287

    Article  Google Scholar 

  22. Sandal, M., Duy, T.P., Cona, M., Zung, H., Carloni, P., Musiani, F., Giorgetti, A.: GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9), e74092 (2013). doi:10.1371/journal.pone.0074092

    Article  Google Scholar 

  23. Launay, G., Teletchea, S., Wade, F., Pajot-Augy, E., Gibrat, J.F., Sanz, G.: Automatic modeling of mammalian olfactory receptors and docking of odorants. Protein Eng. Des. Sel. 25(8), 377–386 (2012). doi:10.1093/protein/gzs037

    Article  Google Scholar 

  24. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993). doi:10.1006/jmbi.1993.1626

    Article  Google Scholar 

  25. Latek, D., Bajda, M., Filipek, S.: A hybrid approach to structure and function modeling of G protein-coupled receptors. J. Chem. Inf. Model. 56(4), 630–641 (2016). doi:10.1021/acs.jcim.5b00451

    Article  Google Scholar 

  26. Reimann, F., Gribble, F.M.: G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia 59(2), 229–233 (2016). doi:10.1007/s00125-015-3825-z

    Article  Google Scholar 

  27. Baggio, L.L., Drucker, D.J.: Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6), 2131–2157 (2007). doi:10.1053/j.gastro.2007.03.054

    Article  Google Scholar 

  28. Wang, C., Bradley, P., Baker, D.: Protein-protein docking with backbone flexibility. J. Mol. Biol. 373(2), 503–519 (2007). doi:10.1016/j.jmb.2007.07.050

    Article  Google Scholar 

  29. Lomize, M.A., Lomize, A.L., Pogozheva, I.D., Mosberg, H.I.: OPM: orientations of proteins in membranes database. Bioinformatics 22(5), 623–625 (2006). doi:10.1093/bioinformatics/btk023

    Article  Google Scholar 

  30. Kufareva, I., Rueda, M., Katritch, V., Stevens, R.C., Abagyan, R.: Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19(8), 1108–1126 (2011). doi:10.1016/j.str.2011.05.012

    Article  Google Scholar 

  31. Siu, F.Y., He, M., de Graaf, C., Han, G.W., Yang, D., Zhang, Z., Zhou, C., Xu, Q., Wacker, D., Joseph, J.S., Liu, W., Lau, J., Cherezov, V., Katritch, V., Wang, M.W., Stevens, R.C.: Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459), 444–449 (2013). doi:10.1038/nature12393

    Article  Google Scholar 

  32. Woetzel, N., Karakas, M., Staritzbichler, R., Muller, R., Weiner, B.E., Meiler, J.: BCL::score–knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. PLoS ONE 7(11), e49242 (2012). doi:10.1371/journal.pone.0049242

  33. Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins 62(4), 1010–1025 (2006). doi:10.1002/prot.20817

    Article  Google Scholar 

  34. Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35(Database issue), D198–D201 (2007). doi:10.1093/nar/gkl999

    Article  Google Scholar 

  35. Filipski, K.J., Bian, J., Ebner, D.C., Lee, E.C., Li, J.C., Sammons, M.F., Wright, S.W., Stevens, B.D., Didiuk, M.T., Tu, M., Perreault, C., Brown, J., Atkinson, K., Tan, B., Salatto, C.T., Litchfield, J., Pfefferkorn, J.A., Guzman-Perez, A.: A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity. Bioorg. Med. Chem. Lett. 22(1), 415–420 (2012). doi:10.1016/j.bmcl.2011.10.113

    Article  Google Scholar 

  36. Cordomi, A., Ismail, S., Matsoukas, M.T., Escrieut, C., Gherardi, M.J., Pardo, L., Fourmy, D.: Functional elements of the gastric inhibitory polypeptide receptor: comparison between secretin- and rhodopsin-like G protein-coupled receptors. Biochem. Pharmacol. 96(3), 237–246 (2015). doi:10.1016/j.bcp.2015.05.015

    Article  Google Scholar 

  37. Yaqub, T., Tikhonova, I.G., Lattig, J., Magnan, R., Laval, M., Escrieut, C., Boulegue, C., Hewage, C., Fourmy, D.: Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol. Pharmacol. 77(4), 547–558 (2010). doi:10.1124/mol.109.060111

    Article  Google Scholar 

Download references

Acknowledgments

The current study was financed by National Science Centre in Poland, the SONATA grant no. DEC-2012/07/D/NZ1/04244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Latek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rutkowska, E. et al. (2017). Application of a Membrane Protein Structure Prediction Web Service GPCRM to a Gastric Inhibitory Polypeptide Receptor Model. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics