Skip to main content

Identification and in silico Analysis of Glutathione Reductase Transcripts Expressed in Olive (Olea europaea L.) Pollen and Pistil

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

Glutathione (GSH) protects proteins against oxidation of their thiol-containing groups, by alternatively becoming the subject of oxidation, forming glutathione disulfide (GSSG). Appropriate GSH:GSSG levels are maintained by glutathione reductase (GR), a homodimeric flavoprotein which uses NADPH to reduce one GSSG molecule to two of GSH. This enzyme has been characterized in several species, and described as highly conserved, with two isoforms only. Heterogeneity and discticntiveness of plant reproductive tissues led us to investigate the presence of GR sequences. A de novo assembled and annotated olive reproductive transcriptome was subjected to screening, which allowed us to identify at least 11 GR homologues (1 pollen-specific and 10 from pistils). Primers were designed, and full-length sequences were obtained through PCR. In silico analysis, including phylogeny, 3-D modeling of N-terminus, and prediction of cellular localization and post-translational modifications was carried out to shed light into the involvement of olive pollen-intrinsic GR in reproductive development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, Z.H., Hamooh, B.T., Daur, I., Ha Rehman, H.M., Alghabari, F.: Transcriptomics and biochemical profiling: current dynamics in elucidating the potential attributes of olive. Curr. Issues Mol. Biol. 21, 73–98 (2017)

    Google Scholar 

  2. Kaur, H., Bhatla, S.C.: Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59, 42–53 (2016)

    Article  Google Scholar 

  3. Halliwell, B., Foyer, C.H.: Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139(1), 9–17 (1978)

    Article  Google Scholar 

  4. Edwards, E.A., Rawsthorne, S., Mullineaux, P.M.: Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180, 278–284 (1990)

    Article  Google Scholar 

  5. Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1), 21–25 (1976)

    Article  Google Scholar 

  6. Rasmusson, A.G., Møller, I.M.: NADP-utilizing enzymes in the matrix of plant mitochondria. Plant Physiol. 94, 1012–1018 (1990)

    Article  Google Scholar 

  7. Jiménez, A., Hernández, J.A., del Río, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114, 175–284 (1997)

    Article  Google Scholar 

  8. Stevens, R.G., Creissen, G.P., Mullineaux, P.M.: Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211, 537–545 (2000)

    Article  Google Scholar 

  9. Romero-Puertas, M.C., Corpas, F.J., Sandalio, L.M., Leterrier, M., Rodríguez-Serrano, M., del Río, L.A., Palma, J.M.: Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 170, 43–52 (2006)

    Article  Google Scholar 

  10. Creissen, G., Edwards, E.A., Enard, C., Wellburn, A., Mullineaux, P.: Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 2(1), 129–131 (1992)

    Google Scholar 

  11. Chew, O., Whelan, J., Miller, A.H.: Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defences in plants. J. Biol. Chem. 278(47), 46869–46877 (2003)

    Article  Google Scholar 

  12. Kaur, N., Reumann, S., Hu, J.: Peroxisome biogenesis and function. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD (2009). doi:10.1199/tab.0123

  13. Marty, L., Siala, W., Schwarzländer, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.P., Hell, R.: The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 9109–9114 (2009)

    Article  Google Scholar 

  14. Foyer, C.H., Noctor, G.: Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119, 355–364 (2003)

    Article  Google Scholar 

  15. del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B.: Reactive oxygen species and reactive nitrogen species in peroxisomes Production scavenging and role in cell signaling. Plant Physiol. 141, 330–335 (2006)

    Article  Google Scholar 

  16. Nyathi, Y., Baker, A.: Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta 1763, 1478–1495 (2006)

    Article  Google Scholar 

  17. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., Noctor, G.: Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197–4220 (2010)

    Article  Google Scholar 

  18. Garrett, R.H., Grisham, C.M.: Biochemistry, 3rd edn. Thomson Brooks/Cole, Belmont (2005). ISBN 0534490336

    Google Scholar 

  19. Anjum, N.A., Umar, S., Chan, M.T. (eds.): Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Netherlands (2010). ISBN 978-90-481-9404-9

    Google Scholar 

  20. Cejudo, F.J., Meyer, A.J., Reichheld, J.P., Rouhier, N., Traverso, J.A.: Thiol-Based Redox Homeostasis and Signalling. Frontiers Media SA, Lausanne (2014). ISBN 978-2-88919-284-7

    Book  Google Scholar 

  21. Carmona, R., Zafra, A., Seoane, P., Castro, A.J., Guerrero-Fernández, D., Castillo-Castillo, T., Medina-García, A., Cánovas, F.M., Aldana-Montes, J.F., Navas-Delgado, I., Alché, J.D., Claros, M.G.: ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Frontiers Plant Sci. 6, 625 (2015)

    Article  Google Scholar 

  22. Cruz, F., Julca, I., Gómez-Garrido, J., Loska, D., Marcet-Houben, M., Cano, E., Galán, B., Frias, L., Ribeca, P., Derdak, S., Gut, M., Sánchez-Fernández, M., García, J.L., Gut, I.G., Vargas, P., Alioto, T.S., Gabaldón, T.: Genome sequence of the olive tree, Olea europaea. GigaScience 5, 29 (2016)

    Article  Google Scholar 

  23. Olive genome and annotation files. http://denovo.cnag.cat/genomes/olive/

  24. de Dios Alché, J., M’rani-Alaoui, M., Castro, A.J., Rodríguez-García, M.I.: Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination. Plant Cell Physiol. 45, 1149–1157 (2004)

    Article  Google Scholar 

  25. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R.: Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013)

    Article  Google Scholar 

  26. Gouy, M., Guindon, S., Gascuel, O.: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010)

    Article  Google Scholar 

  27. Darriba, D., Taboada, G.L., Doallo, R., Posada, D.: jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012)

    Article  Google Scholar 

  28. Chou, K.C., Shen, H.B.: Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5, e11335 (2010)

    Article  Google Scholar 

  29. Heazlewood, J.L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., Schulze, W.X.: PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res. 36, D1015–D1021 (2008)

    Article  Google Scholar 

  30. Lee, T.-Y., Bretana, N., Lu, C.-T.: PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinf. 12, 261 (2011)

    Article  Google Scholar 

  31. Xue, Y., Liu, Z., Gao, X., Jin, C., Wen, L., Yao, X., Ren, J.: GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS ONE 5, e11290 (2010)

    Article  Google Scholar 

  32. Martinez, A., Traverso, J.A., Valot, B., Ferro, M., Espagne, C., Ephritikhine, G., Zivy, M., Giglione, C., Meinnel, T.: Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008)

    Article  Google Scholar 

  33. Kelley, L.A., Sternberg, M.J.: Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)

    Article  Google Scholar 

  34. Rutley, N., Twell, D.: A decade of pollen transcriptomics. Plant Reprod. 28, 73–89 (2015)

    Article  Google Scholar 

  35. Dukowic-Schulze, S., Chen, C.: The meiotic transcriptome architecture of plants. Frontiers Plant Sci. 5, 220 (2014)

    Google Scholar 

  36. Zechmann, B., Mauch, F., Sticher, L., Müller, M.: Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J. Exp. Bot. 59, 4017–4027 (2008)

    Article  Google Scholar 

  37. Zechmann, B., Koffler, B.E., Russell, S.D.: Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biol. 11, 54 (2011)

    Article  Google Scholar 

  38. Zafra, A., Rodriguez-Garcia, M.I., Alche, JdD: Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 10, 36 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ERDF-cofunded projects BFU2016-77243-P, P2011-CVI7487, 201540E065, RTC-2015-4181-2 and RTC2016-4824-2. EGQ thanks the MINECO for FPI grant funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Dios Alché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Quirós, E., Carmona, R., Zafra, A., Gonzalo Claros, M., Alché, J.d.D. (2017). Identification and in silico Analysis of Glutathione Reductase Transcripts Expressed in Olive (Olea europaea L.) Pollen and Pistil. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics