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Abstract. We present a extremely precise database of the fixation prob-
abilities of mutant individuals in a non-homogeneous population which
are spatially arranged on a small graph. We explore what features of a
graph increase the chances of a beneficial allele of a gene to spread over
a structured population.

1 Introduction

The fixation probability is a fundamental concept in evolutionary dynamics,
representing the probability that a gene spreads over a whole population. An
interesting model to study both neutral drift and natural selection on homoge-
neous population was introduced by P. A. P. Moran in [19]. The Moran process is
a Markov chain whose states are the number of individuals with a mutant allele
A of a gene starting from an initial population of N residents having the same
allele a of the same gene at some locus. At each step of time, one individual
is selected for reproduction with probability proportional to its relative fitness
with respect to the resident ones, r or 1 depending on whether it is mutant or
resident. Then another individual is randomly chosen (with uniform probabil-
ity) to be replaced by an identical offspring of the first individual. This Markov
chain has two absorbing states corresponding to the extinction and fization of
the mutant allele A (where all the individuals have the allele a or A respec-
tively). Starting with a single mutant individual in an initial population of N
individuals, the fixation probability is
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E. Lieberman, C. Hauert and M. A. Nowak generalized this process to struc-
tured populations [21]. Let G = (V, E) be an undirected connected graph with



vertex set V = {0,1,..., N — 1} with no loops or multiple edges. Denote by d;
the degree of the vertex i. The Moran process on G with fitness r is the Markov
chain obtained as follows. Like for a homogeneous population, we start with a
population of N resident individuals occupying the vertex set V. Afterward, one
single vertex ig is chosen to become occupied by a mutant. At successive steps
one vertex i is selected at random with probability r;/(rm + N — m), where
r; is the relative fitness of the individual occupying i (r or 1), and m is the
number of vertices occupied by mutants in that moment. Next, a neighbor of i,
randomly chosen with uniform probability, is replaced by an identical offspring
of i. Now, the fixation probability depends on where the first mutant is placed
inside the graph [8], and hence the average fization probability on G, denoted

¢, is the main concept in the theory of evolutionary graphs. These kind of
models have had impact not only in evolutionary genetics but in other areas like
invasion dynamics, epidemics of disease, tumor growth or economics and man-
agement [2,11,16,20,22]. Actually, if the spreading of favorable innovations can
be enhanced by network structures amplifying selection [26], as counterpart, we
can find structural properties that increase the robustness of a complex network
against invasion [2].

In the case of general graphs there is no closed form for the fixation probabil-
ity. Some techniques have been proposed to compute this quantity [1,6,9,14,18]
and there has been some calculations on small graphs [1,7,12,25]. However, there
is no accurate available data for degrees less than or equal to 8, and there is no
data available at all for degrees greater than 8.

Here we present an accurate database of the fixation probabilities for all
undirected graphs with 10 or less vertices. This dataset could allow to find fam-
ilies of graph structures with interesting evolutionary properties, as already has
been done in [3]. Moreover, the database has been enriched with some graph
invariants which have been related to the fixation probability, see [2] and the
references therein. In this way, exploring these data, it would be possible to shed
light on the structural properties of graphs increasing or decreasing their fixation
probabilities and the transitions among different evolutionary types. This is a
particularly interesting property for biological networks like brain networks or
PPI interactomes, as well as for technological ones. Finally, due to its precision,
it also could be used as a testing dataset for new methods or computing libraries.

2 The database

2.1 The computation

The main steps of the computation process are the following:

Generation of the graphs. The generation of the edge lists of all undirected
graphs (up to isomorphism) with 10 vertices or less was done with Sage [17,23].
Since this is a relatively short computation we made no attempt to parallelize
this process. Afterwards we have a binary file with the 11,989,763 connected
graphs of order < 10 (we dropped the trivial graph of one vertex).



Description of the fixation probability. Consider a connected undirected graph
G = (V,E) of order N < 10, and fix a relative fitness » > 0 for the invader
mutants. The Markov chain described in the introduction is formalized as follows.
The set of states S of the chain is the power set of V', where each set S € S¢g
contains the nodes occupied by mutant individuals. The transition probabilities
between S, S’ € Sg are given by
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These values can be arranged in a 2V x 2V matrix P}, = (P§s/). On the

other hand, the fixation probabilities ¢y associated to all sets S € Sg inhab-
ited by mutant individuals are determined by the system of linear equations
¢s = X ges, P5s¢%, with the boundary conditions ¢y = 0 and ¢y, = 1.
Equivalently
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With this notation, the (average) fixation probability is then
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To compute this value, we need to solve (3), which can be written as a linear
system
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where I is the identity matrix of size 2V — 2. Looking at (2) it is clear that it is
possible to multiply each equation (associated to a state S) by the reproductive
weight W§ = r#S + N — #S5 of S obtaining the final equation Qg - ¢ = by,
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By construction, the coordinates of Qf, and by, are degree 1 polynomials on r
with rational coefficients.



Computation of the fization probability. The computation of &, according to
(4) was written in the C programming language. It runs as follows: consider a
connected graph G of order N < 10. Each element in Sg can be represented by a
number of N bits in length, that is an integer between 0 and 2V — 1. Given one of
those states S, identified with the corresponding number, there are at most N+1
possible transitions: a change in any of the bits of the number, or the number
itself if there is no change. Hence, Q7 has at most 2% x (N + 1) non-zero entries.
To compute the row associated to the state S of this matrix, all the possible
elections for reproduction are performed and the results are accumulated in the
correct positions. Since coordinates of Qg and by, are of the form ar + b with
a,b € Q, they can be easily represented as a couple of pairs of 64 bits integers.
Therefore, we can exactly compute the fundamental matrix Qg, and the vector
b

Finally, for each value of r € {0.25,0.5,...,10}, we should find the solution
of Qf; - ¢ = b(; to compute @, which is the mean of the entrances of ¢ corre-
sponding to states with only one mutant (that is, states with a single bit set). To
do so, we construct dense matrices evaluating Qg, and by, for the given fitness r
using 64 bit floating point numbers. Note that we construct them dense instead
of sparse because of the used linear solver.

To guarantee a high relative precision of the solution that does not depend
on the condition number of the matrix Qg,;, we use a a special LDU factoriza-
tion algorithm for M-matrices due to Barreras and Pena [5]. This algorithm is
slower than iterative algorithms since it asymptotically has the complexity of the
Gaussian elimination. However, it is reasonably quick for a single matrix of size
1022 x 1022, although the amount of graphs and possible values of r forced the
parallelization of the computation. This step was trivial since the computations
for different graphs are independent. The code is available at [24].

The actual computation was done in the Supercomputer FinisTerrae2 located
at CESGA (Spain) using 1024 cores of Haswell 2680v3 CPUs for almost 3 days.

Building the database. Finally, the database of fixation probabilities already com-
puted was enriched with some graph properties which have been related with
its evolutionary behavior. For each undirected graph G = (V, E) we considered
the order, the number of vertices N = |V, the size, the number of edges |E],
and some statistics related with the degree distribution. We also computed some
global scale measures like the diameter A = max{d(i,j)}: jev and the average

path length L = ZMGV %7 where d(i, j) is the length of the shortest path

joining the vertices ¢ and j. We also added other measures of ‘small-worldness’
like the clustering coefficient C = % Yiev %’ with G; = (V;, E;) the sub-
graph of neighbors of ¢ with the edges between them [29], and the transitivity
T, which is the ratio of the number of complete subgraphs of order 3 over the
number of connected subgraphs of order 3 [28]. Additionally, we added the heat
heterogeneity of the graph, defined as the variance of the temperature distribu-
tion, and the temperature entropy which is the entropy of that distribution [26].

Recall that the temperature of the vertex i is defined as T; = d% > .;1/d; where
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Fig. 1. Generating the Id of a graph.

d; denotes the degree of i [27]. We completed this property set with three qual-
itative variables: whether if the graph is a tree, bipartite and/or biconnected.
These quantities were computed using the NetworkX software [10

On the other hand, each graph is identified with a unique 64 bits unsigned
integer (the Id) which contains the adjacency matrix of the graph as follows (see
Figure 1): Consider a graph G with N < 11 vertices. After canonically labeling
it (we used the bliss software [15]), consider its adjacency matrix A. Extend this
matrix to the right and below as A’ = (‘6‘ 8) to make it 11 x 11. In this way we get
the adjacency matrix of a graph of order 11 such that the connected component
of the first vertex agrees with G, and the rest of connected components are
singletons. Since A’ is symmetric and the diagonal is always null, all the relevant
information belongs to the off-diagonal upper part of A’. Ordering those bits
from left to right and from top to bottom we build a number, the Id, with at
most 55 bits set. Obviously, the Id constructed in this way is unique for each
(isomorphism class of a) graph of order < 11. The step of extending the matrix
is required in order to guarantee this condition. In any case, it is trivial to
recover the edge list from the Id without previous knowledge of the order or size
of the graph (see https://bitbucket.org/snippets/geodynapp/AppyX for C
and Python implementations).

2.2 On the accuracy

Even when the accuracy of the database is granted by the method used to solve
the linear problem, we checked the result with the known closed forms for aver-
age fixation probabilities. As it has been pointed out the fixation probability for
the complete graph Ky is given in (1) for any r > 0. Moreover, the Isothermal
Theorem [21] implies that constant degree graphs have the same fixation prob-
ability as the complete one of the same order. Monk, Green and Paulin devised



Table 1. Estimated maximal absolute and relative errors for the known values of the
fixation probability.

Forr=1 For Kyn,m withn,m # 1
maximal absolute error ~ 2.914 - 10716 maximal absolute error  1.665 - 107 1%
maximal relative error 2.887-10715 maximal relative error 1.998 - 1071°
For Isothermal graphs For Ki,n
maximal absolute error 1.887-107*° maximal absolute error  2.220-1071®
maximal relative error 2.109-10715 maximal relative error 2.665- 10715

a technique to compute closed forms of the fixation probability of highly sym-
metric graphs [18] (see also [27] for star graphs K ,,). And finally, in the case of
neutral drift (r = 1) the fixation probability for a graph of order N is 1/N [25].
In those cases it is possible to estimate the absolute and relative errors. Table 1
contains the maximal observed errors.

2.3 The database file

The database is presented as a single HDF5 file [13] available at [4]. The root
group has a dataset called FP which contains the data computed above. The
HDF5 format enables us to save column names and data types for each column
(composite datatype in the HDF5 jargon). Fractional data is saved as IEEE-
754 little-endian 64 bits numbers. Integer are saved with the smallest possible
number of bytes, hence, all are one byte little-endian unsigned integers except
the Id which uses 64 bits. The dataset FP contains the 58 columns described in
Table 2. Notice that the case random drift » = 1 has been dropped from the
dataset since it is known [25].

3 Results

A careful analysis of this dataset could shed some light to the factors that in-
crease or decrease the fixation probabilities of advantageous mutations in struc-
tured population. For the rest of the section we fix a fitness of r = 2. By fixing
a different fitness we would obtain similar results.

Qualitative variables. Figure 2 shows the effect in the distribution of the fixation
probability of different qualitative properties of graphs. The data is disaggregated
by order of the graph. It is remarkable that trees tend to be amplifiers of selection
at any order, that is, they have higher fixation probability that the complete
graph K with the same order N. In fact, in each order, all the trees are above
the 75% of the non-tree graphs. Moreover, the star graph K, is maximal in
its order N = n + 1. In the same direction, graphs with cut-points (removing
this vertex disconnects the graph) tend to have higher fixation probabilities.
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Fig. 2. Qualitative properties of the graphs and the fixation probability.
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Fig. 4. The suppressors of selection of order 6 for r = 2.

Probably, these cut-points act as defenses of the advantageous allele during its
early life, that is, in the early steps of the invasion. All nodes of a tree are cut-
points except the leafs. The extremal case is again the star graph, were the center
acts as the defense of the mutant alleles located at the periphery [2]. Something
similar happens with the bipartite ones.

It is also notable the distance between K , and the rest of the graphs. This
distance becomes smaller as n increases. Moreover, for each order greater that 6
two isolated graphs appear between K ,, and the rest. They are more visible in
the figure about biconnected graphs but can be spotted in the other two plots.
They corresponds to small modifications to K , were an edge is added between
two peripheral vertices which could be or not be disconnected from the central
one, see Figure 3.

There are also some suppressors of selection, that is, those with fixation
probability (strictly) less than the one of K for r = 2. For order 6 there are 3 of
these graphs (see figure 4). This quantity increases rapidly reaching hundreds of
thousands for order 10. In [3] a family of graphs obtained from this data has been
proved to be a global suppressor of selection, i.e., the fixation probability of each
of them is below the fixation probability of the complete graph of the same order
for any fitness r > 1. The discovery of this family is a first step towards finding
structural properties increasing the robustness of non homogeneous populations
against mutation.

Quantitative variables. Among the computed quantitative variables the least
interesting one is the temperature entropy [27] which is constant for graphs with
the same order. Figure 5 shows the effects of the most interesting quantitative
variables on the fixation probability of the graphs of order 10. Similar pictures
could be obtained for other orders. It is clear that one by one only the heat



heterogeneity [26] explains effect of the population structure in the spread of the
mutants, showing a high correlation.

4 Conclusions

We present a extremely precise database of the fixation probabilities on small
graphs of interest in research areas like invasion dynamics, epidemics of disease,
tumor growth or economics and management [2,11, 16, 20, 22]. Other authors
have explored the evolutionary dynamics of small graphs [7,12], but this is the
first systematic computation for a large family of small graphs, namely all undi-
rected graphs with 10 or less vertices. Exploring this dataset, evolutionary bi-
ology researchers could shed some light on the factors and structures affecting
the spread of beneficial alleles in larger populations arranged on graphs. Deep
statistical techniques are still needed to understand how to design population
arrangements with a desired dynamical behavior and this dataset represents the
first step in that direction.
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Table 2. The columns of the dataset FP. All datatypes are little-endian and denoted
as C types.

Name Description Type
Id The id of the graph, see §2.1 and Figure 1 uint64_t
FP_r The average fixation probability of the graph for fit- double
ness r € {0.25,0.5,...,10.0} and r # 1.0
order The number of vertices of the graph uint8_t
size The number of edges of the graph uint8_t
degree_mean The mean degree of the graph double
degree median The median of the degree distribution double
degree_var The variance of the degree distribution double
degree_skewness Pearson’s skewness of the degree distribution double
degree kurtosis The kurtosis coefficient of the degree distribution double
degree_min The minimum number of neighbors of a vertex in the uint8_t
graph
degree_max The maximum number of neighbors of a vertex in the uint8_t
graph
diametre The distance between two vertices in the graph uint8_t
average_path_length The mean of the distances in the graph double
clustering The clustering coefficient [29] double
transitivity The fraction of possible triangles present in the graph. double
Also called global clustering coefficient [28, §4.10.3
and §6]

heat_heterogeneity The variance of the temperature distribution, where double
the temperature of a vertex is the sum of inverses of
the degrees of its neighbors [26]

temperature_entropy The entropy of the temperature distribution [27] double
is_tree 1 if the graph is a tree, 0 otherwise uint8_t
is_bipartite 1 if the graph is bipartite, 0 otherwise uint8_t

is_biconnected 1 if the graph is biconnected, 0 otherwise uint8_t




