Skip to main content

Nonlinear Control and Simulation of a Dielectric Elastomer Actuator-Based Compression Bandage on Flexible Human Calf

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

Abstract

Compression bandages are widely used for a number of disorders associated with lower human leg including edema, orthostatic hypotension and deep vein thrombosis. In recent years, dielectric elastomer actuators (DEAs) are proposed to be used as active compression bandage to potentially augment or treat the lower leg disorders. DEA bandage applies a variable compression around the leg that varies upon voltage stimulation in the DEA. Prediction and control of the DEA behavior interacting with a soft object like human calf can be a very challenging and complex problem. In this paper a nonlinear analytical model is developed to represent the interaction between a silicon-based DEA compression bandage and soft human calf. An input-output linearization control strategy is utilized to design a controller that applies a desired compression profile to the calf. Lastly, MATLAB Simulink is used to simulate and illustrate the performance of the controller and the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hainsworth, R.: Pathophysiology of syncope. Clin. Auton. Res. 14(Suppl 1), 18–24 (2004)

    Article  Google Scholar 

  2. Lewis, T.: A lecture on vasovagal syncope and the carotid sinus mechanism. Br. Med. J. 1(932), 873 (1932)

    Article  Google Scholar 

  3. Stenger, M.B., Brown, A.K., Lee, S.M.C., Locke, J.P., Platts, S.H.: Gradient compression garments as a countermeasure to post-spaceflight orthostatic intolerance. Aviat. Space Environ. Med. 81(9), 883–887 (2010)

    Article  Google Scholar 

  4. Pourazadi, S., Ahmadi, S., Menon, C.: Towards the development of active compression bandages using dielectric elastomer actuators. Smart Mater. Struct. 23(6), 65007 (2014)

    Article  Google Scholar 

  5. Pourazadi, S., Ahmadi, S., Menon, C.: On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations. Biomed. Eng. Online 14(1), 103 (2015)

    Article  Google Scholar 

  6. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd edn. SPIE Optical Engineering Press, Bellingham (2004)

    Book  Google Scholar 

  7. Michel, S., Zhang, X.Q., Wissler, M., Löwe, C., Kovacs, G.: A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym. Int. 59(3), 391–399 (2009)

    Article  Google Scholar 

  8. Rosset, S., Shea, H.R.: Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281–307 (2012)

    Article  Google Scholar 

  9. Sigel, B., Edelestein, A., Savitch, L., Hasty, J., Felix, W.: Types of compression for reducing venous stasis. Arch. Surg. 110, 171–175 (1975)

    Article  Google Scholar 

  10. Stemmer, R.: Ambulatory elasto-compressive treatment of the lower extrimities particularly with elastic stokcings. Der Kassenarzt 9, 1–8 (1969)

    Google Scholar 

  11. Halliwill, J.R., Minson, C.T., Joyner, M.J., John, R.: Measurement of limb venous compliance in humans: technical considerations and physiological findings. J. Appl. Physiol. 87(4), 1555–1563 (1999)

    Google Scholar 

  12. Monahan, K.D., Dinenno, F.A., Seals, D.R., Halliwill, J.R.: Smaller age-associated reductions in leg venous compliance in endurance exercise-trained men. Am. J. Physiol. Heart Circ. Physiol. 281(3), H1267–H1273 (2001)

    Google Scholar 

  13. Monahan, K.D., Ray, C.A.: Gender affects calf venous compliance at rest and during baroreceptor unloading in humans. Am. J. Physiol. Heart Circ. Physiol. 286(3), H895–H901 (2004)

    Article  Google Scholar 

  14. Lipp, A., Sandroni, P., Ahlskog, J.E., Maraganore, D.M., Shults, C.W., Low, P.A.: Calf venous compliance in multiple system atrophy. Am. J. Physiol. Heart Circ. Physiol. 293(1), H260–H265 (2007)

    Article  Google Scholar 

  15. Sielatycki, J.A., Shamimi-Noori, S., Pfeiffer, M.P., Monahan, K.D.: Adrenergic mechanisms do not contribute to age-related decreases in calf venous compliance. J. Appl. Physiol. 110(1), 29–34 (2011)

    Article  Google Scholar 

  16. Binzoni, T., Quaresima, V., Ferrari, M., Hiltbrand, E., Cerretelli, P.: Human calf microvascular compliance measured by near-infrared spectroscopy. J. Appl. Physiol. 88(2), 369–372 (2000)

    Google Scholar 

  17. Zicot, M., Parker, K.H., Caro, C.G.: Effect of positive external pressure on calf volume and local venous haemodynamics. Phys. Med. Biol. 22(6), 1146–1159 (1977)

    Article  Google Scholar 

  18. Thirsk, R.B., Kamm, R.D., Shapiro, A.H.: Changes in venous blood volume produced by external compression of the lower leg. Med. Biol. Eng. Comput. 18(5), 650–656 (1980)

    Article  Google Scholar 

  19. Whitney, R.J.: The measurement of volume changes in human limbs. J. Physiol. 121(1), 1–27 (1953)

    Article  Google Scholar 

  20. Ahmadi, S., Mattos, A.C., Barbazza, A., Soleimani, M., Boscariol, P., Menon, C.: Fabrication and performance analysis of a DEA cuff designed for dry-suit applications. Smart Mater. Struct. 22(3), 35002 (2013)

    Article  Google Scholar 

  21. Bell, D.A.: Fundamentals of electric circuits, 7th edn. Oxford University Press, Oxford (2009)

    Google Scholar 

  22. Zak, S.: Systems and Control. Oxford University Press, Oxford (2003)

    Google Scholar 

  23. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

Download references

Acknowledgment

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR) and the Michael Smith Foundation for Health Research (MSFHR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahram Pourazadi or Carlo Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pourazadi, S., Moallem, M., Menon, C. (2017). Nonlinear Control and Simulation of a Dielectric Elastomer Actuator-Based Compression Bandage on Flexible Human Calf. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics