Skip to main content

Dengue Agent-Based Model in South American Temperate Zone

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

  • 1856 Accesses

Abstract

Dengue is a disease that is increasing yearly in number of cases and severity in temperate zones. Different actions have been taken for controlling this disease in the central region of Argentina, without anticipating the effectiveness of these interventions. Therefore, considering the weather conditions of the zone under study, a mathematical model was implemented that was capable of reproducing the information surveyed about dengue-infected patients in another South American temperate zone. Then, in attempting to reproduce the heterogeneity in population density and in the contact between humans and Aedes Aegypti mosquitoes, as well as the impact of randomness on these systems, an Agent-Based Model (ABM) was implemented. Said model is based on data surveyed about the target population and anticipates the possible results of some interventions suggested by epidemiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Intergovernmental Panel on Climate Change, Ed.: Climate Change 2013 - The Physical Science Basis. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  2. Patz, J.A., Githeko, A.K., McCarty, J.P., Hussein, S., Confalonieri, U., De Wet, N.: Climate change and infectious diseases. In: Climate Change and Human Health: Risks and Responses, pp. 103–37. World Health Organization (2003)

    Google Scholar 

  3. World Health Organization: Dengue: guidelines for diagnosis, treatment, prevention, and control. Spec. Program. Res. Train. Trop. Dis. 147, x (2009)

    Google Scholar 

  4. WHO: WHO|Dengue and severe dengue, Fact Sheet (2016). http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 16 Nov 2016

  5. WHO: Dengue Fever – Uruguay Disease Outbreak News, 10 March 2016 - Uruguay|ReliefWeb, Fact Sheet (2016). http://reliefweb.int/report/uruguay/dengue-fever-uruguay-disease-outbreak-news-10-march-2016

  6. Rocklöv, J., Lohr, W., Hjertqvist, M., Wilder-Smith, A.: Attack rates of dengue fever in Swedish travellers. Scand. J. Infect. Dis. 46(6), 412–417 (2014)

    Article  Google Scholar 

  7. Heddini, A., Janzon, R., Linde, A.: Increased number of dengue cases in Swedish travellers to Thailand. Euro. Surveill. 14(5), 19111 (2009)

    Article  Google Scholar 

  8. Helmersson, J.: Mathematical modeling of dengue-temperature effect on vectorial capacity (2012). Phmed.Umu.Se

  9. Reiter, P., Lathrop, S., Bunning, M., Biggerstaff, B., Singer, D., Tiwari, T., Baber, L., Amador, M., Thirion, J., Hayes, J., Seca, C., Mendez, J., Ramirez, B., Robinson, J., Rawlings, J., Vorndam, V., Waterman, S., Gubler, D., Clark, G., Hayes, E.: Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 9(1), 86–89 (2003)

    Article  Google Scholar 

  10. Repast Suite Documentation. https://repast.github.io/. Accessed 06 Feb 2017

  11. Favier, C., Schmit, D., Müller-Graf, C.D.M., Cazelles, B., Degallier, N., Mondet, B., Dubois, M.A.: Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc. Biol. Sci. 272(1568), 1171–1177 (2005)

    Article  Google Scholar 

  12. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology, vol. 40, 2nd edn. Springer, New York (2012)

    Book  MATH  Google Scholar 

  13. Shroyer, D.A.: Vertical maintenance of dengue-1 virus in sequential generations of Aedes albopictus. J. Am. Mosq. Control Assoc. 6(2), 312–314 (1990)

    Google Scholar 

  14. Santos, L.B.L., Costa, M.C., Pinho, S.T.R., Andrade, R.F.S., Barreto, F.R., Teixeira, M.G., Barreto, M.L.: Periodic forcing in a three-level cellular automata model for a vector-transmitted disease. Phys. Rev. E Stat., Nonlin. Soft Matter Phys. 80(1), 016102 (2009)

    Google Scholar 

  15. Shen, Y.: Mathematical models of dengue fever and measures to control it. Electron. Theses, Treatises Diss., May 2014

    Google Scholar 

  16. Coutinhoa, F.A.B., Burattinia, M.N., Lopeza, L.F., Massada, E.: Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bull. Math. Biol. 68(8), 2263–2282 (2006)

    Article  MathSciNet  Google Scholar 

  17. Massad, E., Coutinho, F.A.B., Lopez, L.F., Da Silva, D.R.: Modeling the impact of global warming on vector-borne infections. Phys. Life Rev. 8(2), 169–199 (2011)

    Google Scholar 

  18. Favier, C., Degallier, N., Boulanger, J.P., Lima, J.R.C.: Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil. Trop. Med. Int. Health 11(3), 332–340 (2006)

    Article  Google Scholar 

  19. Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington, L.B., Kramer, L.D., Thomas, M.B., Scott, T.W.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 108(18), 1–6 (2011)

    Article  Google Scholar 

  20. Barnes, D.J., Chu, D.: Introduction to Modeling for Biosciences, vol. 53, no. 9. Springer, London (2010)

    Google Scholar 

  21. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4(3), 151–162 (2010)

    Article  Google Scholar 

  22. Collier, N.: Repast: an extensible framework for agent simulation. Nat. Resour. Environ. Issues 8 (2001)

    Google Scholar 

  23. Bian, L.: Spatial approaches to modeling dispersion of communicable diseases - a review. Trans. GIS 17(1), 1–17 (2013)

    Article  Google Scholar 

  24. Guyot, P., Drogoul, A.: Designing multi-agent based participatory simulations. In: 5th Workshop on Agent Based Simulations, pp. 1–16 (2004)

    Google Scholar 

  25. Cheng-Fa, C., Chin-Teng, C.: Viral load analysis of a biodynamical model of HIV-1 with unknown equilibrium point. In: Proceedings of 2004 IEEE - International Conference on Control Applications, pp. 557–561 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Pais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pais, C.M., Colazo, M.G., Fernandez, M., Bulatovich, S., Fernandez, H. (2017). Dengue Agent-Based Model in South American Temperate Zone. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics