Skip to main content

Parameter Sensitivity in Virtual FPGA Architectures

  • Conference paper
  • First Online:
Applied Reconfigurable Computing (ARC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10216))

Included in the following conference series:

Abstract

Virtual FPGAs add the benefits of increased flexibility and application portability on bitstream level across any underlying commercial off-the-shelf FPGAs at the expense of additional area and delay overhead. Hence it becomes a priority to tune the architecture parameters of the virtual layer. Thereby, the adoption of parameter recommendations intended for physical FPGAs can be misleading, as they are based on transistor level models. This paper presents an extensive study of architectural parameters and their effects on area and performance by introducing an extended parameterizable virtual FPGA architecture and deriving suitable area and delay models. Furthermore, a design space exploration methodology based on these models is carried out. An analysis of over 1400 benchmark-runs with various combinations of cluster and LUT size reveals high parameter sensitivity with variances up to \(\pm 95.9\%\) in area and \(\pm 78.1\%\) in performance and a discrepancy to the studies on physical FPGAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MEANDER Design Framework (2016). http://proteas.microlab.ntua.gr/meander/download/index.htm. Accessed 25 Nov 2016

  2. ZUMA Repository 2016. https://github.com/adbrant/zuma-fpga/tree/master/source/templates. Accessed 25 Nov 2016

  3. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)

    Article  Google Scholar 

  4. Betz, V., Rose, J.: Cluster-based logic blocks for FPGAs: area-efficiency vs. input sharing and size. In: Custom Integrated Circuits Conference, Proceedings of the IEEE 1997, pp. 551–554 (1997)

    Google Scholar 

  5. Brant, A., Lemieux, G.G.F.: ZUMA: an open FPGA overlay architecture. In: Field-Programmable Custom Computing Machines (FCCM), April 2012

    Google Scholar 

  6. Figuli, P., Huebner, M., et al.: A heterogeneous SoC architecture with embedded virtual FPGA cores and runtime core fusion. In: NASA/ESA 6th Conference on Adaptive Hardware and Systems (AHS 2011), June 2011

    Google Scholar 

  7. Gao, H., Yang, Y., Ma, X., Dong, G.: Analysis of the effect of LUT size on FPGA area and delay using theoretical derivations. In: Sixth International Symposium on Quality Electronic Design (ISQED 2005), pp. 370–374, March 2005

    Google Scholar 

  8. Gupta, P.K.: Accelerating datacenter workloads. In: 26th International Conference on Field Programmable Logic and Applications (FPL), August 2016

    Google Scholar 

  9. Huebner, M., Figuli, P., Girardey, R., Soudris, D., Siozos, K., Becker, J.: A heterogeneous multicore system on chip with run-time reconfigurable virtual FPGA architecture. In: 18th Reconfigurable Architectures Workshop, May 2011

    Google Scholar 

  10. Lagadec, L., Lavenier, D., Fabiani, E., Pottier, B.: Placing, routing, and editing virtual FPGAs. In: Brebner, G., Woods, R. (eds.) FPL 2001. LNCS, vol. 2147, pp. 357–366. Springer, Heidelberg (2001). doi:10.1007/3-540-44687-7_37

    Chapter  Google Scholar 

  11. Luu, J., Goeders, J., et al.: VTR 7.0: next generation architecture and CAD system for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(2), 6:1–6:30 (2014)

    Article  Google Scholar 

  12. Lysecky, R., Miller, K., Vahid, F., Vissers, K.: Firm-core virtual FPGA for just-in-time FPGA compilation. In: Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-programmable Gate Arrays, p. 271 (2005)

    Google Scholar 

  13. Putnam, A.: Large-scale reconfigurable computing in a Microsoft datacenter. In: Proceedings of the 26th IEEE Symposium on High-Performance Chips (2014)

    Google Scholar 

  14. Rose, J., Francis, R.J., Lewis, D., Chow, P.: Architecture of field-programmable gate arrays: the effect of logic block functionality on area efficiency. IEEE J. Solid-State Circ. 25(5), 1217–1225 (1990)

    Article  Google Scholar 

  15. Tang, X., Wang, L.: The effect of LUT size on nanometer FPGA architecture. In: 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–4, October 2012

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Figuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Figuli, P., Ding, W., Figuli, S., Siozios, K., Soudris, D., Becker, J. (2017). Parameter Sensitivity in Virtual FPGA Architectures. In: Wong, S., Beck, A., Bertels, K., Carro, L. (eds) Applied Reconfigurable Computing. ARC 2017. Lecture Notes in Computer Science(), vol 10216. Springer, Cham. https://doi.org/10.1007/978-3-319-56258-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56258-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56257-5

  • Online ISBN: 978-3-319-56258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics