Skip to main content

ArPALib: A Big Number Arithmetic Library for Hardware and Software Implementations. A Case Study for the Miller-Rabin Primality Test

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10216))

Abstract

In this paper, we present the Arbitrary Precision Arithmetic Library - ArPALib, suitable for algorithms that require integer data representation with an arbitrary bit-width (up to 4096-bit in this study). The unique feature of the library is suitability to be synthesized by HLS (High Level Synthesis) tools, while maintaining full compatibility with C99 standard. To validate the applicability of ArPALib for the FPGA-enhanced SoCs, the Miller-Rabin primality test algorithm is considered as a case study. Also, we provide the performance analysis of our library in the software and hardware applications. The presented results show the speedup of 1.5 of the hardware co-processor over its software counterpart when ApPALib is used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Granlund, T.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited, Hong Kong (2015)

    Google Scholar 

  2. Ireland, D.: BigDigits multiple-precision arithmetic source code. http://www.di-mgt.com.au/bigdigits.html. Accessed 29 Sept 2016

  3. Gielata, A., Russek, P., Wiatr, K.: AES hardware implementation in FPGA for algorithm acceleration purpose. In: International Conference on Signals and Electronic Systems, pp. 137–140 (2008)

    Google Scholar 

  4. Kryjak, T., Gorgon, M.: Pipeline implementation of the 128-bit block cipher CLEFIA in FPGA. In: International Conference on Field Programmable Logic and Applications, FPL 2009, pp. 373–378 (2009)

    Google Scholar 

  5. Dąbrowska-Boruch, A., Gancarczyk, G., Wiatr, K.: Implementation of a RANLUX based pseudo-random number generator in FPGA using VHDL and impulse C. Comput. Inf. 32(6), 1272–1292 (2014)

    Google Scholar 

  6. Jamro, E., Russek, P., Dąbrowska-Boruch, A., Wielgosz, M., Wiatr, K.: The implementation of the customized, parallel architecture for a fast word-match program. Int. J. Comput. Syst. Sci. Eng. 26(4), 285–292 (2011)

    Google Scholar 

  7. Macheta, J., et al.: ARPALib repository. https://git.plgrid.pl/projects/ARPALIB/repos/arpalib. Accessed 29 Sept 2016

  8. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13(3), 300–317 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pommerening, K.: Cryptology. Part III. Primality Tests: RSA and Pseudoprimes 28 May 2000. Accessed 21 Feb 2016

    Google Scholar 

  10. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to \(25\cdot 10^9\). Math. Comput. 35(151), 1003–1026 (1980)

    MATH  Google Scholar 

  11. Walter, C.D.: Right-to-left or left-to-right exponentiation? International Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 40–46 (2010)

    Google Scholar 

  12. Conrad, K.: FERMAT’S TEST. http://www.math.uconn.edu/kconrad/blurbs/ugradnumthy/fermattest.pdf

  13. Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM J. Comput. 6(1), 84–85 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bach, E.: Number-theoretic algorithms. Annu. Rev. Comput. Sci. 4(1), 119–172 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was performed thanks to the funds for AGH statutory activity 11.11.230.017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Russek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Macheta, J., Dąbrowska-Boruch, A., Russek, P., Wiatr, K. (2017). ArPALib: A Big Number Arithmetic Library for Hardware and Software Implementations. A Case Study for the Miller-Rabin Primality Test. In: Wong, S., Beck, A., Bertels, K., Carro, L. (eds) Applied Reconfigurable Computing. ARC 2017. Lecture Notes in Computer Science(), vol 10216. Springer, Cham. https://doi.org/10.1007/978-3-319-56258-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56258-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56257-5

  • Online ISBN: 978-3-319-56258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics