Skip to main content

Analysis of Data Science Tools for Sensor-Based Assessment of Quality of Life in Health Care

  • Conference paper
  • First Online:
Recent Advances in Information Systems and Technologies (WorldCIST 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 569))

Included in the following conference series:

Abstract

QVida+ Project aims at continuously assessing the quality of life (QoL) of patients without requiring them to constantly fill QoL questionnaires. For this, QVida+ proposes to use a combination of sensor-based technology to acquire data on patients and data science (DS) algorithms to work this data in order to estimate the answers patients would give to the questionnaire items. One key decision of this project is the selection of the best data science tools to use. We compared different tools based on their popularity and support from the community, offered DS algorithms, price and licensing, and development environment. We concluded that R is the tool that best fits the purpose of our project, and we open the possibility for future use of Python in specific tasks of this project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data mining focuses on pattern extraction and knowledge extraction; machine learning focuses on algorithms that learn from past evidence and that are used as predictive techniques, classification and decision support; predictive analytics focuses on the use of statistical methods, such as regression analyses, to predict future values from past experience; and business intelligence focuses on presenting complex information to decision makers.

References

  1. Revicki, D.A., Osoba, D., Fairclough, D., Barofsky, I., Berzon, R., Leidy, N.K., Rothman, M.: Recommendations on health-related quality of life research to support labeling and promotional claims in the United States. Qual. Life Res. 9, 887–900 (2000). doi:10.1023/A:1008996223999

    Article  Google Scholar 

  2. Baumstarck, K., Boyer, L., Boucekine, M., Michel, P., Pelletier, J., Auquier, P.: Measuring the quality of life in patients with multiple sclerosis in clinical practice: a necessary challenge. Multiple Scler. Int. 2013 (2013)

    Google Scholar 

  3. Reis, L.P., Faria, B.M., Gonçalves, J., Carvalho, V.: QVida+: quality of life continuos estimation for clinical decision support. In: 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–7. AISTI, June 2016

    Google Scholar 

  4. EMC Data Science Associate Certification. https://education.emc.com/guest/certification/framework/ds.aspx

  5. Cook, D.J., Thompson, J.E., Prinsen, S.K., Dearani, J.A., Deschamps, C.: Functional recovery in the elderly after major surgery: assessment of mobility recovery using wireless technology. Ann. Thorac. Surg. 96, 1057–1061 (2013)

    Article  Google Scholar 

  6. Dobkin, B.H.: Wearable motion sensors to continuously measure real-world physical activities. Curr. Opin. Neurol. 26(6), 602 (2013)

    Article  Google Scholar 

  7. Wang, J., Chen, R., Sun, X., She, M.F., Wu, Y.: Recognizing human daily activities from accelerometer signal. Procedia Eng. 15, 1780–1786 (2011)

    Article  Google Scholar 

  8. Villarejo, M.V., Zapirain, B.G., Zorrilla, A.M.: A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 12(5), 6075–6101 (2012)

    Article  Google Scholar 

  9. Thompson, D., Batterham, A.M., Peacock, O.J., Western, M.J., Booso, R.: Feedback from physical activity monitors is not compatible with current recommendations: A recalibration study. Prev. Med. 91, 389–394 (2016)

    Article  Google Scholar 

  10. Burckhardt, C.S., Anderson, K.L.: The Quality of Life Scale (QOLS): reliability, validity, and utilization. Health Qual. Life Outcomes 1(1), 1 (2003)

    Article  Google Scholar 

  11. Chiauzzi, E., Rodarte, C., DasMahapatra, P.: Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med. 13(1), 1 (2015)

    Article  Google Scholar 

  12. Doherty, S.T., Lemieux, C.J., Canally, C.: Tracking human activity and well-being in natural environments using wearable sensors and experience sampling. Social Sci. Med. 106, 83–92 (2014)

    Article  Google Scholar 

  13. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 91–98. ACM, September 2014

    Google Scholar 

  14. Revicki, D.A., Osoba, D., Fairclough, D., Barofsky, I., Berzon, R., Leidy, N.K., Rothman, M.: Recommendations on health-related quality of life research to support labeling and promotional claims in the United States. Qual. Life Res. 9, 887–900 (2000). doi:10.1023/A:1008996223999

    Article  Google Scholar 

  15. Sprager, S., Juric, M.B.: Inertial sensor-based gait recognition: a review. Sensors 15(9), 22089–22127 (2015)

    Article  Google Scholar 

  16. Sustainable Health, Project HoneyBee. http://sustainablehealth.org/honeybee/

  17. Piatetsky, G.: R leads RapidMiner, Python catches up, Big Data tools grow, Spark ignites. KDnuggets Report (2016). http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html

  18. Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics Applications. CRC Press, Boca Raton (2013)

    Google Scholar 

  19. Zhao, Y.: R and Data Mining: Examples and Case Studies. Academic Press, San Diego (2012)

    Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  21. Demšar, J., Curk, T., Erjavec, A.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013)

    MATH  Google Scholar 

  22. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: the konstanz information miner. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 319–326. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. RapidMiner. https://rapidminer.com/

  25. Wimmer, H., Powell, L.M.: A comparison of open source tools for data science. J. Inf. Syst. Appl. Res. 9(2), 4 (2016)

    Google Scholar 

  26. Theuwissen, M.: R vs Python for Data Science: The Winner is …. http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html

  27. Jovic, A., Brkic, K., Bogunovic, N.: An overview of free software tools for general data mining. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE (2014)

    Google Scholar 

  28. Goopta, C.: Six of the best open source data mining tools, The New Stack article (2014). http://thenewstack.io/six-of-the-best-open-source-data-mining-tools/

  29. Rangra, K., Bansal, K.L.: Comparative study of data mining tools. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(6), 216–223 (2014)

    Google Scholar 

  30. Slater, S., Joksimovic, S., Kovanovic, V., Baker, R.S., Gasevic, D.: Tools for educational data mining a review. J. Educ. Behav. Stat. (2016). 1076998616666808

    Google Scholar 

  31. KDnuggets. http://www.kdnuggets.com/software/index.html

Download references

Acknowledgments

This article is a result of the project QVida+: Estimação Contínua de Qualidade de Vida para Auxílio Eficaz à Decisão Clínica, NORTE‐01‐0247‐FEDER‐003446, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors also acknowledge to the strategic project LIACC (PEst-UID/CEC/00027/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Urbano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Urbano, J., Nogueira, P., Rocha, A.P., Cardoso, H.L. (2017). Analysis of Data Science Tools for Sensor-Based Assessment of Quality of Life in Health Care. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-319-56535-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56535-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56534-7

  • Online ISBN: 978-3-319-56535-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics