Skip to main content

Exploration of 3D Texture and Projection for New CAPTCHA Design

  • Conference paper
  • First Online:
Information Security Applications (WISA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10144))

Included in the following conference series:

Abstract

Most of current text-based CAPTCHAs have been shown to be easily breakable. In this work, we present two novel 3D CAPTCHA designs, which are more secure than current 2D text CAPTCHAs, against automated attacks. Our approach is to display CAPTCHA characters onto 3D objects to improve security. We exploit difficulty for machines in rotating 3D objects to find a correct view point and in further recognizing characters in 3D, both tasks that humans can easily perform. Using an offline automated computer vision attack, we found that 82% of the new text reCAPTCHA characters were successfully detected, while approximately 60% of our 3D CAPTCHAs were detected only if characters were focused and zoomed from the direct view point. When CAPTCHAs are presented in slightly different views, the attack success rates against our approaches are reduced to almost 0%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpha compositing. http://en.wikipedia.org/wiki/Alpha_compositing

  2. reCAPTCHA. https://www.google.com/recaptcha/intro/index.html

  3. Unity. http://unity3d.com/

  4. Unity 3D obfuscator. http://en.unity3d.netobf.com/unity3d_decompiler

  5. UV mapping. http://en.wikipedia.org/wiki/UV_mapping

  6. AABBYY OCR software. http://www.abbyy.com/

  7. Aldoma, A., Tombari, F., Stefano, L., Vincze, M.: A global hypotheses verification method for 3D object recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 511–524. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_37

    Chapter  Google Scholar 

  8. Bursztein, E., Martin, M., Mitchell, J.: Text-based CAPTCHA strengths and weaknesses. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 125–138. ACM (2011)

    Google Scholar 

  9. Bursztein, E., Moscicki, A., Fabry, C., Bethard, S., Mitchell, J.C., Jurafsky, D.: Easy does it: more usable CAPTCHAs. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2637–2646. ACM (2014)

    Google Scholar 

  10. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  11. Chen, H., Tsai, S.S., Schroth, G., Chen, D.M., Grzeszczuk, R., Girod, B.: Robust text detection in natural images with edge-enhanced maximally stable extremal regions. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2609–2612. IEEE (2011)

    Google Scholar 

  12. Cui, J.-S., Mei, J.-T., Zhang, W.-Z., Wang, X., Zhang, D.: A CAPTCHA implementation based on moving objects recognition problem. In: 2010 International Conference on e-Business and e-Government (ICEE), pp. 1277–1280. IEEE (2010)

    Google Scholar 

  13. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that exploits interest-aligned manual image categorization. In: ACM Conference on Computer and Communications Security, pp. 366–374 (2007)

    Google Scholar 

  14. Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., Yan, J.: The robustness of hollow CAPTCHAs. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 1075–1086. ACM (2013)

    Google Scholar 

  15. Golle, P.: Machine learning attacks against the asirra CAPTCHA. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 535–542. ACM (2008)

    Google Scholar 

  16. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  17. Marrin, C.: WebGL specification. Khronos WebGL Working Group (2011)

    Google Scholar 

  18. Meutzner, H., Nguyen, V.-H., Holz, T., Kolossa, D.: Using automatic speech recognition for attacking acoustic CAPTCHAs: the trade-off between usability and security. In: Proceedings of the 30th Annual Computer Security Applications Conference, pp. 276–285. ACM (2014)

    Google Scholar 

  19. Mitra, N.J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., Cohen-Or, D.: Emerging images. ACM Trans. Graph. (TOG) 28, 163 (2009). ACM

    Google Scholar 

  20. Mori, G., Malik., J.: Recognizing objects in adversarial clutter: breaking a visual CAPTCHA. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, Proceedings, vol. 1, pp. 1–134. IEEE (2003)

    Google Scholar 

  21. Nguyen, V.D., Chow, Y.-W., Susilo, W.: Breaking a 3D-based CAPTCHA scheme. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 391–405. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31912-9_26

    Chapter  Google Scholar 

  22. NuCaptcha - most secure and usable CAPTCHA. http://www.nucaptcha.com/

  23. Ross, S.A., Halderman, J.A., Finkelstein, A.: Sketcha: a CAPTCHA based on line drawings of 3D models. In: Proceedings of the 19th International Conference on World Wide Web, pp. 821–830. ACM (2010)

    Google Scholar 

  24. Shirali-Shahreza, M., Shirali-Shahreza, S.: Motion CAPTCHA. In: 2008 Conference on Human System Interactions, pp. 1042–1044. IEEE (2008)

    Google Scholar 

  25. Sivakorn, S., Polakis, I., Keromytis, A.D.: I am robot: (deep) learning to break semantic image CAPTCHAs. In: IEEE European Symposium on Security and Privacy (EuroS&P) (2016)

    Google Scholar 

  26. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/

  27. Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9_18

    Chapter  Google Scholar 

  28. Xu, Y., Reynaga, G., Chiasson, S., Frahm, J.-M., Monrose, F., van Oorschot, P.C.: Security and usability challenges of moving-object CAPTCHAs: decoding codewords in motion. In: USENIX Security Symposium, pp. 49–64 (2012)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Ulrich Neumann, Michael Zyda, and Jelena Mirkovic for providing helpful comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon S. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Woo, S.S., Kim, J., Yu, D., Kim, B. (2017). Exploration of 3D Texture and Projection for New CAPTCHA Design. In: Choi, D., Guilley, S. (eds) Information Security Applications. WISA 2016. Lecture Notes in Computer Science(), vol 10144. Springer, Cham. https://doi.org/10.1007/978-3-319-56549-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56549-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56548-4

  • Online ISBN: 978-3-319-56549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics