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Abstract. In this paper, we deal with two challenges for measuring the similarity
of the subject identities in practical video-based face recognition - the variation
of the head pose in uncontrolled environments and the computational expense of
processing videos. Since the frame-wise feature mean is unable to characterize
the pose diversity among frames, we define and preserve the overall pose diver-
sity and closeness in a video. Then, identity will be the only source of variation
across videos since the pose varies even within a single video. Instead of sim-
ply using all the frames, we select those faces whose pose point is closest to the
centroid of the K-means cluster containing that pose point. Then, we represent
a video as a bag of frame-wise deep face features while the number of features
has been reduced from hundreds to K. Since the video representation can well
represent the identity, now we measure the subject similarity between two videos
as the max correlation among all possible pairs in the two bags of features. On the
official 5,000 video-pairs of the YouTube Face dataset for face verification, our
algorithm achieves a comparable performance with VGG-face that averages over
deep features of all frames. Other vision tasks can also benefit from the generic
idea of employing geometric cues to improve the descriptiveness of deep features.

1 Introduction

In this paper, we are interested in measuring the similarity of one source of variation
among videos such as the subject identity in particular. The motivation of this work is
as followed. Given a face video visually affected by confounding factors such as the
identity and the head pose, we compare it against another video by hopefully only mea-
suring the similarity of the subject identity, even if the frame-level feature characterizes
mixed information. Indeed, deep features from Convolutional Neural Networks (CNN)
trained on face images with identity labels are generally not robust to the variation of
the head pose, which refers to the face’s relative orientation with respect to the camera
and is the primary challenge in uncontrolled environments. Therefore, the emphasis of
this paper is not the deep learning of frame-level features. Instead, we care about how
to improve the video-level representation’s descriptiveness which rules out confusing
factors (e.g., pose) and induces the similarity of the factor of interest (e.g., identity).

If we treat the frame-level feature vector of a video as a random vector, we may as-
sume that the highly-correlated feature vectors are identically distributed. When the task
is to represent the whole image sequence instead of modeling the temporal dynamics
such as the state transition, we may use the sample mean and variance to approximate
the true distribution, which is implicitly assumed to be a normal distribution. While this
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Fig. 1. Example of the chosen key faces. Top row shows the first 10 frames of a 49-frame YTF
sequence of Woody Allen, who looks right and down sometimes. And most of the time his face
is slightly slanting. Bottom row are 9 frames selected according to the variation of 3D poses.
Disclaimer: the source owning this YouTube video allows republishing the face images.

assumption might hold given natural image statistics, it can be untrue for a particular
video. Even if the features are Gaussian random vectors, taking the mean makes sense
only if the frame-level feature just characterizes the identity. Because there is no vari-
ation of the identity in a video by construction. However, even the CNN face features
still normally contain both the identity and the pose cues. Surely, the feature mean will
still characterize both the identity and the pose. What is even worse, there is no way
to decouple the two cues once we take the mean. Instead, if we want the video feature
to only represent the subject identity, we had better preserve the overall pose diversity
that very likely exists among frames. Disregarding minor factors, the identity will be
the only source of variation across videos since pose varies even within a single video.
The proposed K frame selection algorithm retains frames that preserve the pose di-
versity. Based on the selection, we further design an algorithm to compute the identity
similarity between two sets of deep face features by pooling the max correlation.

Instead of pooling from all the frames, the K frame selection algorithm is high-
lighted at firstly the pose quantization via K-means and then the pose selection using
the pose distances to the K-means centroids. It reduces the number of features from
tens or hundreds to K while still preserving the overall pose diversity, which makes it
possible to process a video stream at real time. Fig. 1 shows an example sequence in
the YouTube Face (YTF) dataset [16]. This algorithm also serves as a way to sample
the video frames (to K images). Once the key frames are chosen, we will pool a single
number of the similarity between two videos from many pairs of images. The metric
to pool from many correlations normally are the mean or the max. Taking the max is
essentially finding the nearest neighbor, which is a typical metric for measuring simi-
larity or closeness of two point sets. In our work, the max correlation between two bags
of frame-wise CNN features is employed to measure how likely two videos represent
the same person. In the end, a video is represented by a single frame’s feature which
induces nearest neighbors between two sets of selected frames if we treat each frame
as a data point. This is essentially a pairwise max pooling process. On the official 5000
video-pairs of YTF dataset [16], our algorithm achieves a comparable performance with
state-of-the-art that averages over deep features of all frames.
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Fig. 2. Analysis of rank-1 identification under varying poses for Google’s FaceNet [12] on the
recently established MegaFace 1 million face benchmark [8]. Yaw is examined as it is the primary
variation such as looking left/right inducing a profile. The colors represent identification accuracy
going from 0 (blue, none of the true pairs were matched) to 1 (red, all possible combinations of
probe and gallery were matched). White color indicates combinations of poses that did not exist
in the test set. (a) 1K distractors (people in the gallery yet not in the probe). (b) 1M distractors.
This figure is adapted from MegaFace’s FaceScrub results.

2 Related Works

The cosine similarity or correlation both are well-defined metrics for measuring the sim-
ilarity of two images. A simple adaptation to videos will be randomly sampling a frame
from each of the video. However, the correlation between two random image samples
might characterize cues other than identity (say, the pose similarity). There are existing
works on measuring the similarity of two videos using manifold-to-manifold distance
[6]. However, the straightforward extension of image-based correlation is preferred for
its simplicity, such as temporal max or mean pooling [11]. The impact of different spa-
tial pooling methods in CNN such as mean pooling, max pooling and L-2 pooling, has
been discussed in the literature [3,2]. However, pooling over the time domain is not as
straightforward as spatial pooling. The frame-wise feature mean is a straightforward
video-level representation and yet not a robust statistic. Despite that, temporal mean
pooling is conventional to represent a video such as average pooling for video-level
representation [1], mean encoding for face recognition [4], feature averaging for action
recognition [5] and mean pooling for video captioning [15].

Measuring the similarity of subject identity is useful face recognition such as face
verification for sure and face identification as well. Face verification is to decide whether
two modalities containing faces represent the same person or two different people and
thus is important for access control or re-identification tasks. Face identification in-
volves one-to-many similarity, namely a ranked list of one-to-one similarity and thus
is important for watch-list surveillance or forensic search tasks. In identification, we
gather information about a specific set of individuals to be recognized (i.e., the gallery).
At test time, a new image or group of images is presented (i.e., the probe).
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In this deep learning era, face verification on a number of benchmarks such as the
Labeled Face in the Wild (LFW) dataset [9] has been well solved by DeepFace [14],
DeepID [13], FaceNet [12] and so on. The Visual Geometry Group at the University
of Oxford released their deep face model called VGG-Face Descriptor [10] which also
gives a comparable performance on LFW. However in the real world, pictures are often
taken in uncontrolled environment (the so-called in the wild versus in the lab setting).
Considering the number of image parameters that were allowed to vary simultaneously,
it is logical to consider a divide-and-conquer approach - studying each source of vari-
ation separately and keeping all other variations as constants in a control experiment.
Such a separation of variables has been widely used in Physics and Biology for multi-
variate problems. In this data-driven machine learning era, it seems fine to remain all
variations in realistic data, given the idea of letting the deep neural networks learn the
variations existing in the enormous amount of data. For example, FaceNet [12] trained
using a private dataset of over 200M subjects is indeed robust to poses, as illustrated
in Fig. 2. However, the CNN features from conventional networks suach as DeepFace
[14] and VGG-Face [10] are normally not. Moreover, the unconstrained data with fused
variations may contain biases towards factors other than identity, since the feature might
characterize a mixed information of identity and low-level factors such as pose, illumi-
nation, expression, motion and background. For instance, pose similarities normally
outweigh subject identity similarities, leading to matching based on pose rather than
identity. As a result, it is critical to decouple pose and identity. If the facial expression
confuses the identity as well, it is also necessary to decouple them too. In the paper, the
face expression is not considered as it is minor compared with pose. Similarly, if we
want to measure the similarity of the face expression, we need to decouple it from the
identity. For example in [?] for facial expression recognition, one class of training data
are formed by face videos with the same expression yet across different people.

Moreover, there are many different application scenarios for face verifications. For
Web-based applications, verification is conducted by comparing images to images. The
images may be of the same person but were taken at different time or under different
conditions. Other than the identity, high-level factors such as the age, gender, ethnicity
and so on are not considered in this paper as they remain the same in a video. For online
face verification, alive video rather than still images is used. More specifically, the exist-
ing video-based verification solutions assume that gallery face images are taken under
controlled conditions [6]. However, gallery is often built uncontrolled. In practice, a
camera could take a picture as well as capture a video. When there are more infor-
mation describing identities in a video than an image, using a fully live video stream
will require expensive computational resources. Normally we need video sampling or a
temporal sliding window.

3 Pose Selection by Diversity-Preserving K-Means

In this section, we will explain our treatment particularly for real-world images with
various head poses such as images in YTF. Many existing methods such as [?] make a
certain assumption which holds only when faces are properly aligned.



Pose-Selective Max Pooling for Measuring Similarity 5

Fig. 3. An example of 3-D pose space. Shown for the 49-frame Woody Allen sequence in YTF.
Three axises represent rotation angles of yaw (looking left or right), pitch (looking up or down)
and roll (twisting left or right so that the face is slanting), respectively. The primary variation is
the yaw such as turning left/right inducing a profile. Pattern exists in pose distribution - obviously
two clusters for this sequence so in extreme case for reducing computation we can set K = 2.

By construction (say, face tracking by detection), each video contains a single sub-
ject. Each video is formalised as a set V = {x1,x2, ...,xm} of frames where each
frame xi contains a face. Given the homography H and correspondence of facial land-
marks, it is entirely possible to estimate the 3D rotation angles (yaw, pitch and roll)
for each 2D face frame. Concretely, some head pose estimator p(V) gives a set P =
{p1,p2, ...,pm} where pi is a 3D rotation-angle vector (αyaw, αpitch, αroll).

After pose estimation, we would like to select key frames with significant head
poses. Our intuition is to preserve pose diversity while downsampling the video in the
time domain. We learn from Fig. 2 of Google’s FaceNet that face features learned from
a deep CNN trained on identity-labelled data can be invariant to head poses as long
as the training inputs for a particular identity class include almost all possible poses.
That is also true for other minor source of variations such as illumination, expression,
motion, background among others. Then, identity will be the only source of variation
across classes since any factor other than identity varies even within a single class.

Without such huge training data as Google has, we instead hope that the testing
inputs for a particular identity class include poses as diverse as possible. A straightfor-
ward way is to use the full video, which indeed preserves all possible pose variations
in that video while computing deep features for all the frames is computationally ex-
pensive. Taking representing a line in a 2D coordinate system as an example, we only
needs either two parameters such as the intercept and gradient or any two points in that
line. Similarly, now our problem becomes to find a compact pose representation of a
testing video which involves the following two criteria.
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First, the pose representation is compact in terms of non-redundancy and closeness.
For non-redundancy, we hope to retain as few frames as possible. For pose closeness,
we observe from Fig. 3 that certain patterns exist in the head pose distribution - close
points turn to cluster together. That observation occurs for other sequences as well. As a
result, we want to select key frames out of a video by clustering the 3D head poses. The
widely-used K-means clustering aims to partition the point set into K subsets so as to
minimize the within-cluster Sum of Squared Distances (SSD). If we treat each cluster
as a class, we want to minimize the intra-class or within-cluster distance.

Second, the pose representation is representative in terms of diversity (i.e., differ-
ence, distance). Intuitively we want to retain the key faces that have poses as different
as possible. If we treat each frame’s estimated 3D pose as a point, then the approximate
polygon formed by selected points should be as close to the true polygon formed by
all the points as possible. We measure the diversity using the SSD between any two
selected key points (SSD within the set formed by centroids if we use the them as key
points). And we want to maximize such a inter-class or between-cluster distance.

Now, we put all criteria together in a single objective. Given a set P = {p1,p2, ...,pm}
of pose observations, we aim to partition them observations intoK (≤ m) disjoint sub-
sets S = {S1,S2, ...,SK} so as to minimize the within-cluster SSD as well as maximize
the between-cluster SSD while still minimizing the number of clusters:

min
K,S

SSDwithin

SSDbetween
:=

K∑
k=1

∑m
i=1 ‖pi − µk‖2∑K

j=1,j 6=k ‖µj − µk‖2
(1)

where µj , µk is the mean of points in Sk,Sk, respectively. This objective differs from
that of K-means only in considering between-cluster distance which makes it a bit simi-
lar with multi-class LDA (Linear Discriminant Analysis). However, it is still essentially
K-means. To solve it, we do not really need alternative minimization because that K
with a limited number of choices is empirically enumerated by cross validation. Once
K is fixed, solving Eqn. 1 follows a similar procedure of multi-class LDA while there is
no mixture of classes or clusters because every point is hard-assigned to a single cluster
as done in K-means. The subsequent selection of key poses is straightforward (by the
distances to K-means centroids). The selected key poses form a subset PΩ of P where
Ω is am-dimensionalK-sparse impulse vector of binary values 1/0 indicating whether
the index is chosen or not, respectively.

The selection of frames will follow the index activation vector Ω as well. Such
a selection reduces the number of images required to represent the face from tens or
hundreds to K while preserving the pose diversity which is considered in the formation
of clusters. Now we frontalize the chosen faces which is called face alignment or pose
correction/normalization. All above operations are summarized in Algorithm 1.

Note that not all landmarks can be perfectly aligned. Priority is given to salient ones
such as the eye center and corners, the nose tip, the mouth corners and the chin. Other
properties such as symmetry are also preserved. For example, we mirror the detected
eye horizontally. However, a profile will not be frontalized.
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Algorithm 1: K frame selection.
Input : face video V = {x1,x2, ...,xm}.
Output: pose-corrected down-sampled face video VcΩ = {xc(1),xc(2), ...,xc(K)}.
(1) Landmark detection: detect facial landmarks per frame in V so that correspondence
between frames is known.
(2) Homography estimation: estimate an approximate 3D model (say, homography H)
from the sequence of faces in V with known correspondence from landmarks.
(3) Pose estimation: compute the rotation angles pi for each frame using landmark
correspondence and obtain a set of sequential head poses P = {p1,p2, ...,pm}.
(4) Pose quantization: cluster P into K subsets S1, S2, ..., SK by solving Eqn. 1 with
estimated pose centroids {c1, ..., cK} which might be pseudo pose (non-existing pose).
(5) Pose selection: for each cluster, compute the distances from each pose point p ∈ Sk to
the pose centroid ck and then select the closest pose point to represent the cluster Sk. The
selected key poses form a subset PΩ of P where Ω is the index activation vector.
(6) Face selection: follow Ω to select the key frames and form a subset
VΩ = {x(1),x(2), ...,x(K)} of V where VΩ ⊂ V.
(7) Face alignment: Warp the each face in VΩ according to H so that landmarks are fixed
to canonical positions.

4 Pooling Max Correlation for Measuring Similarity

In this section, we explain our max correlation guided pooling from a set of deep face
features and verify whether the selected key frames are able to well represent identity
regardless of pose variation.

After face alignment, some feature descriptor, a function f(·), maps each corrected
frame xc(i) to a d × 1 feature vector f(xc(i)) ∈ Rd with dimensionality d and unit Eu-
clidean norm. Then the video is represented as a bag of normalized frame-wise CNN
features X := {f1, f2, ..., fK} := {f(xc(1)), f(x

c
(2)), ..., f(x

c
(K))}. We can also arrange

the feature vectors column by column to form a matrix X =
[
f1|f2|...|fK

]
. For ex-

ample, the VGG-face network [10] has been verified to be able to produce features
well representing the identity information. It has 24 layers including several stacked
convolution-pooling layer, 2 fully-connected layer and one softmax layer. Since the
model was trained for face identification purpose with respect to 2,622 identities, we
use the output of the second last fully-connected layer as the feature descriptor, which
returns a 4,096-dim feature vector for each input face.

Given a pair of videos (Va,Vb) of subject a and b respectively, we want to measure
the similarity between a and b. Since we claim the proposed bag of CNN features can
well represent the identity, instead we will measure the similarity between two sets of
CNN features Sim(Xa,Xb) which is defined as the max correlation among all possible
pairs of CNN features, namely the max element in the correlation matrix (see Fig. 4):

Sim(Xa,Xb) := max
na,nb

(fana

T · f bnb
) = max

(
(Xa

TXa)(:)
)

(2)

where na = 1, 2, ...,Ka and nb = 1, 2, ...,Kb. Notably, the notation (:) indicates all
elements in a matrix following the MATLAB convention. Now, instead of comparing
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Fig. 4. Max pooling from the correlation matrix with each axis coordinates the time step in one
video. Top row gives an example of different subjects while the bottom row shows that of the same
person. Max responses are highlighted by boxes. Faces not shown due to copyright consideration.

ma×mb pairs, with Sec. 3 we only need to computeKa×Kb correlations, from which
we further pool a single (1× 1) number as the similarity measure. In the time domain,
it also serves as pushing from K images to just 1 image. The metric can be the mean,
median, max or the majority from a histogram while the mean and max are more widely-
used. The insight of not taking the mean is that a frame highly correlated with another
video usually does not appear twice in a temporal sliding window. If we plot the two
bags of features in the common feature space, a similarity is essentially the closeness
between the two sets of points. If the two sets are non-overlapping, one measure of
the closeness between two points sets is the distance between nearest neighbors, which
is essentially pooling the max correlation. Similar with spatial pooling for invariance,
taking the max from the correlation matrix shown in Fig. 4 preserves the temporal
invariance that the largest correlation can appear at any time step among the selected
frames. Since the identity is consistent in one video, we can claim two videos contain a
similar person as long as one pair of frames from each video are highly correlated. The
computation of two videos’ identity similarity is summarized in Algorithm 2.

Algorithm 2: Video-based identity similarity measurement.
Input : A pair of face videos Va and Vb.
Output: The similarity score Sim(Xa,Xb) of their subject identity.
(1) Face selection and alignment: run Algorithm 1 for each video to obtain key frames
with faces aligned.
(2) Deep video representation: generate deep face features of the key frames to obtain two
sets of features Xa and Xb.
(3) Pooling max correlation: compute similarity Sim(Xa,Xb) according ro Eqn. 2.
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5 Experiments

5.1 Implementation

We develop the programs using resources1 such as OpenCV, DLib and VGG-Face.

– Face detection: frame-by-frame detection using DLib’s HOG+SVM based detector
trained on 3,000 cropped face images from LFW. It works better for faces in the
wild than OpenCV’s cascaded haar-like+boosting based (Viola-Jones) detector.

– Facial landmarking: DLib’s landmark model trained via regression tree ensemble.
– Head pose estimation: OpenCV’s solvePnP recovering 3D coordinates from 2D

coordinates using Direct Linear Transform + Levenberg-Marquardt optimization.
– Face alignment: OpenCV’s warpAffine by affine-warping to center eyes and mouth.
– Deep face representation 2: second last layer output (4,096-dim) of VGG-Face [10]

using Caffe [7]. For your conveniece, you may consider using MatConvNet-VLFeat
instead of Caffe. VGG-Face has been trained using face images of size 224 × 224
with the average face image subtracted and then is used for our verification purpose
without any re-training. However, such average face subtraction is unavailable and
unnecessary given a new inputting image. As a result, we directly input the face
image to VGG-Face network without any mean face subtraction.

5.2 Evaluation on video-based face verification

For video-based face recognition database, EPFL captures 152 people facing web-cam
and mobile-phone camera in controlled environments. However, they are frontal faces
and thus of no use to us. University of Surrey and University of Queensland capture
295 and 45 subjects under various various well-quantized poses in controlled environ-
ments, respectively. Since the poses are well quantized, we can hardly verify our pose
quantization and selection algorithm on them. McGill and NICTA capture 60 videos of
60 subjects and 48 surveillance videos of 29 subjects in uncontrolled environments, re-
spectively. However, the database size are way too small. YouTube Faces (YTF) dataset
(YTF) and India Mvie Face Database (IMFDB) collect 3,425 videos of 1,595 people
and 100 videos of 100 actors in uncontrolled environments, respectively. There are quite
a few existing work verified on IMFDB. As a result, the YTF dataset 3 [16] is chosen to
verify the proposed video-based similarity measure for face verification. YTF was built
by using the 5,749 names of subjects included in the LFW dataset [9] to search YouTube
for videos of these same individuals. Then, a screening process reduced the original set
of videos from the 18,899 of 3,345 subjects to 3,425 videos of 1,595 subjects.

In the same way with LFW, the creator of YTF provides an initial official list of
5,000 video pairs with ground truth (same person or not as shown in Fig. 5). Our exper-
iments can be replicated by following our tutorial 4. K = 9 turns to be averagely the

1 http://opencv.org/, http://dlib.net/ and http://www.robots.ox.ac.
uk/˜vgg/software/vgg_face/, respectively.

2 Codes are available at https://github.com/eglxiang/vgg_face
3 Dataset is available at http://www.cs.tau.ac.il/˜wolf/ytfaces/
4 Codes with a tutorial at https://github.com/eglxiang/ytf

http://opencv.org/
http://dlib.net/
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://github.com/eglxiang/vgg_face
http://www.cs.tau.ac.il/~wolf/ytfaces/
https://github.com/eglxiang/ytf
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Fig. 5. Examples of YFT video-pairs. Instead of using the full video in the top row, we
choose key faces in the bottom row. Disclaimer: this figure is adapted from VGG-face’s pre-
sentation (see also http://www.robots.ox.ac.uk/˜vgg/publications/2015/
Parkhi15/presentation.pptx) and follows VGG-face’s republishing permission.

best for the YTF dataset. Fig. 6 presents the Receiver Operating Characteristic (ROC)
curve obtained after we compute the 5,000 video-video similarity scores. One way to
look at a ROC curve is to first fix the level of false positive rate that we can bear (say,
0.1) and then see how high is the true positive rate (say, roughly 0.9). Another way is
to see how close the curve towards the top-left corner. Namely, we measure the Area
Under the Curve (AUC) and hope it to be as large as possible. In this testing, the AUC
is 0.9419 which is quite close to VGG-Face [10] which uses temporal mean pooling.
However, our selective pooling strategy have much fewer computation credited to the
key face selection. We do run cross validations here as we do not have any training.

Later on, the creator of YTF sends a list of errors in the ground-truth label file and
provides a corrected list of video pairs with updated ground-truth labels. As a result, we
run again the proposed algorithm on the corrected 4,999 video pairs. Fig. 7 updates the
ROC curve with an AUC of 0.9418 which is identical with the result on the initial list.

6 Conclusion

In this work, we propose a K frame selection algorithm and an identity similarity mea-
sure which employs simple correlations and no learning. It is verified on fast video-
based face verification on YTF and achieves comparable performance with VGG-face.
Particularly, the selection and pooling significantly reduce the computational expense
of processing videos. The further verification of the proposed algorithm include the
evaluation of video-based face expression recognition. As shown in Fig. 5 of [?], the
assumption of group sparsity might not hold under imperfect alignment. The extended
Cohna-Kanade dataset include mostly well-aligned frontal faces and thus is not suitable
for our research purpose. Our further experiments are being conducted on the BU-4DFE
database5 which contains 101 subjects, each one displaying 6 acted facial expressions
with moderate head pose variations. A generic problem underneath is variable disen-
tanglement in real data and a take-home message is that employing geometric cues can
improve the descriptiveness of deep features.

5 http://www.cs.binghamton.edu/˜lijun/Research/3DFE/3DFE_
Analysis.html

http://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/presentation.pptx
http://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/presentation.pptx
http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
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Fig. 6. ROC curve of running our algorithm on the YTF initial official list of 5,000 pairs.

Fig. 7. ROC curve of running our algorithm on the YTF corrected official list of 4,999 video pairs.
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