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Abstract The Griffis-Duffy platform is an example of an overconstrained parallel
mechanism. Although it has 6 SS legs joining its platform to its base it is still mo-
bile. In this work similar structures are found but with different types of legs. The
key to finding these structures is a pair of theorems concerning 3 degree-of-freedom
mechanisms subjected to a translation or a half-turn. Although these results are not
new concise statements and proofs are given. These constructions are then applied to
parallel mechanisms consisting of 3 RPS legs and 3UPU legs. Some details of the
rigid-body motions that the platform of these mechanisms can execute are found.
This is facilitated by the observations that rigid displacements permitted by an RPS
leg are the displacements which constrain a point to a fixed plane, while the dis-
placements of a UPU leg constrain a line to be coplanar to a fixed line.

Key words: Parallel mechanisms, overconstraint, line-symmetry.

1 Introduction

There has been much interest in overconstrained, single loop mechanisms such as
the Bennett, Goldberg and various Bricard mechanisms. With interest turning to
parallel mechanisms workers have also begun to look at over constrained parallel
mechanisms. These are sometimes described as mechanisms which are architec-
turally singular. A key example of such a mechanism was the Griffis-Duffy platform
as explained by Husty and Karger, [2]. Here these ideas are extended to platforms
with other types of legs, in particular RPS and UPU. First we consider a pair of
constructions which guarantee that the mechanisms will be mobile.
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2 Line-Symmetry and Translations

The results studied in this section are well known in general terms but giving a
formal statement of the results clarifies the underlying geometry. In both cases the
symmetries discussed confine the rigid motion to the intersection of a 5-dimensional
projective space (a 5-plane) with the Study quadric.

In the following we will consider arbitrary mechanisms. These are to be thought
of as systems of links and joints but we don’t specify their arrangement so the mech-
anism could be a serial chain, a single loop or a parallel mechanism, for example.
All we require is that one of the links be fixed and called the base link of the mech-
anism. We will concentrate our attention on another link in the mechanism and will
refer to this as the coupler or platform of the mechanism. Saying that the coupler
has 3-degrees-of-freedom then means that the possible displacements of the coupler,
relative to the base link, can be specified using three parameters.

Lemma 1. Let M be an arbitrary mechanism having a coupler with 3 degrees-of-
freedom. Duplicate the mechanism M and subject the new one to a fixed translation.
The translation must include all links and joints including the base link. After the
translation the translated base-link is again fixed. Rigidly join the coupler bars of
the two mechanisms to form a combined coupler. This combined coupler bar will be
able to move and will, in general, follow a 1 degree-of-freedom Schönflies motion.

Proof. Assume that g(µ1, µ2, µ3) is the dual quaternion representing the three pa-
rameter motion that the original mechanism M can perform. After a translation t,
the shifted mechanism will be able to perform the motion, tg(µ1, µ2, µ3)t−, where
t− is the dual quaternion conjugate of t. When the couplers are joined together, any
motion performed must satisfy,

g(µ1, µ2, µ3) = tg(µ1, µ2, µ3)t−.

This relation will have solutions for all displacements g(µ1, µ2, µ3) that commute
with t. The set of all elements in the group which commute with a translation con-
sist of the subgroup of all translations and all rotations about axes parallel to t.
That is, the centraliser of a translation is a Schönflies group. In the Study quadric
a Schönflies group is the intersection of the Study quadric with a 5-plane. Inter-
secting with the 3-dimensional set of displacements g(µ1, µ2, µ3) generally gives a
1-dimensional set, necessarily lying in the Schönflies subgroup. ut

Only the direction of the translation is important here, any translation in the same
direction will give the same Schönflies group. For the parallel mechanisms consid-
ered below this means that the same motion can be generated by a machine with an
arbitrary number of legs.

The second result is probably even more well known, the statement and simple
proof are still instructive.

Lemma 2. Let M be an arbitrary mechanism that has a coupler with 3 degrees-
of-freedom. Again, duplicate the mechanism M but now subject the new one to a
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half-turn about a line `0. This time the base-link of the new mechanism is rigidly
fixed to the coupler link of the original and the coupler link of the new machine is
fixed to the base. The coupler bar of the new combined mechanism will generally
follow a 1 degree-of-freedom line-symmetric motion.

Proof. After the half-turn the motion of the coupler will be `0g(µ1, µ2, µ3)`
−
0 but

the motion of the base with respect to the coupler will be, `0g−(µ1, µ2, µ3)`
−
0 . After

connecting the mechanism as specified the motion of the combined coupler will
satisfy,

g(µ1, µ2, µ3) = `0g−(µ1, µ2, µ3)`
−
0 .

This can be rearranged to produce,

g(µ1, µ2, µ3)`
−
0 + `0g−(µ1, µ2, µ3) = 0,

since `−0 =−`0. In [4] it was shown that this equation characterises line-symmetric
motions, moreover, line-symmetric motions were shown to lie in the intersection of
the Study quadric with a 5-plane. ut

In the following we look at 3-degree-of-freedom mechanisms formed by the par-
allel composition of three 5-degree-of-freedom serial chains or legs.

3 RPS Legs

The legs considered here are each composed of a revolute, prismatic and a final
spherical joint, see Fig. 1. Keeping the base of the leg fixed and moving the plat-
form attached to the final spherical joint gives a set of possible rigid-body displace-
ments allowed by the leg. In all these displacements the centre of the spherical joint
remains in contact with a fixed plane normal to the axis of the first revolute joint.
Clearly, the set of displacements allowed by such a leg coincides with the point-
plane constraint varieties discussed in [6] for example. These point-plane constraint
varieties can be thought of as the intersection of the Study quadric in P7 with another
quadric hypersurface.

3.1 Schönflies 6RPS

Here the construction of Lemma 1 is applied to a parallel mechanism consisting of
three general RPS legs, see Fig. 3.

Assume the axis of the Schönflies motion is the z-axis so the rotation matrix and
translation vector can be written

R =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 and t =

tx
ty
tz

 .
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Fig. 1 An RPS Leg. Fig. 2 A UPU Leg.

The three point-plane constraints can be written

(nT
i ,−di)

(
R t
0 1

)(
pi
1

)
= nT

i (Rpi + t)−di = 0, i = 1, 2, 3, (1)

where ni is the unit normal to the plane, di the perpendicular distance from the plane
to the origin and pi the position vector of the point at the centre of the spherical joint.
These equations can be written in matrix form as

Nt = δδδ , where N =

nT
1

nT
2

nT
3

 and δδδ =

d1−nT
1 Rp1

d2−nT
2 Rp2

d3−nT
3 Rp3

 . (2)

Assuming that the points pi lie on their respective planes at the start of the motion,
when R(0) = I3, the row of δδδ can be written nT

i (I3−R)pi. Since R determines a
sequence of rotations about the z-axis, elements of I3−R can be written in terms of
the sine and cosine of the rotation angle φ .

The matrix N can be inverted symbolically,

N−1 =
1

n1 · (n2×n3)

(
n2×n3

∣∣∣ n3×n1

∣∣∣ n1×n2

)
.

So
t = N−1

δδδ = ααα(1− cosφ)+βββ sinφ

where

ααα =
1

n1 · (n2×n3)

(
(n1x p1x +n1y p1y)n2×n3+

(n2x p2x +n2y p2y)n3×n1 +(n3x p3x +n3y p3y)n1×n2
)

and
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Fig. 3 A mobile 6RPS parallel mechanism constructed by translating a 3RPS linkage and joining
the coupler bars. The dots represent the elliptical path of the centre of one of the spherical joints.

βββ =
1

n1 · (n2×n3)

(
(n1x p1y−n1y p1x)n2×n3+

(n2x p2y−n2y p2x)n3×n1 +(n3x p3y−n3y p3x)n1×n2
)

Using the familiar tan-half-angle substitutions, cosφ = (1−t2)/(1+t2) and sinφ =
2t/(1+ t2), it can be seen that the motion of an arbitrary point in the platform will
be a conic curve in general. Hence this is a Darboux motion, see [1, Chap. IX,
§3]. The fact that three point-plane constraints restricted to a Schönflies motion
produces a Darboux motion is well known, see for example [8]. Notice however,
that in [3] it was shown that a parallel mechanism with 3 RPS legs could perform a
vertical Darboux motion, a particular Darboux motion that is also line-symmetric.
The above shows that the mechanism can perform a general Darboux motion and
indicates how to construct a mechanism to follow such a motion.

3.2 Line-Symmetric 6RPS

Next, the construction from Lemma 2 is applied to three RPS legs. As in the previous
section there are three point-plane constraints given in equation (1).

Since a line-symmetric motion consists of successive half-turns about the genera-
tors of a ruled surface, the rigid-body displacements can be given by the exponential
of a line

(
R t
0 1

)
= eπL, where L =


0 −P03 P02 P23

P03 0 −P01 P31
−P02 P01 0 P12

0 0 0 0

 .



6 J.M. Selig

Here Pi j are the Plücker coordinates of the line L. For a line-symmetric motion
L will be parametrised by time, however the explicit dependence on time has been
suppressed for brevity. Using the Rodrigues formula, the exponential can be written:

eπL = I4 +2L2,

since L3 =−L and assuming P2
01 +P2

02 +P2
03 = 1. If we write

Ω =

 0 −P03 P02
P03 0 −P01
−P02 P01 0

 , ωωω =

P01
P02
P03

 , and v =

P23
P31
P12

 ,

then the rotation matrix and translation vector can be written

R = I +2Ω
2, t = 2ωωω×v,

where ωωω and v consist of the Plücker coordinates of a line and so satisfy ωωω ·v = 0.
It is convenient to assume that the motion passes through the identity element of

the group and that the points lie on their respective planes in this position. Then a
line-symmetric motion is given by reflecting the three points p1, p2 and p3 in the
initial line of the ruled surface L0, and then reflecting in the successive lines of the
surface, so that, (

R t
0 1

)
= (I4 +2L2)(I4 +2L2

0).

To be definite assume that the initial line L0 is the z-axis. For simplicity, write p′i =
(I3 + 2Ω 2

0 )pi, where Ω0 is the direction of the line L0. The equations for the three
point-plane constraints become, ni

T (I3+2Ω 2)p′i+2ni
T (ωωω×v)−di = 0. Since di =

ni
T (I3 +2Ω 2

0 )p
′
i, we get,

ni
T (Ω 2−Ω

2
0 )p
′
i +ni

T (ωωω×v) = 0, i = 1, 2, 3.

These equations can be made homogeneous by multiplying the Ω 2
0 term by the

square of the norm of the vector ωωω , denoted |ωωω|2. This results in three homogeneous
equations,

ni
T (Ω 2−|ωωω|2Ω

2
0 )p
′
i +ni

T (ωωω×v) = 0, i = 1, 2, 3. (3)

Including the equation for the Klein quadric ωωω · v = 0, gives 4 homogeneous
quadratic equations for the ruled surface generating the line-symmetric motion. The
intersection of these quadrics is not a complete intersection as they clearly vanish
on the 2-dimensional plane of “lines at infinity” ωωω = 0.

The equation given in (3) can be written in the same matrix vector form as in (2)
but with

t = ωωω×v and δδδ =

nT
1 (Ω

2−|ωωω|2Ω 2
0 )p
′
1

nT
2 (Ω

2−|ωωω|2Ω 2
0 )p
′
2

nT
3 (Ω

2−|ωωω|2Ω 2
0 )p
′
3

 .
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The variables v can be eliminated by multiplying the equation Nt= δδδ , by the inverse
or adjugate of N and then taking the scalar product with ωωω . The result is

ωωω · (n2×n3)nT
1 (Ω

2−|ωωω|2Ω
2
0 )p
′
1 +ωωω · (n3×n1)nT

2 (Ω
2−|ωωω|2Ω

2
0 )p
′
2+

ωωω · (n1×n2)nT
3 (Ω

2−|ωωω|2Ω
2
0 )p
′
3 = 0.

This equation determines a plane cubic curve in the plane determined by the vari-
ables P01, P02 and P03. This is the direction cone or spherical indicatrix of the gener-
ating surface of the motion. Generally a plane cubic curve is rational or elliptic (has
genus 0 or 1) depending on whether or not it has a singularity. Computing with a
few random examples shows that the curve can be non-singular. Hence, in general,
the curve is elliptic. However, there may be particular examples where the cubic
acquires a singularity and hence becomes rational.

Eliminating the moment vector v of the Plücker coordinates can be seen as a lin-
ear projection with centre of projection given by the 2-plane of lines “at infinity”
ωωω = 0. To recover the moments of the generators in the ruled surface we can multi-
ply the equation Nt = δδδ , by the inverse of N and then take the vector product with
ωωω to get,

|ωωω|2v =
1

n1 · (n2×n3)

(
ωωω× (n2×n3)nT

1 (Ω
2−|ωωω|2Ω

2
0 )p
′
1+

ωωω× (n3×n1)nT
2 (Ω

2−|ωωω|2Ω
2
0 )p
′
2 +ωωω× (n1×n2)nT

3 (Ω
2−|ωωω|2Ω

2
0 )p
′
3
)
.

The equation for the Klein quadric has been used here to expand the triple product
ωωω×(ωωω×v). The above give a rational cubic map from the plane with homogeneous
coordinates ωωω = (P01 : P02 : P03) to the Klein quadric. The image of the cubic spher-
ical indicatrix will be a degree 9 ruled surface which meets the center of the linear
projection, the space of lines at infinity, with multiplicity 6.

4 6UPU Legs

Here we study parallel mechanism composed of 6 UPU legs with either line symme-
try or a translational symmetry. We require that the axes of the first and last revolute
joints of the two U joints are coplanar, see Fig. 2. This is not the most general con-
figuration for such a leg but it is a design that is commonly used in practice. The key
observation is that the rigid displacement allowed by such a UPU leg will maintain
the coplanarity of these lines. In [7] the problem of finding the set of rigid displace-
ments which move a line in such a way that it remains in a linear line complex was
studied. The set of lines meeting or parallel to a fixed line form a special linear
line complex so the displacements of a UPU leg are a special case of the quadratic
constraint found in [7]. That is, the displacements achievable by the leg lie on the
intersection of the Study quadric with another quadric hypersurface in P7. There
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Fig. 4 A mobile 6UPU parallel mechanism constructed by reflecting a 3UPU linkage in the line
shown. For clarity, the base and platform are not shown, the base is joined to the lower R joint of
each leg and the platform to the uppermost R joints.

are several serial kinematic chains with the same property, the UPU chain, the PSP
chain and RRPC are three examples. The remarks below therefore apply to any of
these chains.

It is convenient here to represent rigid displacements using the adjoint repre-
sentation of the group SE(3). Consider a pair of lines given in terms of Plücker
coordinates as,

`a =

(
ωωωa
va

)
, and `b =

(
ωωωb
vb

)
.

These lines will be coplanar if and only if they are reciprocal, this condition can be
represented by the matrix equation,

(ωωωT
a , vT

a )

(
0 I3
I3 0

)(
ωωωb
vb

)
= 0,

where I3 is the 3×3 identity matrix. The rigid displacement which move `b in such
a way that it remains coplanar to `a will thus satisfy the equation

(ωωωT
a , vT

a )

(
0 I3
I3 0

)(
R 0

T R R

)(
ωωωb
vb

)
= 0,

where R is a rotation as above and T is the translation vector written as a 3× 3
anti-symmetric matrix. Expanding the equation above produces

ωωω
T
a T Rωωωb +ωωω

T
a Rvb +vT

a Rωωωb = 0.

Three such legs yield an equation of the form Nt = δδδ again. This time with

N =


(
ωωωa1× (Rωωωb1)

)T(
ωωωa2× (Rωωωb2)

)T(
ωωωa3× (Rωωωb3)

)T

 and δδδ =

ωωωT
a1Rvb1 +vT

a1Rωωωb1

ωωωT
a2Rvb2 +vT

a2Rωωωb2

ωωωT
a3Rvb3 +vT

a3Rωωωb3

 .
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Notice that the matrix N depends on the rotation R now. As above, duplicating and
translating the three legs produces a mechanism which can perform a Schönflies
motion. Assuming that the rotation is parametrised by quadratic functions, as in
section 3.1, we can solve for the translation t. This will give a solution of degree 6
in the tan-half angle of the rotation. In particular the trajectories of general points
on the platform of the mechanism will follow rational curves of degree 6.

Finally consider duplicating the legs and subjecting them to a half-turn, as in
section 3.2, see also Fig. 4. The spherical indicatrix of the base surface of the line-
symmetric motion will be a planar curve of degree 7. From the genus-degree formula
the maximum genus of such a curve is 1

2 (7−1)(7−2) = 15.

5 Conclusion

Space restrictions preclude a fuller discussion of the motions generated by these
mechanisms. Although much is known about motions which constrain points to
planes and to spheres, the case of motion in which lines remain coplanar to fixed
lines seems to have not received much attention to date.
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