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Chapter 13
Rule Base Reduction Using Conflicting
and Reinforcement Measures

Luca Anzilli and Silvio Giove

Abstract In this paper we present an innovative procedure to reduce the number
of rules in a Mamdani rule-based fuzzy systems. First of all, we extend the simi-
larity measure or degree between antecedent and consequent of two rules. Subse-
quently, we use the similarity degree to compute two new measures of conflicting
and reinforcement between fuzzy rules. We apply these conflicting and reinforce-
ment measures to suitably reduce the number of rules. Namely, we merge two rules
together if they are redundant, i.e. if both antecedent and consequence are similar
together, repeating this operation until no similar rules exist, obtaining a reduced set
of rules. Again, we remove from the reduced set the rule with conflict with other, i.e.
if antecedent are similar and consequence not; among the two, we remove the one
characterized by higher average conflict with all the rules in the reduced set.

Keywords Fuzzy systems * Rule base reduction * Rule base simplification *
Conflicting and reinforcement measures

13.1 Introduction

The number of rules in a fuzzy system (FIS, Fuzzy Inference System) exponentially
increases with the number of the input variables and the number of the linguistic
values that these inputs can take (antecedent fuzzy terms) [1, 2]. Several approaches
for reducing fuzzy rule base have been proposed using different techniques such
as interpolation methods, orthogonal transformation methods, clustering techniques
[3-8]. A typical tool to perform model simplification is merging similar fuzzy sets
and rules using similarity measures [9-14].
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130 L. Anzilli and S. Giove

In this paper we propose a new procedure for simplifying rule-based fuzzy sys-
tems. Starting from similarity measures we introduce two new measures of conflict-
ing and reinforcement between fuzzy sets. Then we develop a simplification method-
ology using the introduced conflicting and reinforcement measures to merge similar
rules and to remove redundant rules from the rule set.

The paper is organized as follows. In Sect. 13.2 we briefly review the basic notions
of fuzzy systems. In Sect. 13.3 we define conflicting and reinforcement measures. In
Sect. 13.4 we present the merging methodology and, finally, in Sect. 13.5 we illus-
trate our rule-base reduction method.

13.2 Fuzzy Systems

The knowledge of a FIS can be obtained from available data using some optimization
tool as a neural approach, or by direct elicitation from one or a group of Experts. In
the latter case, the Experts represent their knowledge by defining a set of inferential
rules. The input variables are processed by these rules to generate an appropriate
output.

In the case of a FIS with n input variables, x,, ..., x, and a single output y (miso
fuzzy system, [2]) every rule has the form

R;: TFx;isA; and,..., andx, isA;, THEN y is B; i=1,...,N

where A, ; is a fuzzy sets of universe space X; and B, is a fuzzy set of universe space
Y, and N is the number of rules. The fuzzy set A; J is the linguistic label associated
with j-th antecedent in the i-th rule and B, is the linguistic label associated with the
consequent in the i-th rule. We recall that a linguistic label can be easily represented
by a fuzzy set [15]. The rule i, R;, can be represented by the ordered couple R; =

<ﬂ7=1 A, J(xj),B,-), being A, ;(x;) the j-th component of the antecedent and B; the
consequent, i = 1,...,N, and ﬂ is the conjunction operator. Every Rule R; in the
data base is characterized by a confidence degree e; (or rule weight), with e; > 0 (see
[8, 16])). Rule weights can be applied to complete rules or only to the consequent
part of the rules [16]. In the first case, the weight is used to modulate the activation
degree of a rule, and in second to modulate the rule conclusion.

13.3 Conlflicting and Supporting Rules

13.3.1 Similarity Measures Between Fuzzy Sets

We denote by Sim(A, B) the similarity between fuzzy sets A and B with respect to a
similarity measure Sim. Different similarity measures for fuzzy sets have been pro-
posed in literature [17-23]. They can be classified into two main groups:
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13 Rule Base Reduction Using Conflicting and Reinforcement Measures 131

geometric and set-theoretic similarity measures. Axiomatic definitions of similarity
can be found in [18, 23].
An example of a geometric similarity measure based on distance between two

fuzzy sets is
1

Sim(A,B) = ———
1+ DA, B)
being D(A, B) a suitable distance among the two fuzzy sets A and B.
An example of a similarity measure between two fuzzy sets, based on the set-
theoretic operations of intersection and union, is (see [15])

M(ANB
Simy(A, B) = MEA—BB; (13.1)
where .
M(A):/ A() dx. (13.2)

is the size of fuzzy set A. Details for computing (13.1) are given in [4, 14].

13.3.2 Similarity Measures Between Rules

Let us consider a fuzzy system with n input variables (= number of antecedents of
each rule) and N rules

R, = <ﬂAi’j(xj),Bi> ,  i=1,...,N
Jj=1

being A, ;(x;) the j-th component of the antecedent and B; the consequent. Each Rule
R; in the data base will be characterized also by a confidence degree e;.

Definition 13.1 Following measures will be considered (see [11, 14]):

(1) Similarity between the antecedent of two rules, R, R, (k, =1,2...,N)
My = Sim(Anty, Ant,) = Tj’le Sim(Ay ;A )

where T is a t-norm (in [11, 14] T = min);
(2) Similarity between the consequent of two rules, R, R,

Viy = Sim(Cons,, Cons,) = Sim(B,, By) .
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132 L. Anzilli and S. Giove

13.3.3 Conflicting and Reinforcement Degrees

Definition 13.2 Based on the two above measures, 4, , and v, ,, we can propose the
following conflicting and reinforcing degrees:

(i) Conflicting degree, a measure of the conflict among a couple of rules:

ck. ) = o (L =v ) f(ersep) (13.3)

(i) Reinforcement degree, a measure of the agreement among a couple of rules:

rk,0) = Hie Viee (€ €p) (13.4)

being f(e;.e,) a suitable aggregation function, symmetric and idempotent, not
decreasing in both its two arguments.

Proposition 13.1 Conflicting and reinforcement degrees satisfy the following prop-
erties: forany k,Z = 1,2...,N

(i) 0<ctk,?)<1,0<rk,0)<1
(ii) c(k,?)=c(C,k), rtk,0)=r(, k)
(iii) c(k,k) =0, r(k,k) = f(e. e,) = e
(iv) ck,t)=1 = rk,0)=0
W) rk,0)y=1 = ck,2)=0
(vi) 0 <ck, &) +r(k,0) <min{y ., f(e,e.)} <1
(vii) if the aggregation function f is such that f(e;,e,) = O only if ¢, =0 orc, =0,
that is the only annihilator element (see [24]) of f is O, then:

e >0 = ck,0)+r(k,£)>0.
Proof Property (ii) holds since similarity measure is symmetric. Property (iii) fol-

lows taking into account that ; , = v, ; = 1 since Sim(A, A) = 1 (assuming that Sim
is a normal similarity measure). Properties (vi) and (vii) follow from the relation

ck, ) +rk, €)= py o - flep,ep)
and observing that, since e, > 0 for any ¢, we have f(e;, e,) > 0. [

We observe that both c(k, ) and r(k,£) can be equal to zero, but if one is close
to one the other is close to zero.
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13 Rule Base Reduction Using Conflicting and Reinforcement Measures 133

13.4 Merging Methodology

13.4.1 Merging Fuzzy Sets

Different shape of membership functions exist in the specialized literature. Among
them we recall trapezoidal, triangular, bell-shaped fuzzy number. A trapezoidal
fuzzy number is defined! by the 4-ple A = (a,,a,,a3,a,), with a; < a, < a; < a,,
and has membership function

0 x<a orx>a,
x_al
a<x<a,
Ax) =4 274
1 a, <x<ay
a, —x
a; <x<ay
a4_a3

More in general, if the (continuous) fuzzy number A is characterized by the member-
ship A(x), its a-cuts are by the intervals A(a) = {x|A(x) > a} = [a,(a), a,(a)], with
a € [0, 1]. The size M(A) of fuzzy set A, as defined in (13.2), can be computed using
a-cuts by

1
M(A)=/ M(A(a)) da
0

where M(A(a)) is the size of a-cut A(ar). We extend this concept by defining

1
M,(A):/ MA(a)) () da
0

being I(a) a suitable weighting function, /() : [0, 1] — [0, 1] (see [25, 26]). Then
we introduce the following extended version of the similarity (13.1)

- M,ANB)

Simy(A,B) = ————.
M, (AU B)

In order to compute the similarity, we observe that a discrete representation of A can

be done through a finite subset of its a-cuts, see [15]. Partlcularly useful is an equally

spaced grid for a, as a; = ; i=0,1,..,T, with step 31ze —. For a discretized fuzzy

number A we have

M(A) = Z / MA(a)) l(a) da ~ — ZM(A(a))l(a)

'A triangular fuzzy number is a sub-case of a trapezoidal one, with a, = a,, while a bell-shape
recalls a gaussian distribution.
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134 L. Anzilli and S. Giove
Then, taking into account that (A N B)(a@) = A(@) N B(a) and (A U B)(a) = A(a) U
B(a), we get the following formulas

T
MANB) = 2 3 MAW) 0 B@) @)
=1

T
MAUB) = 2 3 MA) U B@) (@)
=1

where M((A(a;) N B(a;)) = max{min(a,(a,), by(at;)) — max(a,(a;), b,(a;)),0} and
M((A(e;) U B(a;)) = M(A(a))) + M(B(a;)) — M(A(a;) N B(a;)). As a consequence, the
similarity degree among two discretized fuzzy numbers A and B is given by

S M((A(e) 0 B(ay)) ()

i M((A(a) U B(ay)) I(t;)

.
Sim, (A, B) =

Two fuzzy sets A and B can be merged into a fuzzy set C = A1A+ (1 — 1) B,
where 0 < A <1 is a suitably selected parameter. If A = (a;,a,,a5,a,) and B =
(by, by, by, b,) are trapezoidal fuzzy numbers, the merged (trapezoidal) fuzzy number
C = (¢, ¢y, ¢35, ¢4) is given by?

ci=Aa+(1-2)b;
¢, =Aay,+ (1 - 1)b,
c3=Aay+ (1 —A)b;
cy=Aagz+(1—=A)b,.

13.4.2 Merging Rules

Let us fix a pre-specified antecedent-similarity threshold ji > 0. If 4, , > ji then we
can merge Rules R, R, into a single rule R, », with confidence degree ¢, ; given by

e = hek,0),r(k,0)) - f(er. ep) . (13.5)

We require that function £ : [0, 1]> — [0, 1] satisfy the following properties:

(i) h(c,r) is decreasing with respect to ¢
(ii) A(c, r) is increasing with respect to r

2Alternatively, in [9] the following merging procedure is proposed: if A = (a,4a,,4a3,4a,) and
B =(b,b,,b3,b,) are trapezoidal fuzzy numbers, the merged (trapezoidal) fuzzy number
C = (¢, ¢, ¢3,¢4)isobtained by ¢; = min(a,, b)), ¢, = Aya, + (1 — A,))b,, c3 = Aza3 + (1 — A3)b;,
¢, = max(ay, b,;), where 4,, 4; € [0, 1].
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13 Rule Base Reduction Using Conflicting and Reinforcement Measures 135

@iii) h(1,r)=0
@iv) h(O,r) =r.

Examples of functions A(c, r) are:

(@) hyc,r)=r(l1-rc)

(b) h,(c,r) =T(n(c),r), where T is a t-norm and n is a fuzzy complement (that is a
decreasing function n : [0, 1] — [0, 1] such that n(0) = 1 and n(1) = 0).
We observe that k, is a special case of &, with the product t-norm 7 = T, and
the standard fuzzy complement n(c) = 1 — c.

(c) hs(c,r) = i (we may set hy(c,r) =1 if ¢ +r = 0; note that for y , > ji > 0
we have c(k, £) + r(k,£) > 0). We observe that hi;(c, ) = v, ,.

13.5 Rule Base Reduction Method

We now present a reduction algorithm to perform a rule base simplification of a
Mamdani fuzzy system [15]. The main idea is the following: if two rules have similar
antecedents and similar consequents we merge them into a single rule; if two rules
have similar antecedents but dissimilar consequents we remove the rule which have
the greater conflict. Our method consists two steps.

First step. We merge two Rules characterized by a value of similarity y, , greater
than a pre-specified threshold i and a value v, , greater than a pre-specified threshold
v in a single rule. The antecedent (consequent) of the merged Rule will be obtained
merging together the antecedents (consequents) of the two Rules using a suitable
averaging operator. The confidence degree of the merged Rule will be increased in
the case of reinforcement, but decreased in the case of conflicting. The merging
algorithm thus will proceed considering every couple of Rules, selecting the most
antecedent-similar couple and merge the two Rules into a single one, consequently
modifying the aggregated confidence. The merging procedure will continue until two
Rules with antecedent-similarity and consequent-similarity greater that a specified
threshold exist in the data base.

Second step. We consider the reduced rule set Z. If two Rules R;, R, have a value
of similarity y, , greater than a pre-specified threshold j then we compute the total
conflicting degrees

C = Z c(k,m), cp = 2 c(k,m)

R, e% R, ex
and remove the Rule having the greater conflict degree. The removing procedure

will continue until two Rules with antecedent-similarity greater than i and different
total conflicting degree exist in the data base.
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The previous methodology can be formalized in the following algorithm:

N

13

. calculate y , and v , fork, 2 = 1,...,N;
. calculate the values of c(k,?) and r(k,?) fork,7 =1,...,N;
. foreachk, =1,....N,k # ¢:if y;, , > jiand v, , > v then we merge R, and R,

and assign to merged Rule R, » a confidence degree ¢, ,, computed according
to (13.5);

et Z ={R,, ... ,Rp},p < N, be the new (reduced) rule set;
. foreach k, 7 =1,...,p,k#¢: if,ukf > ji (and thus v, , < V) then

e if ¢, > ¢, we remove R,
e if ¢, < ¢, we remove R,.

.6 Conclusion

In this paper we proposed a novel methodology for Rule base reduction of Mamdani
fuzzy systems based on conflicting and reinforcement measures. The reduction is
achieved by merging antecedents and consequents of two Rules and assigning to the

me

rged Rule an increased (decreased) confidence degree in the case of reinforcement

(conflicting).

As a future development, we intend to investigate the properties of conflicting and

reinforcement measures and, moreover, to apply the proposed simplification proce-
dure to Takagi-Sugeno fuzzy systems.
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