Skip to main content

Towards Recovering Allele-Specific Cancer Genome Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10229))

Abstract

Integrated analysis of structural variants (SVs) and copy number alterations (CNAs) in aneuploid cancer genomes is key to understanding the tumor genome complexity. A recently developed new algorithm Weaver can estimate, for the first time, allele-specific copy number of SVs and their interconnectivity in aneuploid cancer genomes. However, one major limitation is that not all SVs identified by Weaver are phased. In this paper, we develop a general convex programming framework that predicts the interconnectivity of unphased SVs with possibly noisy allele-specific copy number estimations as input. We demonstrated through applications to both simulated data and the HeLa whole-genome sequencing data that our method is robust to the noise in the input copy numbers and can predict SV phasings with high specificity. We found that our method can make consistent predictions with Weaver even if a large proportion of the input variants are unphased. We also applied our method to TCGA ovarian cancer whole-genome sequencing samples to phase unphased SVs obtained by Weaver. Our work provides an important new algorithmic framework for recovering more complete allele-specific cancer genome graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adey, A., Burton, J.N., Kitzman, J.O., Hiatt, J.B., Lewis, A.P., Martin, B.K., Qiu, R., Lee, C., Shendure, J.: The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500(7461), 207–211 (2013)

    Article  Google Scholar 

  2. Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J.S., Dobson, J., Urashima, M., et al.: The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899–905 (2010)

    Article  Google Scholar 

  3. Carter, S.L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., Laird, P.W., Onofrio, R.C., Winckler, W., Weir, B.A., et al.: Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30(5), 413–421 (2012)

    Article  Google Scholar 

  4. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Dzamba, M., Ramani, A.K., Buczkowicz, P., Jiang, Y., Yu, M., Hawkins, C., Brudno, M.: Identification of complex genomic rearrangements in cancers using CouGaR. Genome Res. 27(1), 107–117 (2017)

    Article  Google Scholar 

  6. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al.: Real-time DNA sequencing from single polymerase molecules. Science 323(5910), 133–138 (2009)

    Article  Google Scholar 

  7. Gordon, D.J., Resio, B., Pellman, D.: Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13(3), 189–203 (2012)

    Google Scholar 

  8. Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A., et al.: Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 22(2), 346–361 (2012)

    Article  Google Scholar 

  9. Gupta, A., Place, M., Goldstein, S., Sarkar, D., Zhou, S., Potamousis, K., Kim, J., Flanagan, C., Li, Y., Newton, M.A., et al.: Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Nat. Acad. Sci. 112(25), 7689–7694 (2015)

    Article  Google Scholar 

  10. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015)

    Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, New York (1972)

    Chapter  Google Scholar 

  12. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61(4), 893 (1969)

    Google Scholar 

  13. Li, Y., Zhou, S., Schwartz, D.C., Ma, J.: Allele-specific quantification of structural variations in cancer genomes. Cell Syst. 3(1), 21–34 (2016)

    Article  Google Scholar 

  14. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proc. Nat. Acad. Sci. 105(38), 14254–14261 (2008)

    Article  Google Scholar 

  15. Medvedev, P., Fiume, M., Dzamba, M., Smith, T., Brudno, M.: Detecting copy number variation with mated short reads. Genome Res. 20(11), 1613–1622 (2010)

    Article  Google Scholar 

  16. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6, S13–S20 (2009)

    Article  Google Scholar 

  17. Oesper, L., Ritz, A., Aerni, S.J., Drebin, R., Raphael, B.J.: Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinform. 13(6), S10 (2012)

    Article  Google Scholar 

  18. Van Loo, P., Nordgard, S.H., Lingjærde, O.C., Russnes, H.G., Rye, I.H., Sun, W., Weigman, V.J., Marynen, P., Zetterberg, A., Naume, B., et al.: Allele-specific copy number analysis of tumors. Proc. Nat. Acad. Sci. 107(39), 16910–16915 (2010)

    Article  Google Scholar 

  19. Wang, J., Mullighan, C.G., Easton, J., Roberts, S., Heatley, S.L., Ma, J., Rusch, M.C., Chen, K., Harris, C.C., Ding, L., et al.: Crest maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8(8), 652–654 (2011)

    Article  Google Scholar 

  20. Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak, B., Lawrence, M.S., Zhang, C.Z., Wala, J., Mermel, C.H., et al.: Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45(10), 1134–1140 (2013)

    Article  Google Scholar 

  21. Zerbino, D.R., Ballinger, T., Paten, B., Hickey, G., Haussler, D.: Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs. BMC Bioinform. 17(1), 400 (2016)

    Article  Google Scholar 

  22. Zheng, G.X., Lau, B.T., Schnall-Levin, M., Jarosz, M., Bell, J.M., Hindson, C.M., Kyriazopoulou-Panagiotopoulou, S., Masquelier, D.A., Merrill, L., Terry, J.M., et al.: Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34(3), 303–311 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for suggestions that improved the paper. The authors would also like to thank the TCGA Research Network for making the data publicly available. This work is supported in part by National Institutes of Health Grants CA182360, HG007352, and DK107965 (to J.M.), and National Science Foundation Grants 1054309 and 1262575 (to J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rajaraman, A., Ma, J. (2017). Towards Recovering Allele-Specific Cancer Genome Graphs. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics