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Abstract. Cancer is an evolutionary process driven by somatic
mutation. This process can be represented as a phylogenetic tree. Con-
structing such a phylogenetic tree from genome sequencing data is a
challenging task due to the mutational complexity of cancer and the fact
that nearly all cancer sequencing is of bulk tissue, measuring a super-
position of somatic mutations present in different cells. We study the
problem of reconstructing tumor phylogenies from copy number aberra-
tions (CNAs) measured in bulk-sequencing data. We introduce the Copy-
Number Tree Mixture Deconvolution (CNTMD) problem, which aims to
find the phylogenetic tree with the fewest number of CNAs that explain
the copy number data from multiple samples of a tumor. CNTMD gen-
eralizes two approaches that have been researched intensively in recent
years: deconvolution/factorization algorithms that aim to infer the num-
ber and proportions of clones in a mixed tumor sample; and phylogenetic
models of copy number evolution that model the dependencies between
copy number events that affect the same genomic loci. We design an
algorithm for solving the CNTMD problem and apply the algorithm
to both simulated and real data. On simulated data, we find that our
algorithm outperforms existing approaches that perform either deconvo-
lution or phylogenetic tree construction under the assumption of a single
tumor clone per sample. On real data, we analyze multiple samples from
a prostate cancer patient, identifying clones within these samples and a
phylogenetic tree that relates these clones and their differing proportions
across samples. This phylogenetic tree provides a higher-resolution view
of copy number evolution of this cancer than published analyses.

1 Introduction

Cancer results from an evolutionary process where somatic mutations accumu-
late in a population of cells during the lifetime of an individual [21]. Thus, a
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tumor consists of heterogeneous subpopulations of cells, or clones. Each clone
comprises cells that share a unique complement of somatic mutations. Quanti-
fying this intra-tumor heterogeneity has been shown to be important in cancer
treatment [29]. While intra-tumor heterogeneity complicates the identification of
mutations in bulk-sequencing data from a tumor sample containing millions of
cells, it also provides a signal for inferring the tumor composition—the number
and proportion of clones within a sample—as well as the ancestral history of
somatic mutations during cancer development [12]. Thus, a number of methods
have been developed to infer phylogenetic trees from DNA sequencing data from
one or more samples of a tumor [5,8,12-14,17,19,20,28].

One class of mutations that are particularly useful for inferring tumor compo-
sition and tumor evolution are copy-number aberrations (CNAs), which include
duplications and deletions of large genomic regions. CNAs are ubiquitous in
solid tumors and can be readily detected from DNA sequencing data, making
them good candidates for phylogenetic analysis. However, there are two major
challenges in using CNAs to quantify intra-tumor heterogeneity and evolution.

The first challenge is that nearly all cancer sequencing studies perform bulk
sequencing, where mutations are measured in tumor samples composed of mix-
tures of millions of different cells. While single-cell sequencing provides a higher
resolution measurement of tumor heterogeneity, it remains a specialized tech-
nique that is cost prohibitive and error prone for whole genome analysis of thou-
sands of cells [11]. Thus, we require techniques to deconvolve CNA measurements
from mixed tumor samples. Typically, CNAs are detected in sequencing data
by examining the depth of aligned sequencing reads to genomic regions. More
specifically, segmentation algorithms use this signal to partition the genome into
segments with the same integer copy number [1,16]. When a sample is hetero-
geneous, i.e. composed of a mixture of distinct clones, a fractional copy number
may be obtained for each segment instead of an integer copy number. A num-
ber of methods have been developed to infer tumor composition from fractional
copy numbers, taking advantage of the fact that larger CNAs perturb thousands-
millions of sequencing reads, providing a signal to infer their proportions, even
with modest coverage sequencing [2,9,10, 16,20, 23]. However, these methods have
certain limitations that limit their applicability and performance. For example,
ASCAT [16] and ABSOLUTE |[2] use the data from heterogeneous samples for
inferring the tumor purity (the proportion of normal clone in a sample), but they
do not distinguish the copy numbers of different tumor clones. Other methods,
such as THetA [23], Battenberg [20], cloneHD [9] and TITAN [10], infer the clonal
composition independently for each sample by deconvolving the fractional copy
numbers into the integer copy numbers of the extant clones and their propor-
tions. However, one can obtain more information by jointly considering more sam-
ples from the same tumor [12], as successfully done for single-nucleotide muta-
tions [5,8,14,17] or non-integer copy numbers [24]. Moreover, there may be mul-
tiple ways to deconvolve fractional copy numbers, especially without imposing a
structure on the inferred CNAs. Therefore, the inference of distinct clones may
benefit from jointly inferring their evolution.
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The second challenge in using CNAs to reconstruct tumor evolution is that
one requires a model of the evolution of CNAs. Defining such a model is not
straightforward because CNAs can overlap, and thus positions in the genome
cannot be treated independently. Standard phylogenetic models represent a
genome as a sequence of “characters” with mutations acting independently on
individual characters. A number of models have been introduced to study CNA
evolution, and these models can be classified into two categories. The first consid-
ers single events such that each of those independently affects the copy number
of a single segment [3,19]. However, these models do not account for depen-
dency between adjacent segments in the genome. The second category consid-
ers the effects of CNAs on multiple segments as interval events that amplify
or delete copies of contiguous segments; the most prominent such approach is
MEDICC [25]. Recently, [27] and [7] improved the model in MEDICC. Specif-
ically, [27] formally investigated the effects of interval events on segments of a
single clone. In [7], the authors formalized the Copy-Number Tree (CNT) prob-
lem that aims to find the most parsimonious evolution of clones explained by
the minimum number of interval events, and derived an integer linear program
(ILP) that solves this problem. However, all of the studies applying these meth-
ods either assume that each sample is homogeneous and consisting of a single
clone [26,28] or first attempt to infer the clones independently on each sample
before performing a phylogenetic analysis of CNAs [19].

In this paper, we propose an approach combining the deconvolution of frac-
tional copy numbers from multiple samples with the inference of CNAs that
describes the evolution of the clones. We introduce the Copy-Number Tree Mix-
ture Deconvolution (CNTMD) problem that aims to deconvolve the fractional
copy numbers into the integer copy numbers of the extant clones and their pro-
portions such that the evolution of the clones is explained by a minimum num-
ber of copy number aberrations modeled as interval events (Fig.1). We design
a coordinate-descent algorithm for solving this problem and we compare our
method with alternative approaches on real-size simulations. We find that com-
bining the deconvolution of fractional copy numbers with a phylogenetic tree
outperforms other methods. We apply our method on multi-sample sequenc-
ing data of a prostate-cancer patient [13]. Our inference shows well-supported
patterns that reveal the clonal composition in terms of CNAs. The software is
available at http://compbio.cs.brown.edu/software/.

2 Copy-Number Tree Mixture Deconvolution Problem

We start by reviewing the CNT problem, where given integer copy-number pro-
files one is asked to infer a copy-number tree, whose leaves correspond to the
profiles with the minimum of events. Specifically, we define the interval events
that label the edges of this tree. We conclude this section by introducing the
problem of deconvolving fractional copy numbers from multiple heterogeneous
samples into integer copy-number profiles of distinct clones and their proportions
such that the resulting profiles form the leaves of a parsimonious copy-number
tree.
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Fig. 1. Copy-Number Tree Mixture Deconvolution (CNTMD) problem. A
tumor consists of heterogeneous subpopulations of cells, or clones. The normal clone is
colored yellow. Five samples are bulk sequenced yielding fractional copy numbers F'.
We model the evolution of CNAs by a copy-number tree T (right). We combine the
deconvolution of F' with the inference of T'. Thus, CNTMD factors F' into the integer
copy numbers C' of the extant clones and their proportions U such that ' = CU and
C' generates a copy-number tree 7' with the minimum number A(T') of interval events.

Following the model in [7,25,27], we represent a chromosome as a sequence
of m segments. A copy-number profile, or profile for short, specifies the number
of copies of each segment in a clone. Formally, a profile ¢; = [¢, ;] is a (column)
vector of m integers whose entries c;; € N indicate the number of copies of
segment s in a clone i. For brevity, we consider a single chromosome.

We consider mutations that amplify or delete contiguous segments. An inter-
val event, or event, increases or decreases the copy numbers of contiguous seg-
ments of a profile ¢;. Formally, an event is a triple (s,¢,b) with segments s < ¢
and integer b € Z. If b is positive then the event is an amplification and the
non-zero segments between s and t are incremented by b, whereas for negative b
the events is a deletion and the same segments are decremented by at most |b|.
Thus, the event (s,t,b) applied on ¢; = [cy;] results in ¢} = [} ;] such that, for
each segment £, C},i = max{cs; +b,0} if s < ¢ < ¢ and ¢; # 0, or CZJ- = cyp
otherwise. Thus, once a segment ¢ has been lost, i.e. ¢;,; = 0, it can never be
regained (or deleted).

We model the evolutionary process that led to n extant tumor clones by a
copy-number tree T' defined as follows.

Definition 1. Given a number n of clones, a copy-number tree is a rooted full
binary tree on n leaves, such that each vertex v; € V(T) is labeled by a profile
c; and each edge (v;,v;) is labeled by a set &, ; of events. The root vertex r(T),
corresponding to the normal clone, is diploid, i.e. ¢, (1) = 2 for each segment s.

The requirement that 7T is a full binary tree is without loss of generality, as
each vertex with out-degree greater than 2 of a general tree can be split into
vertices of out-degree 2, and each vertex with out-degree 1 can be removed and
the associated events assigned to the outgoing edge. Thus, each vertex v; € V(T')
has either zero or two children and is labeled by a profile c;. To avoid degenerate
solutions, we impose a maximum copy number ¢y« € N for each segment s of any
vertex v; of T such that ¢, ; < cmax. Moreover, each leaf v; € L(T') corresponds
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to the clone i. As such, we order the vertices V(T') = {v1,...,va,—1} such that
L(T) = {v1,...,v,} and 7(T) = vo,—1. An edge (v;,v;) € E(T) relates a parent
vertex v; to its child v; such that the label £(¢, j) is a set of events that transform
c; to ¢;. In general, the order of £(i, j) matters. Following a result by Shamir et
al. [27], it suffices to consider an unordered set of events instead of an ordered
sequence. In fact, any sequence of events, where amplifications and deletions
occur in an arbitrary order, can be transformed into a sorted sequence, where
deletions are followed by amplifications, without changing the cost of events, as
defined in the following. The cost of an event (s,t,b) is the number of changes
in the segment and is thus equal to |b|. Therefore, the cost A(i,j) of an edge
(vi,v;) is the total cost of the events in (i, ), i.e. A(i,J) = D (s 1 peeq bl
The cost A(T) of the tree T is the sum of the costs of all edges.

In the ideal case of single-cell sequencing data with no errors, each clone is a

single cell and we observe the copy-number profiles ¢4, ..., ¢, of n tumor clones.
As such, we wish to find the most parsimonious explanation, i.e. a minimum-cost
copy-number tree T* whose n leaves are labeled by cy,...,c,. Previously, we

have shown that this problem, the Copy-Number Tree (CNT) problem, is NP-
hard and we introduced an ILP formulation for solving it [7]. However, with bulk-
sequencing data the observations correspond to k samples obtained from a single
tumor in different regions or at different time points. Each sample corresponds
to a mixture of n extant clones (leaves) of an unknown copy-number tree in
unknown proportions. Recall that m is the number of segments. Our observations
are thus described by the m x k fractional copy-number matriz F = [fs ] where
the fraction f,, € R>¢ is the average copy number of segment s in sample p.

Let T be a copy-number tree with n leaves. We represent the profiles of the
clones of T' by the m xn copy-number matriz C' = [cs ;] such that the i-th column
of C corresponds to the profile ¢; of clone i, i.e. C = (cy,...,c,). We say that
C generates T if the leaves of T are labeled by the profiles in C' and such that
each internal vertex v; is labeled by a profile ¢; = [¢; ;] with ¢;; < cmax for each
segment s. The n x k usage matriz U = [u; ] describes the mizing proportion
uip € R>g of clone i in sample p such that the sum ), ., w;, of the mixing
proportions for each sample p is 1. The observed fractional copy-numbers F' are
thus modeled by F' = CU. We have the following problem (Fig. 1).

Problem 1 (Copy-Number Tree Mizture Deconvolution (CNTMD)). Given an
m X k fractional copy-number matrix F', a number n of clones, and a maxi-
mum copy number ¢pax, find an m x n copy-number matrix C' generating T
and an n X k usage matrix U such that F' = CU and A(T*) is minimum.

3 Method

The hardness of CNTMD is an open question. However, we suspect the prob-
lem to NP-hard, as the related unmixed version, the CNT problem, is NP-
hard [7]. Moreover, other similar deconvolution problems under a tree constraint
are NP-hard as well [6,8]. As such, we design a heuristic algorithm based on the
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coordinate-descent paradigm for solving a distance-based version of CNTMD
where we aim to infer copy-numbers C' with n clones (columns) and mixing
proportions U that minimize the distance between the observed fractional copy
numbers I’ and the inferred fractional copy numbers CU:

IF—cul= 3 3 |for— > coiuip|- (1)

1<s<m 1<p<k 1<i<n

Under a parsimony constraint, we impose a maximum cost Ay, on the copy-
number tree T" generated by C'. That is, we require that C' generates 1" such that
A(T) < Apmax and we consider the following problem.

Problem 2 (d-CNTMD). Given an m X k fractional copy-number matrix F, a
number n of clones, a maximum copy-number ¢pax, and a maximum cost Ay ax,
find an m x n copy-number matrix C' = [c, ;] generating T' and an n x k usage
matrix U such that ¢ ; < cmax, A(T) < Amax and ||F' — CU|| is minimum.

Following the coordinate-descent paradigm, we split the variables of d-
CNTMD and obtain two subproblems, where either matrix C' or matrix U is
fixed, with the same objective of minimizing the distance |F — CU||. An iter-
ation t consists of two steps. In the C-step, we are given a usage matrix U;_;
and we search for a copy-number matrix C; = [cs;] minimizing [|F — C,U;_1||
such that ¢, ; < cmax and C generates T with cost A(T') < Apax. Conversely, in
the U-step we take the matrix Cy as input and seek a usage matrix U, such that
|F' — C:U¢|| is minimized.

To account for local optima, we use () restarts with different initial usage
matrices Uy, ...,Ug,0. We generate these usage matrices in a sparse way. This
procedure yields a sequence of pairs of matrices, where for consecutive pairs
(Cqt:Uq 1), (Cgrtg1,Ugev1) it holds that ||F — CyUqill > [|[F — Cyi1Ugt41]]-
This is because both Cy 441 and Uy ;41 can be chosen equal to the previous matri-
ces Cy+ and Uy, respectively, resulting in the same distance. We iterate until
|F' — Cq.tUqt|| drops below a convergence threshold or the number of iterations
reaches a specified number K.

Our algorithm thus computes @ pairs (Cy x,Ug k) of matrices for each
restart Uy o and returns a pair (C’,U*) of matrices that minimize the distance
|F — CykUy k|- In the distance-based formulation we do not directly opti-
mize for the cost A(T”) of a tree T” generated by C’. Instead, we only require
that each identified matrix Cy g generates a copy-number tree T, g with cost
ATy k) < Amax and, consequently, we have that the final matrix C’ generates
a copy-number tree T" with cost A(T") < Apax- Thus, it may be the case that
for the same usage matrix U* there exist another copy-number matrix C" differ-
ent from C’ that generates a copy-number tree T” whose cost is A(T"") < A(T")
while having the same distance |FF—C'U*|| = ||F —C"”U*||. To find the best such
matrix C* that generates a tree T with the smallest cost A(T*), we introduce
a refinement step with a slightly adjusted integer linear programming (ILP) for-
mulation of the C-step. Figure 2 depicts the entire procedure of the coordinate-
descent algorithm.
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Fig. 2. Coordinate-descent algorithm. Given an initial usage matrix Uy,o, the algo-
rithm alternatingly solves two distinct steps for at most K iterations. The C-step com-
putes a copy-number matrix Cy + given the previous usage matrix Uy :—1 and is followed
by the U-step, which computes a usage matrix U,,; given Cy ;. We repeat the procedure
using @ restarts with different initial usage matrices, yielding Q pairs (Cq,x,Uq,x ) of
matrices. Given these final matrices, the refinement step searches for a copy-number
matrix that generates a copy-number tree with minimum cost.

We present a linear programming (LP) formulation for the U-step in Sect. 3.1
followed by an integer linear programming (ILP) formulation for the C-step
in Sect. 3.2. Since the distance-based variant of the problem does not directly
minimize the cost of the tree, we present in Sect. 3.3 an algorithm for finding the
smallest maximum cost A* with the largest decrease in the distance ||F'— CU]|.

3.1 U-Step

In the U-step, we are given a fractional matrix F' and a copy-number matrix
C, and seek a usage matrix U = [u;,] with real-valued entries u;, minimiz-
ing the distance ||F' — CUJ|. We linearize the distance function ||F — CU||
and formulate the resulting the optimization problem as an LP with O(km)
variables and O(km) constraints. To model the absolute difference in (1), we
introduce variables f,, for each segment s and sample p, and model f,, =
|fs,p — 2 1<i<n Cs,ilip| using the following linear constraints.

fs,pzfs,p_ Z Cs,iUi,p ]-SSSmylSpSk (2)
1<i<n
fs,pz Z Cs,iui,pffs,p 1S8Sm71§p§k (3)
1<i<n

Moreover, we introduce variables 0 < wu;, < 1 that represent the usage of a
clone i in sample p. We constraint the usages of each sample to sum to 1 using
the following constraint.

Zui,pzl 1<p<k (4)

1<i<n

Thus, we have the following LP: min, ¢ > <, 1<p<s fsp st (2), (3) and (4).

3.2 C-Step

In the C-step, we are given a fractional matrix F' and a usage matrix U, and
seek a copy-number matrix C' = [cs;] with integer entries ¢, ; minimizing the
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distance |F' — CU]| such that ¢, ; < cmax and C generates a tree T with A(T) <
Amax. Similarly, to the U-step we model the distance function ||F' — CU|| with
variables f;, and their corresponding constraints (2) and (3). We formulate the
optimization problem of the C-step as an ILP with O(n?m + nmlog Amax +
km) variables and constraints. Our formulation introduces new constraints that
improve upon the model introduced in [7].

We introduce binary variables X = [z; ;] to model the topology of T" and inte-
ger variables C' to label the vertices and edges of T'. Note that C' is a submatrix
of C. Recall that T is a full binary tree (Definition 1). We construct a directed
acyclic graph G = (V, E) that contains all copy-number trees T with n leaves
as spanning trees. More specifically, we order the vertices V' = {v1,...,v2,-1}
such that L(T) = {v1,...,v,} and r(T) = va,,—1. The edge set E contains edges
{(vi,vj) In+1<i<2n—-1,1<j < i< 2n—1}. We introduce a variable
x;; for each edge (v;,v;) € E, which indicates whether (v;,v;) is an edge of
T. To encode that T is a full binary spanning tree of G, we require that each
non-root vertex has exactly one incoming edge and that each internal vertex has
two outgoing edges with the following constraints.

>oooay=1 1<j<2n—1 (5)
i>4,i>n+1
> iy =2 n<i<2n-—1 (6)
1<j<1
Integer variables C' = [cs.i] where ¢s; € {0,..., cmax} encode the profiles of

each vertex v;. Since the root vertex is diploid, we add the following constraints.
Cs2n—1 = 2 1<s<m (7)

From these profiles and the topology of T' (as captured by variables z; ;), we
obtain the events €(i,j) that transform the profile ¢; into the profile ¢; and
thereby the cost for the edge (v;,v;). Recall that an event is a triple (s,t,b) and
corresponds to an amplification if b > 0 and a deletion otherwise. We model the
amplifications and deletions covering any segment s in &(i, ) with two separate
variables as; ; € {0, ..., tmax} and ds; ; € {0, ..., cmax}, respectively. Note that
we require (i, j) to be empty when the corresponding edge (v;,v;) is not in 7.
As such, we introduce the following constraints that force variables a,;; and
ds; ; to be 0 when (v;,v;) is not in T'.

As,ijy dsij < CmaxTi, 1< s <m, (vi,v5) € E(G) (8)

Due to these constraints, the cost of every pair (v;,v;) of vertices that do not
form an edge of T', i.e. x; ; = 0, is fixed to 0. Therefore, only the cost of the edges
of T is computed, which significantly constraints the model and improves the
performance over the formulation presented for the unmixed CNT problem [7].

Now, we consider the effect of amplifications and deletions on a segment s.
As described above, we assume that deletions are applied before amplifications.
Moreover, if a subset of deletions results in segment s reaching value 0, the
remaining amplifications and deletions will not change the value of that segment.
Similarly to [7], we distinguish four different cases. Case (a) is ¢s; = 0 and
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¢s,; = 0: Since both segments have value 0, we have that, following a result
in [27], the number of amplifications as; ; and deletions d, ; ; must be between
0 and cmax. Case (b) is ¢;; # 0 and ¢ ; # 0: Since ¢5; > 0, the number of
deletions d, ; ; must be strictly smaller than c, ;. Moreover, it must hold that
Cs,j+dsi;=cCsitas; ;. Case (c)is cs; # 0 and ¢, ; = 0: Since deletions precede
amplifications, the number of deletions ds; ; must be at least ¢s ;. Case (d) is
¢s,i = 0 and ¢, ; # 0: Once a segment s has been lost it cannot be regained. As
such, this case is infeasible.

To capture the conditions of the four cases, we introduce binary variables
Zi,s,q that provide a binary representation of the integer variable c; ;. We define
L := |logy(cmax)] + 1. In addition, we introduce binary variables ¢;; € {0,1}
and the following constraints such that ¢, ; = 1 iff ¢5; # 0.

L
Coi = 2% ziog 1<i<2n—-1,1<s<m (9)
q=0
L
Zisg S Coi <Y Ziag 1<i<2n-1,1<s<m,0<q<L (10)
q’'=0
Since as; j,ds;i; € {0,...,Cmax}, the upper bound constraints involving cmax

are covered. In particular, case (a) is captured in its entirety. We capture case
(b) with the following constraints where (v;,v;) € E(G).

Co,j < Csyi —dsyij + Qsij + 2Cmax(3 — Ciys — Cj,s — Tij) 1<s<m (11)
Co,j + 2€max(3 — Cs,i — Cs,j — Tij) > Cs,i — dsij + Gsij 1<s<m (12)
di,j,s S Cs,i — 1 + (Cmax + 1)(2 - Es,i - Es,j) 1 S S S m (13)

In fact, in the case of z;; = 1 (i.e, (v;,v;) isinT), &,; = 1, and & ; = 1,
constraints (11) and (12) model the equation ¢, ; + ds;,; = s + as,;,j, whereas
constraint (13) ensures that ds; ; < ¢s;. Otherwise, in the case of x; ; = 0, the
constraints are always satisfied and the corresponding variables as ; j, ds i ; for
every segment s are forced to 0 (which is different from the ILP formulation
in [7]). Note that ds; ; can be always equal to zero by constraint (13), hence we
do not need to distinguish whether x; ; = 0 or «; ; = 1. Next, we model case (c),
when z; ; = 1, using the following constraints.

Cs,i S ds,i,j + Cmax(2 - Es,i + Es,j - xi,j) 1 S S S m, (Uivvj) € E(G) (14)

Finally, the following constraints, which encode that if z; ; = 1 then ¢,; = 0
implies ¢, ; = 0, prevent case (d) from happening.

1-— Ti,j + Es,i 2 Es’j 1 S S S m, (”Ui,Uj) € E(G) (15)

We model the cost of an edge (v;,v;) as the sum of the amplifications and dele-
tions starting at each segment s by introducing variables @, ; ; € {0,..., Cmax}
and ds; ; € {0, ..., Cmax}. Variables as_; ; correspond to the amplifications start-
ing at segment s and is equal to max{as,; ; — as—1,,,0}. Symmetrically, vari-
ables (Zs7i,j corresponds to the deletions starting at segment s and is equal to
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max{d,;; — ds—1,i,j,0}. We model this using the following constraints.

Qs,i,j = Qsyij — Qs—1,i,5 1<s<m, (”iﬂ’j) S E(G) (16)
ds,ij > dsij—ds—1,; 1< s <m,(vi,v;) € E(G) (17)
ao,i,j =do,i; =0 (vi,v;) € E(G) (18)

As before, we force a,; ; and Js,i,j to 0 when the corresponding pair (v;,v;) of
vertices is not an edge of T using the following constraints.

as,i,j, Js,i,j < CmaxTi,j 1<s<m, (vi7vj) € E(G) (19)
Now, the cost of an edge (v;,v;) can indeed be expressed as Y, .., (Gsi; +

ds; ;). Hence, the cost A(T) is simply the sum of the costs of all the edges, and
we require that this cost is at most Ay, with the following constraint.

Z Z (ds,i,j + Js,i,j) S Amax (20)

(vi,v5)EE(G) 1<s<m

The ILP is thus: ming ¢ >0y < o 1<p<r fsp st (2), (3), (5)—(20).

3.3 Choosing Amax to Balance Cost A(T) and Distance ||F — CU||

We indicate by (C4, U4) the matrices found by our approach with maximum cost
Amax = A and we define d(A) = ||F — CAUA||. First, observe that the objective
function d(A;) is non-increasing with larger values of A;. That is, if A, > A
then d(A;) < d(A), as C/ generates T with cost A(T) < A;. The parameter
Amax controls the tradeoff between the cost A(T') of the tree T and the distance
|F' — CU]J. In the following, we describe an algorithm for finding the smallest
maximum cost A* such that d(4*) = 0.

However, requiring that d(A*) = 0 is too stringent as the value d(A;) depends
on the number of restarts and is further confounded by the presence of noise that
may result from mapping errors or amplification biases (such as GC-content
bias). It is thus reasonable to expect that d(A*) > 0 and that small decreases
in the value of d(A;) for any A; > A* may be not significant due to these
confounding factors. We therefore introduce the parameter ¢ and say that Ay >
A; provides a better solution than A; if and only if d(A;)—d(A3) > . Intuitively,
the user-specified threshold e controls the tradeoff between greater robustness
to noise (larger €) or more precision (smaller £). We redefine A* as the smallest
integer whose solution cannot be improved by increasing the maximum cost,
that is d(A*) —d(A;) < e for any A, > A*. Note that in a similar fashion ¢ plays
a role in the refinement step described previously. We use the monotonicity of
the function d(A;) and employ binary search for finding the value A*.

4 Results

We applied our algorithm for CNTMD to simulated data and to data from two
patients from a prostate cancer dataset [13]. We ran every experiment in this
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Fig. 3. Alternative methods infer trees that differ significantly from the true
tree, which is inferred by our approach CNTMD. Copy-number trees inferred
by the alternative methods where deletions (s,t, —1) are red and amplifications (s, ¢, 1)
are green. (A) Shows the true tree composed of four clones co (normal), c1, c2, c3 with
a cost of 8. This tree is correctly retrieved by CNTMD. All the alternative methods
fail to infer the clonal mutation (1,2, —1). (B) The tree inferred by IMF contains too
many events and differs significantly from the true tree. (C-D) CNT and soft CNT
infer clones that are very different from the true clones (E) single CNTMD splits the
effect of the deletion (1,8, —1) across two distinct clones cz and c3 resulting in a cost
of 15.

section on a compute cluster, and every execution lasted up to 2 days, with 160
restarts for the simulated data and 300 restarts for the real data. The implemen-
tation of our method and related details, as well as the implementation of the
alternative methods are available at http://compbio.cs.brown.edu/software/ .

We benchmarked CNTMD on simulated data, comparing its performance
to several other approaches, which we now describe. The first alternative app-
roach is a “factorization-only” approach that aims to factorize a fractional copy-
number matrix F' into a copy-number matrix C' and a usage matrix U such that
F = CU without imposing a tree constraint. Published approaches to this prob-
lem perform this factorization (sometimes called deconvolution) independently
on each sample [9,19,20,23]—one exception is [24], but this infers non-integer
copy numbers and it has not been applied to multiple samples from the same
tumor. These methods do not take into account any information from the context
and may provide unlikely profiles characterized by many interval events without
a reasonable structure (Fig. 3B). To the best of our knowledge, there is no pub-
lished method that solves the matrix factorization problem for the case where
F' comprises multiple vectors and C' is composed of integers. Thus, we imple-
mented Integer Matriz Factorization (IMF) which performs the factorization by
splitting the variables, C' and U, and applying a coordinate-descent algorithm
in a similar fashion as the procedure described in Sect. 3.

Another class of approaches use the same copy number model as CNTMD,
but assume that each sample is unmixed. One strategy is to first round the
entries of F' before inferring a copy-number tree. We will do this by solving the
CNT problem with an ILP model [7], mimicking the strategy that has been used
with MEDICC [26,28]. We also consider a second rounding approach, which we
call soft CNT, where we round the fractions in F' either up or down such that
we obtain a copy-number matrix C' that generates 7' with minimum cost. We do
this by extending the ILP formulation of the CNT problem described in [7].


http://compbio.cs.brown.edu/software/

Copy-Number Tree Mixture Deconvolution 329

method

o
- -
0 B single CNTMD . e NTVD 30 B single CNTMD
- NTvD p— - oNTMD
@i . CNT
B soft CNT B soft ONT
00 -
: ' |
2 <15
= s I
: E ' ; ‘ ‘
l . B | '. i I ‘ Y [ ‘W
, 4 "
2 s 0

5 5
#samples k ##samples I #samples k

(A) (B) (©)

Fig. 4. CNTMD outperforms alternative methods on simulated data. Com-
parison of five methods across 27 simulated datasets with k € {2, 5,10} samples, con-
sisting of 4 tumor clones and a normal diploid clone, each with a total of 350 segments
across 22 chromosomes. Each simulated instance was solved with n set to the true
number of clones. (A) Normalized usage difference ||U — U||. (B) Leaf consistency (LC)
measure. (C) Difference |A(T) — A(T)|/A(T).

Finally, we also consider a variant of CNTMD, which we call single CNTMD.
Here, we replace the interval events by single events; this is equivalent to a model
where the cost of an interval event depends on the number of segments in the
interval. However, the single event model is not a good representation of true
copy number aberrations in cancer, as the length distribution of somatic copy
number aberrations is not simply a function of length [30]. Such a copy number
model was used by [19] and [3] for inferring the evolution comprising the min-
imum number of single events from the profile of clones inferred independently
from each sample. Figure 3 shows an example highlighting the weaknesses of all
the alternative methods presented above.

We compare CNTMD with the methods described above on simulated
instances composed of 22 chromosomes with a total of 350 segments. These
instances have the same size as real data. The number of segments per chromo-
some ranges from 5 to 50 and follows the distribution of the number of segments
in the prostate-cancer datasets available in [13]. Using a procedure similar to the
one described in [7], we randomly generate three copy-number trees, denoted by
T, which in turn were generated by copy number matrices C composed of four
tumor clones plus the normal diploid clone. We mix the leaves of each tree
according to a usage matrix U and obtain fractional copy-number matrices with
k € {2,5,10} samples. For each tree and value for k, we generate three instances
with different usage matrices. Thus, we consider 27 simulated instances in total.

We use three quality measures to compare the inferred tree T', inferred copy-
number matrix C, and inferred usage matrix U to the simulated T, C and U.
We compare T to 1" by considering the relative difference of events |A(T) —
A(T)|/A(T). To compare U to U, we need to associate each inferred clone i to a
corresponding true clone i Similarly to [6,17], we search for a maximum-weight
bipartite matching that minimizes the value of the usage difference ||U — U]
in a bipartite graph where there is a an edge (v;,v;) with weight |c; — c;| for
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all pairs (z,%) To compare C to C, we compute a maximum-weight bipartite
matching on the same complete bipartite graph where the edges are weighted
by a similarity metric, called leaf consistency (LC). This value is computed by
solving an instance of CNT [7] for every pair (c;,c;) of profiles where c; is a
column of C' and c; is a column of C. More specifically, the LC value of (ciscj)
is the minimum cost of a copy-number tree with two leaves labeled by c;, c; and
with an unfixed root. Note that LC is 0 if and only if ¢;, c; are equal. Similarly
to the other metrics, we compute a maximum weight bipartite matching where
the edges are weighted by the LC values for every pair c;, c; of columns from C
and C , respectively. We normalize the matching weight by the number of clones
and chromosomes.

Figure 4 shows the results on the simulations. First, we observe that CNTMD,
which combines both factorization and a proper interval tree-based model, out-
performs all other methods across all number of samples. Second, we see that the
quality metrics improve with increasing number k of samples for all the meth-
ods. This is especially the case for the factorization-based methods (IMF, single
CNTMD, CNTMD), where differences in the clonal composition across samples
provide a strong signal for deconvolution (Fig.4A-C). In contrast, the rounding
methods (CNT and soft CNT), show only a modest improvement with increasing
number of samples (Fig. 4B and C), which is not surprising since rounding does
not directly exploit differences in clonal composition across samples. Finally,
observe that with a small number of samples (k = 2), CNTMD dramatically
outperforms IMF (Fig.4A and C), demonstrating how CNTMD leverages the
extra information given by the tree constraint. Moreover, by not accounting for
interval events, single CNTMD results in copy-number trees that are inconsistent
with the simulated trees and have many more events (Fig. 4C).

4.1 Application to Prostate Cancer Dataset

We apply our approach on prostate cancer patient A22 from the dataset of
Gundem et al. [13]. Patient A22 comprises 10 samples. We use the published
fractional copy numbers that were obtained by the Battenberg algorithm [20],
which relies on the sample purity and tumor ploidy estimated by ASCAT [16].
Since the true clonal structure of these samples is unknown, we examine the
consistency of different measures on the results obtained by running CNTMD
with varying number of clones n € {2,...,8}. We observe a number of patterns
that suggest that there are six clones in the tumor that are distinguishable by
copy number aberrations; in comparison [13] estimate 16 clones using SNVs.
First, we observe that the value of |FF — CU]|| decreases significantly with
increasing values of n (Fig.5). However, the rate of decrease declines for n > 6,
suggesting that additional clones are not providing substantial gain in fitting the
observed copy number fractions. Second, we find that the entries of the usage
matrix U for n < 6 have well-supported proportions with reasonable mixing
proportions for each clone in several samples (data not shown). In contrast, for
n > 6, we identify clones with very low mixing proportions across samples (such
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Fig. 5. The dis- Fig. 6. Trees with n < 6 clones have a cascading topol-
tance decreases with ogy and well-supported edges, whereas trees with
increasing number n > 6 clones have the same cascading topology but
of clones n and sta- have less-supported edges. For each copy-number tree T',
bilizes with n > 6 we show the cost A(T) and label the edges by their cor-
clones. The y-axis responding costs. The colors of leaves map corresponding
shows the normalized clones in the topologies. The normal clone is red.

value of the distance

|F— CU|| for each n.

as ¢5 for n = 7 and ¢4 for n = 8) suggesting that the additionally inferred clones
are not supported by the data. Third, we consider the topologies and costs of
inferred trees with varying number of clones and find that the tree with n = 6
clones best describes the data. We find that most of the clonal events, which
are events that are shared by all tumor clones and occur on the first branch
of the tree, are consistent across the majority of the trees with n < 6 clones
(Fig. 8). Moreover, the trees with n < 6 clones have a cascading topology with an
additional branch for every increase in n. In contrast, with n > 6 clones, the trees
conserve the same cascading topology and each additional clone splits a previous
clone (from the tree with n — 1 clones) into two new sibling clones, potentially
overfitting the data (Fig. 6). The total number of events, A(T'), stabilizes between
n = 5 and n = 6 before increasing again for n > 6. The trees with n > 6 have
several edges with only a few events as opposed to the trees with n < 6 clones.
In sum, these findings suggest that the tree with n = 6 clones provides a good
explanation of the data in comparison with the other trees that either overfit
(n > 6) or do not accurately represent the clonal structure of the data (n < 6).

Finally, we examine the relationship between the inferred matrix C' and the
observed fractional copy number matrix F', checking whether segments with close
values of F across samples are assigned the same copy number values in C, as we
vary the number n of clones. We do this by partitioning the segments into classes
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with the same evolutionary history in the inferred tree T (which is derived from
the inferred C). Specifically, we define a class to be a set of segments that have
the same copy-number change on all edges of T'. Consequently, segments in the
same class have the same copy number in all the clones. We observe that with
increasing n the number of classes increases, whereas their size decreases (data
not shown). However, the size and number of classes do not significantly change
with n > 6. Next, we assess the consistency between these classes and F. For
each pair p1, p2 of samples, we plot the fractional copy numbers of each segment
in these samples, coloring segments by their class (overlapping segments with the
same values result in larger dots). Figure 7 gives a schematic of this procedure.
We see that for n < 6, segments in the same class are apart in at least one pair of
samples (red, dark blue, and green clusters in Fig. 7), suggesting a poor fit to the
data. On the other hand, for n > 6, segments with slightly different fractional
copy numbers are separated (red/white clusters for k = 7 and light blue/cyan
clusters for k = 8), suggesting overfitting of the data. Thus, this analysis also
indicates that n = 6 appears to provide a reasonable partition into classes.

We also compare our inferred clonal copy number aberrations (CNAs) to
the published clonal CNAs in [13]: We observe that several clonal events in our
inferred T' correspond to the these CNAs (Fig.8): three inferred deletions on
chr12 match the reported 12p LOH; a deletion with a subsequent amplification
on chrl3 matches the reported 13q LOH; a deletion on chr8 matches the 8p
LOH; an amplification on the same chr8 matches the 8q gain; and two chrl6
deletions match the reported 16q LOH. More interestingly, most of these events
are clonal in the majority of the inferred trees for every n (Fig.8). Thus, other
recurrent and well-supported events in the inferred tree 1" are likely to be real,
giving additional information about the clonal composition of these samples.

3456 0 3456 0 3456 0123456
sample D sample D sample D sample D sample D sample D sample D

Fig. 7. Classes of segments with the same evolutionary history highlight
consistency of the inferred solutions with the input data. Fractional copy
numbers for three A22 prostate cancer samples: D, K and J. The largest dot contains
14 segments. The consistency of the classes improves with increasing n. The red class
in n = 5 is composed of segments that have one copy in all the considered samples,
and segments that have two copies in samples D, K and zero copies copies in sample J.
With n = 6 these two subsets are separated into different classes (red and purple),
while with n = 7 one more class (white) is introduced, potentially overfitting the data.
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chr
chr1a

Fig. 8. Well-supported clonal events correspond to published clonal CNAs.
This plot shows the copy numbers of the clonal events inferred with n = 6 clones. We
indicate separate chromosomes with dashed blue lines. Green lines indicate amplifica-
tions and red lines indicate deletions. The lengths are proportional to the number of
segments. Thick lines indicate events that are shared by the majority of the inferred
trees T (with varying n). Purple stars indicate events that correspond to published
clonal CNAs [13].

5 Discussion

In the paper, we formulated the Copy-Number Tree Mixture Deconvolution
(CNTMD) Problem, and derived a coordinate-descent algorithm, with alternat-
ing ILP and LP steps, to solve this problem. CNTMD builds a phylogenetic tree
describing copy number evolution directly from mixed samples, thus addressing
an important issue in applying phylogenetic analysis to tumor samples. We show
that CNTMD outperforms approaches that only perform deconvolution—thus
ignoring the phylogenetic relationship between samples—or that build phyloge-
netic trees assuming that each sample is homogeneous, i.e. consisting of a single
clone. We also apply CNTMD to a complex metastatic prostate cancer dataset,
and build a phylogenetic tree containing multiple distinct clones, mixed in dif-
ferent proportions across samples. These results demonstrate the feasibility of
our approach to real-sized datasets.

There are a number of directions for future work. On the theoretical side,
the hardness of CNTMD remains open. Assuming the problem is intractable,
better heuristics for solving the C-step would improve the performance with
increasing number of clones. An additional avenue of investigation is to incor-
porate uncertainty in the segmentation of the genome into the model. Finally,
one could extend the approach using more sophisticated models of genome evo-
lution, including models that include additional genome rearrangements and
complex patterns of duplication—some promising work in this direction is found
in [15,18,22]. For practical applications, a number of improvements would be
helpful. First, approaches to better address noise in the copy number fractions,
using confidence intervals or posterior distributions to model the uncertainty in
entries of F', are needed. Next, model selection or regularization approaches to
estimate the number of clones in a tree and avoid overfitting would be help-
ful. For example, we report n = 6 clones in the prostate cancer sample A22,
while the original analysis [13] reports 16 clones. This difference is likely due to
the fact that [13] use single-nucleotide variants (SNVs) to identify clones. Thus,
methods that simultaneously identify CNAs and perform phylogeny inference
from CNAs and SNVs are an important direction for future work. Finally, one
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could augment the phylogenetic reconstructions with single-cell measurements
including FISH [3] or single-cell sequencing [4]. Together, these improvements
would enable high-fidelity phylogenetic reconstructions of tumor evolution.
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