Computer Communications and Networks

Series editor

A.J. Sammes Centre for Forensic Computing Cranfield University, Shrivenham Campus Swindon, UK The **Computer Communications and Networks** series is a range of textbooks, monographs and handbooks. It sets out to provide students, researchers, and non-specialists alike with a sure grounding in current knowledge, together with comprehensible access to the latest developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that even the most complex of topics is presented in a lucid and intelligible manner.

More information about this series at http://www.springer.com/series/4198

G. Kousalya • P. Balakrishnan • C. Pethuru Raj

Automated Workflow Scheduling in Self-Adaptive Clouds

Concepts, Algorithms and Methods

G. Kousalya Coimbatore Institute of Technology Coimbatore, India

C. Pethuru Raj Reliance Jio Cloud Services (JCS) Bangalore, India P. Balakrishnan SCOPE, VIT University Vellore, India

 ISSN 1617-7975
 ISSN 2197-8433 (electronic)

 Computer Communications and Networks
 ISBN 978-3-319-56981-9
 ISBN 978-3-319-56982-6 (eBook)

 DOI 10.1007/978-3-319-56982-6
 ISBN 978-3-319-56982-6
 ISBN 978-3-319-56982-6 (eBook)

Library of Congress Control Number: 2017941762

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Enterprise-class software applications are steadily embracing the cloud idea in order to succulently reap all the originally envisaged cloud benefits. Due to the ondemand utility and elastic nature of virtualized and containerized infrastructures that are the real hallmark of any cloud environments (private, public, and hybrid), scores of mission-critical workloads are being accordingly modernized (cloudenabled) and migrated to cloud environments to be delivered with all alacrity and authentication to worldwide clients and consumers. On the other hand, of late, there are cloud-native applications gaining prominence. There are business, technical, embedded, social, operational, transactional, and analytical applications efficiently running on cloud hosts. The cloud paradigm is definitely on the fast track. That is, we are all set to experience software-defined cloud environments in the days ahead. Precisely speaking, clouds emerge as the one-stop IT solution for hosting, delivering, billing, monitoring, measuring, managing, and maintaining all kinds of simple as well as complex workloads.

As I see, this book is all about expressing and exposing the various automated workflow scheduling algorithms and approaches for various process-centric cloudbased applications. Workflow is typically described by a Directed Acyclic Graph (DAG) in which each computational task is represented by nodes and each data/ control dependency between tasks is annotated through edges that intrinsically connect nodes. Workflow scheduling is therefore recognized as one of the most vital requirements for hosting workflow-centric applications in cloud environments. There are quality of service (QoS) constraints such as the timeliness, throughput, minimal cost, minimal makespan and maximal resource utilization, etc. The other widely articulated and accentuated challenge is the efficient resource utilization and optimizing the total execution time (makespan) of the workflow.

Having understood the intricacies of workflow applications and the state-of-theart workflow/task/job scheduling algorithms, the authors of this comprehensive yet compact book have clearly detailed the enterprise-grade software applications and their scheduling needs in cloud environments. This book covers most of the topics that are needed for cloud consultants, architects, and administrators. The cloud service providers (CSPs) across the globe are leveraging a variety of scheduling algorithms in order to enhance resource utilization of highly virtualized IT environments for bringing down the cloud operational costs. I am sure that this book is a must for professionals who are manning next-generation software-defined cloud environments. Finally, research students, scholars, and scientists are bound to be benefited immensely through this book.

Dr. K.R. Murali Mohan

Scientist-G & Head, Interdisciplinary Cyber Physical Systems Division (ICPS), Department of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi, India

Preface

Two things are clearly noteworthy here. There is a heightened heterogeneity of cloud IT resources, whose distributed nature also is on the climb. Further on, the multiplicity of software applications leveraging various cloud resources is steadily growing. All these points to the fact that the IT development, deployment, delivery, and management complexities are bound to escalate sharply in the days ahead. There are pioneering technologies, enabling tools, and advanced algorithms emerging and evolving fast, and if they are applied correctly, the threatening complexity of new-generation IT environments is bound to decline substantially. Academic professors and IT industry professionals across the globe hence work collaboratively to unearth a bevy of workable solutions for the abovementioned IT challenges. Optimized and organized scheduling of jobs/tasks/workflows of process-aware, service-oriented, event-driven, cloud-centric, and enterprise-scale applications is one forward-looking complexity-mitigation requirement for the impending cloud IT era. This book is expertly crafted to describe the various workflow scheduling algorithms and approaches, which are becoming indispensable to bring a kind of sanity and also to run all kinds of software applications (cloud-enabled and cloudnative) by efficiently leveraging different and distributed cloud resources.

Chapter 1 (Stepping into the Digital Intelligence Era) is to talk about the digitization technologies and how myriads of digitized entities and elements are being systematically realized and deployed in our daily environments. Further on, the chapter digs deeper and describes how the connected era emerges and evolves, how the massive amount of data getting generated are subjected to a variety of investigations to squeeze out viable and venerable insights, and finally how the knowledge extracted is delivered to facilitate correct decision-making and action in time. The chapter ends with how digitization and the paradigm of cognitive computing converge with one another in order to make the path smooth for the forthcoming era of digital intelligence.

Chapter 2 (Demystifying the Traits of Software-Defined Cloud Environments (SDCEs)) is specially crafted to tell all about the cloud journey. We have started with the brief of age-old server virtualization and then proceeded to explain how other cloud resources especially storage and network are getting virtualized. The

brewing trend is to have completely virtualized IT environments by appropriately leveraging cloud technologies. There are virtual machine monitors (VMMs), integration tools, orchestration engines for automated provisioning and software deployment, service brokers for multi-cloud solutions, integrated monitoring, measurement and management systems, job schedulers, capacity planning and configuration tools, a plenty of security algorithms and approaches, and other automated solutions to have next-generation cloud environments. The readers can find the details in the second chapter.

Chapter 3 (Workflow Management Systems) is incorporated to give a detailed explanation of workflow management systems. Today's scientific applications require a tremendous amount of computation-driven as well as data-driven supported resources. Typically scientific applications are represented as workflows. The workflow management systems are designed and developed to depict the workflows of complex nature. The workflow management systems are able to reliably and efficiently coordinate among various resources in a distributed environment. This chapter describes various workflow management software solutions such as Kepler, Taverna, Triana, Pegasus, and Askalon. The architecture and functionalities of these workflow management systems are explained in a lucid manner.

Chapter 4 (Workflow Scheduling Algorithms and Approaches) is to explain the nitty-gritty of various workflow scheduling algorithms. Cloud infrastructures typically offer access to boundless virtual resources dynamically provisioned on demand for hosting, running, and managing a variety of mission-critical applications. Efficient scheduling algorithms become mandatory for automated operations of distributed and disparate cloud resources and workloads. The resource scheduling is a dynamic problem; it is associated with on-demand resource provisioning, fault tolerance support, hybrid resource scheduling with appropriate quality of service, and considering time, cost, and budget. This chapter provides the details about various automated solutions for workflow scheduling and also a comprehensive survey of various existing workflow scheduling algorithms in the cloud computing environment.

Chapter 5 (Workflow Modeling and Simulation Techniques) is to detail the prominent and dominant workflow modeling and simulation techniques and tips. Modeling and simulation of scientific workflow play a vital role in resource allocation in a distributed environment. Simulation is one of the methods to solve the complex scientific workflows in distributed environment. There are many scientific workflow simulation software frameworks that are available for grid and cloud environment. WorkflowSim is an open-source simulator. WorkflowSim Simulator extends the existing CloudSim Simulator. The architecture, components, and scheduling algorithms used and also the simulation results are explained for the CloudSim Simulator.

Chapter 6 (Execution of Workflow Scheduling in Cloud Middleware) is to converge the workflow capabilities in cloud environments. Many scientific applications are often modeled as workflows. The data and computational resource requirements are high for such workflow applications. Cloud provides a better solution to this problem by offering a promising environment for the execution of these workflows.

As it involves tremendous data computations and resources, there is a need to automate the entire process. The workflow management system serves this purpose by orchestrating workflow task and executes it on distributed resources. Pegasus is a well-known workflow management system that has been widely used in large-scale e-applications. This chapter provides an overview of the Pegasus Workflow Management System and describes the environmental setup with OpenStack, creation, and execution of workflows in Pegasus and discusses the workflow scheduling in the cloud with its issues.

Chapter 7 (Workflow Predictions Through Operational Analytics and Machine Learning) is an important one for this book. Data analytics is the widely recognized mechanism to squeeze out important information out of historical as well as current data heaps. The advancements in the fields of operational analytics and machine learning (ML) clearly could foretell everything to accurately predict workflows. Increasingly workflow execution employs predictive analytics to extract significant, unidentified, as well as precious insights from several stages of execution. Further, the operational analytics integrates these valuable insights directly into the decision engine which enables analytical as well as machine learning-driven decision-making for an efficient workflow execution. This chapter highlights several analytical and machine learning approaches that are practiced in workflow predictions. Additionally, it explains the significance of a hybrid approach which includes both analytical and machine learning models for workflow prediction. Finally, it describes the hybrid approach employed in PANORAMA architecture using two workflow applications.

Chapter 8 (Workflow Integration and Orchestration, Opportunities and Challenges) is prepared and presented in order to explain how workflow orchestration is being performed. Workflow orchestration is a method which smartly organizes the enterprise function with the application, data, and infrastructure. The applications, as well as their infrastructure, can be dynamically scaled up or down using orchestration. On the contrary, the integration enables the development of new applications with the capability to connect to any other application through specified interfaces. In this chapter, firstly, the opportunities and challenges in workflow orchestration and integration are explained. Following that, BioCloud, an architecture that demonstrates the task-based workflow orchestration using two bioinformatics workflows, is explained in detail.

Chapter 9 (Workload Consolidation Through Automated Workload Scheduling) illustrates how workload consolidation and optimization lead to heightened resource utilization. Workload consolidation is an approach to enhance the server utilization by grouping the VMs that are executing workflow tasks over multiple servers based on their server utilization. The primary objective is to optimally allocate the number of servers for executing the workflows which in turn minimize the cost and energy of data centers. This chapter consolidates the cost- and energy-aware workload consolidation approaches along with the tools and methodologies used in modern cloud data centers.

Chapter 10 (Automated Optimization Methods for Workflow Execution) deals with how various optimization methods guarantee optimal execution of workflows.

Workflow optimization is an approach to enhance the speed, robustness, and compactness of workflows by exploiting their structure, runtime, and output. This chapter initially highlights the significance of workflow optimization along with different possible levels of optimization. Further, it outlines the Taverna optimization framework over single and distributed infrastructure together with the optimization plugins that is validated using two scientific workflow executions.

Chapter 11 (The Hybrid IT: The Characteristics and Capabilities) is to give an idea of the emerging hybrid IT domain. With the faster adoption of the cloud idea across industry verticals with all the elegance and the enthusiasm, the traditional IT is bound to enlarge its prospects and potentials. This is a kind of new IT getting enormous attention and garnering a lot of attraction among business executives and IT professionals lately. The systematic amalgamation of the cloud concepts with the time-tested and trusted enterprise IT environment is to deliver a bevy of significant advantages for business houses in the days ahead. This model of next-generation computing through the cognitive and collective leverage of enterprise and cloud IT environments is being touted as the hybrid IT. This chapter is specially crafted for digging deep and describing the various implications of the hybrid IT.

Coimbatore, India Vellore, India Bangalore, India G. Kousalya P. Balakrishnan C. Pethuru Raj

Acknowledgments

G. Kousalya

I express my sincere and heartfelt gratitude to my beloved father Thiru R. Govardhanan for his selfless support and motivation in every walk of my life. In remembrance of his enthusiasm and determination, I wholeheartedly dedicate this book to my father.

P. Balakrishnan

First of all, I convey my heartfelt thanks to Wayne Wheeler and Simon Rees of Springer for providing us this opportunity. Besides, I thank my co-authors for their helping hand and valuable suggestions in shaping up the book. Above all, I must thank my beloved parents (Mr. M. Ponnuraman and Ms. P. Parvathy) who taught me the power of hard work. Finally, I thank my brother (Dr. P. Selvan) and sister (Dr. P. Selvi) for their continuous and consistent moral support.

C. Pethuru Raj

I express my sincere gratitude to Wayne Wheeler and Simon Rees of Springer for immensely helping us from the conceptualization to the completion of this book. I need to remember my supervisors Prof. Ponnammal Natarajan, Anna University, Chennai; Prof. Priti Shankar (late), Computer Science and Automation (CSA) Department, Indian Institute of Science (IISc), Bangalore; Prof. Naohiro Ishii, Department of Intelligence and Computer Science, Nagoya Institute of Technology; and Prof. Kazuo Iwama, School of Informatics, Kyoto University, Japan, for shaping my research life. I express my heartfelt gratitude to Mr. Thomas Erl, the world's top-selling SOA author, for giving me a number of memorable opportunities to write book chapters for his exemplary books. I thank Sreekrishnan, a distinguished engineer in IBM Global Cloud Center of Excellence (CoE), for extending his moral support in completing this book. I, at this point in time, recollect and reflect on the selfless sacrifices made by my parents in shaping me up to this level. I would expressly like to thank my wife (Sweetlin Reena) and sons (Darren Samuel and Darresh Bernie) for their perseverance as I have taken the tremendous and tedious challenge of putting the book together. I thank all the readers for their overwhelming support for my previous books. Above all, I give all the glory and honor to my Lord and Savior Jesus Christ for His abundant grace and guidance.

Contents

1	Stepp	oing into t	the Digital Intelligence Era	1
	1.1	Introdu	iction	2
	1.2	Elucida	ating Digitization Technologies	2
		1.2.1	Why Digitization?	4
	1.3	The Int	ternet of Things (IoT)/Internet of Everything (IoE)	6
	1.4	Real-T	ime, Predictive, and Prescriptive Analytics	10
	1.5	Envisio	oning the Digital Universe	12
	1.6	Descrit	bing the Digitization-Driven Big Data World	13
	1.7	The Cl	oud Infrastructures for the Digitization Era	16
	1.8	Integra	ted Platform for Big Data Analytics	
		(Dr. Ba	urry Devlin [1])	19
	1.9	Conclu	sion	22
	Refer	erences		
2	Dom	ustifying (the Traits of Software Defined	
4	Cloud	d Enviror	ments (SDCFs)	23
	2.1	Introduction		
	2.1	Paflacting the Cloud Journey		
	2.2	2.2.1	Flucidating the Cloudification Process	25
		2.2.1	The IT Commodifization	20
		2.2.2	and Compartmentalization	28
	23	Vieneli	zing the Future	20
	2.5	The Emergence of Software Defined Cloud		50
	2.4	Enviro	nments (SECEs)	37
	2.5 The Major Duilding Dlocks of Software Defined Class		aior Building Blocks of Software Defined Cloud	52
	2.5	2.5 The Wajor building blocks of Software-Defined Clou		34
		2.5.1	Network Virtualization	34
		2.5.1	Network Functions Virtualization (NEV)	36
		2.5.2	Software Defined Networking (SDN)	20 27
		2.5.5	The Key Metivetions for SDN	37
		2.3.4	The Need of SDN for the Cloud	40
		2.3.3	The freed of SDN for the Cloud	41

	2.6	The Distinct Benefits of Software-Defined Networking	42	
	2.7	Accentuating Software-Defined Storage (SDS)	44	
	2.8	The Key Characteristics of Software-Defined Storage (SDS)	47	
		2.8.1 Software-Defined Wide Area Networking		
		(SD-WAN)	48	
	2.9	The Key Benefits of Software-Defined		
		Cloud Environments (SDCEs)	49	
	2.10	Conclusion	53	
	Refere	ences	53	
3	Work	flow Management Systems	55	
	3.1	Introduction		
	3.2	Workflow Management System	56	
	3.3	Kepler	56	
	3.4	Taverna	58	
	3.5	Triana	60	
	3.6	Pegasus	61	
	3.7	ASKALON	62	
	3.8	Conclusion	64	
	Refere	ences	64	
4	Work	flow Scheduling Algorithms and Approaches	65	
•	4 1	Introduction 6		
	4.2	Workflow Model	67	
	4.3	Static Workflow Scheduling	69	
	4.4	Dynamic Workflow Scheduling	70	
	4.5	Workflow Scheduling	71	
	4.6	Taxonomy of Cloud Resource Scheduling	72	
	4.7	Existing Workflow Scheduling Algorithms	73	
	,	4.7.1 Best Effort Workflow Scheduling	73	
		4.7.2 Bi-objective Workflow Scheduling	74	
		4.7.3 Multi-objective Workflow Scheduling	75	
	4.8	Issues of Scheduling Workflow in Cloud	79	
	4.9	Conclusion	80	
	Refere	ences	80	
5	Work	flow Modeling and Simulation Techniques	85	
5	5.1	Introduction	85	
	5.2	Architecture of CloudSim	86	
	5.3	Lavered Design and Implementation of CloudSim	00	
	0.0	Framework	87	
	5.4	Experimental Results Using CloudSim	91	
	5.5	WorkflowSim	95	

	5.6	Archite	ecture of WorkflowSim	95
	5.7	Conclu	ision	101
	Refere	nces		101
6	Execu	tion of V	Vorkflow Scheduling in Cloud Middleware	103
	6.1	Introdu	action	103
	6.2	Workfl	ow Management System	105
	6.3	Experi	mental Setup	106
	6.4	Genera	al Steps for Submitting Workflow in Pegasus	107
		6.4.1	Pegasus Monitoring and Measuring Service	114
	6.5	Conclu	ision	117
	Refere	nces		117
7	Workf	low Pre	dictions Through Operational Analytics	
	and M	[achine]	Learning	119
	7.1	Introdu	iction	119
	7.2	Workfl	ow Prediction	120
		7.2.1	Challenges in Designing an APPS	121
		7.2.2	Workflow Prediction Approaches	121
	7.3	AM-Ba	ased Performance Prediction Systems	122
	7.4	MLM-	Based Performance Prediction Systems	125
	7.5	Hybrid	Performance Prediction Systems (HPPS)	127
		7.5.1	Opportunities and Challenges for HPPS	127
	7.6	Case S	tudy	128
		7.6.1	PANORAMA: An Approach to Performance	
			Modeling and Diagnosis of Extreme-Scale	
			Workflows	129
	7.7	Conclu	ision	133
	Refere	rences		134
8	Workf	low Inte	egration and Orchestration, Opportunities	
	and th	e Challe	enges	137
	8.1	Introdu	iction	137
	8.2	Workfl	ow Life Cycle	138
		8.2.1	Workflow Creation	140
		8.2.2	Workflow Mapping	141
		8.2.3	Workflow Execution	141
		8.2.4	Metadata and Provenance	142
	8.3	Challer	nges and Opportunities	143
	8.4	BioCloud: A Resource Provisioning Framework for		
		Bioinformatics Applications in Multi-cloud Environments		145
		8.4.1	BioCloud System Design	146
		8.4.2	BioCloud in Action	150
	8.5	Conclu	ision	153
	References			153

9	Workload Consolidation Through Automated			
	Work	load Sch	eduling	157
	9.1	Introduction		157
	9.2	Workfl	ow Scheduling	158
	9.3	Cost-Based Scheduling Algorithm		159
		9.3.1	Proportional Deadline Constrained Algorithm	159
		9.3.2	Particle Swam Optimization (PSO) Algorithm	160
		9.3.3	Hybrid Cloud Optimized Cost (HCOC)	
			Schedule Algorithm	162
		9.3.4	Ant Colony Optimization (ACO) Algorithm	163
		9.3.5	Customer-Facilitated Cost-Based Scheduling	
			in Cloud (CFSC)	164
		9.3.6	Task Selection Priority and Deadline (TPD)	
			Algorithm	164
	9.4	Energy	-Based Scheduling Algorithms	165
	9.5	Autom	ated Workload Consolidation	171
	9.6	Conclu	sion	175
	Refere	ences		175
10	Auton	noted Or	ntimization Mathada for Warkflow Evolution	177
10	10.1	Introdu	uction	177
	10.1	Modellon.		178
	10.2	Modifi	ad Workflow Life Cycle and Ontimization Levels	1/0
	10.5	10.3.1	Optimization Levels	100
	10.4	10.5.1 Toyorn	Optimization Eremework	101
	10.4	Optimi	zotion Using Distributed Computing Infrastructure	100
	10.5	10 5 1	Three Tier Execution Architecture	100
		10.5.1	Parallel Workflow Execution	100
		10.5.2	Parallel Optimization Use Case	10/
	10.6	10.5.5 Ontimi	ration Techniques for Workflow Decemptors	100
	10.0	10.6.1	Constic Algorithm	100
	10.7	10.0.1 Doromo	Optimization Dlug In	109
	10.7	Volidat	ing Deremeter Optimization Plug In	101
	10.8	10.8.1	Proteomics Workflow	102
		10.8.1	Biomarker Identification Workflows	192
	10.0	Conclu		194
	10.9 Doford	Coliciu	.51011	190
	Kelele	inces		190
11	The H	[ybrid I]	, the Characteristics and Capabilities	199
	11.1	Introdu	iction	199
	11.2	Demys	tifying the Hybrid Cloud Paradigm	200
	11.3	The Ke	by Drivers for Hybrid Clouds	202
	11.4	The Hy	/brid Cloud Challenges	204
	11.5	Hybrid	Cloud Management: The Use Cases	
		and Re	quirements	208

11.6	The Growing Ecosystem of Hybrid Cloud		
	Management Solutions	208	
11.7	IBM Cloudmatrix-Based Multi-cloud Environments	210	
11.8	The Key Drivers for Cloud Brokerage Solutions and Services	211	
11.9	Benefits of Having a Cloud Broker	217	
11.10	Conclusion	217	
Appen	Appendix Bibliography		
Bibliog			
Index		223	