
Deep Learning Based Semantic Video Indexing and
Retrieval

Anna Podlesnaya, Sergey Podlesnyy
Cinema and Photo Research Institute (NIKFI)

Creative Production Association “Gorky Film Studio”
Moscow, Russia

s.podlesnyy@nikfi.ru

Abstract—We share the implementation details and testing
results for video retrieval system based exclusively on features
extracted by convolutional neural networks. We show that deep
learned features might serve as universal signature for semantic
content of video useful in many search and retrieval tasks. We
further show that graph-based storage structure for video index
allows to efficiently retrieving the content with complicated
spatial and temporal search queries.

Keywords—video indexing; video retrieval; shot boundary
detection; graph database; semantic features; MPEG-7

I. INTRODUCTION

In our work we focus on video search or content-based
video retrieval for cinematography and television production.
Everyday need for footage in TV production consumes much
of editors work spent in movie/broadcast archives. Non-fiction
movies production also relies on historical and cultural
heritage content stored in scattered archives.

Amount of information stored in movie archives is huge.
For example in Russian Federation there are National
Cinematography Archive storing above 70,000 titles and State
TV/Radio Foundation storing above 100,000 titles. Much of
their content comprises rare documentary films dated from
early XX century to recent days. Putting these materials to
modern producers disposal is only possible by means of search
techniques.

Well-established methods for searching, navigating, and
retrieving broadcast quality video content rely on transcripts
obtained from manual annotating, close captioning and/or
speech recognition [1]. Recent progress in descriptive audio
stream provisioning for the visually impaired has lead to video
indexing solutions based on speech recognition of descriptive
audio [2].

Video search and data exchange are ruled by international
standards, one of most important being MPEG-7 [3]. This
standard defines Query Format MPQF in order to provide a
standard multimedia query language to unify access to
distributed multimedia retrieval systems. Some of query types
defined by MPQF are:

 QueryByMedia specifies a similarity or exact-match
query by example retrieval where the example media
can be an image, video, audio or text.

 QueryByFreeText specifies a free text retrieval where
optionally the focused or to be ignored fields can be
declared.

 SpatialQuery specifies the retrieval of spatial elements
within media objects (e.g., a tree in an image), which
may be connected by a specific spatial relation.

 TemporalQuery specifies the retrieval of temporal
elements within media objects (e.g., a scene in a
video), which may be connected by a specific temporal
relation.

It is clear that relying on speech recognition techniques is
not sufficient to implement the above standards requirements.
Querying by media (either by sample image or by sample
video clip) is not possible using text-based indexing. Spatial
querying would be very much limited as well. One needs to
index video by visual content in addition to speech content.

We show in this work that all the above mentioned query
types can be implemented using the semantic features
extracted from video by deep learning algorithms, namely by
convolutional neural networks. Our contribution is (1)
presenting a video indexing and retrieval architecture based on
unified semantic features and capable to implement MPQF
query interface and (2) sharing the results of real world
testing.

II. RELATED WORK

There are two possible approaches for video indexing
based on visual content: image classification and image
description. Image classification approach involves assigning
preset tags to every frame, or every key frame, or every scene
of a video file. Certain improvements to mere classification
task exist including salient objects detection and image
segmentation. In case of salient objects detection one tags
essentially the bounding boxes found in video frames with
preset categories. In case of segmentation one tags free-form
image regions. In any case the resulting index includes a set of
time codes and categories assigned to corresponding movie
parts.

Convolutional neural networks (CNN, e.g. [4, 5, 6]) have
recently become de-facto standard in visual classification,
segmentation and salient objects detection. For example an
architecture described in [5] comprising 19 trainable layers
with 144 million parameters achieved 6.8% top-5 error rate at

ILSVRC2014 competition [7]. Authors in [8] expand CNN
architecture to video classification by means of temporal
pooling and optical flow channel addition to raw frames
content.

However CNN are often trained to analyze individual
photos that are usually carefully framed and focused for the
subject of the image (i.e. the scene) in a clear manner. Videos
are typically comprised of “shots” i.e. unit of action in a video
filmed without interruption and comprising a single camera
view. Within the shots objects may be occluded, blurred, ill
positioned (non centered) because the shots are intended for
integral perception by the spectators.

Additionally, scene content in videos often varies
immensely in appearance, resulting in difficulty in
classification of such content. For example, the subject of a
video shot may be filmed from different angles and scales
within the shot, from panoramic to close-up, causing the
subject to appear differently across frames in the shot. Thus,
because video often represents wide varieties of content and
subjects, even within a particular content type, identification
of that content is exceedingly difficult.

Image description approach involves generating natural
text annotations based on video frame content. In [9] deep
neural network architecture matching image regions with
natural language sentence parts is proposed, and multimodal
recurrent neural network is proposed that takes images as
input and generates their textual descriptions. Using this
architecture one can for e.g. generate text descriptions for key
frames extracted from video stream and build a searchable
index. Since the proposed architecture is capable to generate
sentences describing image regions defined by bounding
boxes it is possible to apply complex search queries with
spatial relations between objects within a key frame.

In [10] text descriptions are generated for video shot i.e. a
sequence of frames, using features extracted by CNN
(similarly to [9]) and applying soft attention mechanism to
generate a description for the shot in the whole.

Image description-based approach has advantages of being
friendly for general-purpose search engines like Google or
Yandex. However this approach is not efficient for searching
by examples as required by MPEG-7 standard. We believe this
approach is most promising as accompanying technology for
broadcasting quality content retrieval tasks.

Search by example is based on video descriptors. In [11]
compact descriptors (28 bit) are obtained by layer-wise
training of autoencoder, where every layer is RBM. Compact
video descriptors based on oriented histograms are defined in
MPEG-7 standard as well [3].

Another aspect of searching by example is due to the fact
that current image classifiers typically have a capacity of 103

while reasonable nomenclature of classes suitable for usage in
information retrieval amounts to 104 categories of common
concepts. In addition, typical search requests include named
entities like famous person names, architectural and natural
landmarks and brand names (e.g. car models). This makes
infeasible the classifiers trained for pre-set known categories
only. In [12] an elegant method is proposed involving the HoG

features storing in image archive index, and online training of
exemplar SVM classifiers based on a set of images (around
102) provided as a template for target concept to be found in
the archive. This concept is easy to expand for video archives
of course.

III. VIDEO INDEXING

In this section we describe video indexing architecture.

A. Features extraction and film segmenting

We use GoogLeNet network structure [6] as primary
source of semantic features extraction. We claim by this work
that one-time operation of CNN calculation per frame is
enough to build powerful video indexing and retrieval system.
For our experiments we use already trained model and image
pre-processing protocol described in [6].

First step of video processing pipeline includes features
extraction and film segmenting into the shots (see Algorithm
1). In this algorithm, we obtain sub-sampled sequence of
movie frames. Sub-sampling period S was chosen as a tradeoff
between accuracy and speed, and we found value 320 ms
(1/8th frame for standard movie frame rate) to be optimal.

Algorithm 1: Film segmentation

Input:

F = {f1, f2, … fN} : Video frames sequence
S : Sampling period (parameter)
T : Threshold (parameter)

Output:

K = {k1, k2, … kM}: Indexes of frames each starting new shot

1: prev_fv ← Null; K ← {1}; InitFilter();

2: for i=1 to N with step S

3: fv ← GetFeatureVector(fi)

4: if prev_fv is not Null

5: d ← Distance(fv, prev_fv)

6: df ← Filter(d)

7: if df > T

8: K « i

9: end if

10: end if

11: prev_fv ← fv

12: end for

Thus, at step 3 we apply GetFeatureVector function to the
frame to get the feature vector that is used throughout all
further operations of indexing and searching. This function
includes pre-processing: image re-scaling into 256x256 BGR,
selecting single central crop 224x224 and applying the CNN
calculation. The function returns an output of the last average-
pooling layer of network [6] which has the dimension 1024.
In practice, to speed up computations we pack several frames
and run calculations in GPU batch mode using caffe library
[13].

At step 5 we calculate distance between previous and
current feature vectors. We are using squared Euclidean
distance, however other choices are possible e.g. cosine
distance. Fig. 1 shows the typical plot of distance values vs.
frame number.

Fig. 1. Distance between neighboring frames feature vectors; red dots
indicate shot boundaries detected by Algorithm 1.

Intuitively, since feature vector in CNN being the source
for SOFTMAX classifier contains semantic information of the
frame, we expect that frames with similar content would have
close feature vectors. The shot in video is a sequence of
frames filmed at single camera view thus it would normally
contain similar objects and background in all frames. Thus a
shot boundary happens where frame content differs
dramatically from the previous shot, and feature vectors differ
substantially. In cinema shot boundaries are often made soft
with dilution or darkening effects. However CNN has shown
to be robust to illumination condition of images, so darkening
effects usually are treated well. Dilution effect where objects
from previous shot are blended with objects from new shot
produce spikes in the plot similar to Fig. 1, and are easy to
filter out.

Filtering operation is performed at step 6. We are using
simple low-pass filter e.g. convolution of 4-window of last
distance values with vector [0.1, 0.1, 0.1, 0.99]. Then at step 7
we check if filtered value of vector distance exceeds a
threshold value, and add frame number to shot boundary list if
it exceeds.

Sample results of shots detection are shown in Fig. 2. In
order to evaluate this algorithm we compared shot boundaries
with I-Frame positions in MPEG-4 encoded movie. I-Frames
are used by MPEG-4 codec as base frames stored without
compression, while consecutive frames are encoded as
difference values from latest I-Frame. Thus I-Frame are good
candidates to shot boundaries because they are inserted into
the video stream specifically when scene changes dramatically
and difference encoding becomes not feasible.

We obtained precision 0.935 and recall 0.860 considering
MPEG-4 I-Frames positions as ground truth while varying
sampling period S (see Algorithm 1). We considered shot
boundary as true if its index was within 5 frames from ground
truth. Naturally, as sampling period grows we loose some shot
boundaries hence recall decreases. However precision stays
almost at the same level justifying the fact that we are using
feature vector encoding frame semantics.

Relatively low recall is explained with the fact that I-
Frames are inserted by MPEG-4 codec in order to minimize
reconstruction error in video stream. Therefore it may insert
numerous semantically similar key frames having just a small

visual difference. Algorithm 1 considers the shot by its
semantic contents and produces fewer shot boundaries.

Fig. 2. Example shots detected in “The great Serengeti”, National
Geographic, 2011 movie fragment.

As a side product of Algorithm 1 we store feature vectors
and classification vectors (CNN output) for every frame into a
distributed key-value storage (Apache Cassandra). This is the
only time when we apply CNN calculation. Technically it may
mean that from this point we do not need GPU for efficient
functioning of video indexing and video retrieval. The rest
operation may be performed in inexpensive cluster or cloud-
based infrastructure with CPU-only server nodes.

B. Graph-oriented indexing

We introduce a graph structure for building a video index.
This is partially due to the fact that trained model [6] that we
use predicts categories within ImageNet contest framework [7]
which uses Wordnet [14] lexical database. This lexical
database is essentially a graph representation of words
(synsets) connected with linguistic relations such as
“hypernum”, “part holonym” etc. This opens wide
possibilities for video retrieval by description e.g. by a query
for videos where an object being part of some general
category is required. We represent the Wordnet lexical
database with graph

GWORDNET = (NNOUNS, ELEXICAL_RELATIONS) (1)

where N denotes nodes, E - edges.

The main unit of graph-based representation of videos is a
shot. As will be shown below, CNN classifier more accurately
categorizes shots than single frames. From user experience
point of view, retrieving shots is natural in case of video
searching.

In our experiments we used CNN trained for ILSVRC2014
competition [7]. It was trained for 1000 categories, majority of
which were dogs and flowers species as well as many other
animals. This is biased from what we may expect in
categorizing common videos. Therefore we chose BBC
Natural World (2006) series of 102 movies, each approx. 45
minutes long for evaluating the proposed system. For practical
use it will be enough to train classifier with common objects in
order to remove this bias to natural history.

Our evaluation of per-frame classification by top-5 score
using 1056 random video frames labeled manually yielded
accuracy 0.36±0.11. This is much lower than 0.93 reported in
[6] but of course this is due to the fact that ImageNet dataset is
closed in a sense that every image does have correct tags
belonging to 1000 categories known to the classifier.

We then performed classification vectors temporal pooling.
Concretely we pooled min(10, <number of frames in the
shot>) classification vectors and compared the accuracy for
average pooling and max pooling. The difference between
pooling methods was vanishing, and accuracy rose to
0.46±0.23. If we further consider Wordnet lexical hierarchy
and treat as correct classifications one-step hypernum from the
category predicted by CNN (e.g. CNN predicted cheetah
while true category is leopard, both share same hypernum
big_cat) the resulting accuracy was 0.53±0.23. Therefore we
choose to index shots by average pooling the classification
vectors and to provide an option for the retrieval of shots using
hypernum to the queried keyword.

In section 3A we simplistically presented video processing
as classifying every frame with single CNN. In reality we
could apply numerous classifiers e.g. place classifier, faces
detector and classifier, salient objects detector and classifier.
Having applied all that classifiers we might obtain numerous
tags for a frame. Moreover, these tags may also have structure
e.g. if we detect two salient objects we may consider spatial
relationship between them: which object is atop or right to the
second one. Therefore it becomes natural to represent a film as
a graph:

GFILM = (N, E), (2)
N = {NSHOTS, NTAGS},

E = {ECATEGORIES, EPLACES, EFACES, ESALIENT_OBJ, ESPATIAL}

It is clear that we may link GFILM with GWORDNET by
matching NTAGS with NNOUNS. Fig. 3 illustrates possible graph
representation of a film comprising two shots.

We used Neo4j graph-oriented database for video index for
its excellent implementation of Cypher query language [15].
The expressive querying of Cypher is inspired by a number of
different approaches and established practices from SQL,
SPARQL, Haskell and Python. Its pattern matching syntax
looks like ASCII art for graphs, which will be shown in IV.

IV. VIDEO RETRIEVAL

In this section we describe an implementation of video
retrieval modes required by MPEG-7 standard.

A. Searching by Structured Queries

Basic keywords-based search in our graph index can be
implemented with Cypher statement (3). It accounts for
minimum confidence level of shot tags, and sorts the search
results by shot duration descending.

MATCH (s:Shot) - [c:Category] -> (3)
(w:Wordnet {synset: “zebra”})

WHERE c.weight > 0.1
RETURN s ORDER BY s.duration DESC

Fig. 3. Graph representation of a film.

Basic Cypher syntax rules denote graph nodes in round
brackets and edges in square brackets. Thus query (3) matches
nodes of type Shot: NSHOTS, see (2) linked to nodes of type
Wordnet: NNOUNS, see (1) having synset zebra with edge of
type Category having weight greater than 0.1. Edge of type
Category corresponds to ECATEGORIES in (2). Neo4j provides
indexing by nodes/edges attributes, therefore performance of
this query is quite good. In our test archive storing 99,505
shots the query with additional LIMIT/SKIP clause took
approx. 40 ms. In our tests the average precision of queries by
40 random keywords from ImageNet contest categories
nomenclature was 0.84±0.25. We could not afford recall
evaluation because of a lack of labeled video content, but in
information retrieval precision is more important from user
point of view: when user searches for zebras they definitely
don’t want to see fish in search result (authors are aware of
zebrafish existence).

It is easy to extend (3) to search for combinations of
keywords, as well as logical combinations (AND, OR, NOT).

One way to improve recall is to include synonyms and/or
hypernums into the search query. Graph representation of
Wordnet lexical database allows easy solution in our video
index by query (4). Here we at first match the hypernum of
cheetah (which is a big_cat), and then match all shots having a
path to the big_cat node. Such type of query limited by 10
results was executed in approx. 40 ms in our tests.

MATCH (w:Wordnet {synset: “cheetah”}) - (4)
[lr:Lexical_rel] -> (big_cats:Wordnet)

MATCH (s:Shot) - [c:Category] -> () --> (big_cats)
WHERE c.weight > 0.1 and lr.symbol = “@”
RETURN s ORDER BY s.duration DESC

Also we might build a query matching the video shots
having certain structure. Let’s find videos having a lion to the
left from a zebra (5).

MATCH (s:Shot) --> (zebra_obj:Salient_obj) --> (5)
(w:Wordnet {synset: “zebra”})

MATCH (s) --> (lion_obj:Salient_obj) -->
(w:Wordnet {synset: “lion”})

MATCH (zebra_obj) - [:Left] -> (lion_obj)
RETURN s ORDER BY s.duration DESC

B. Searching by Sample Video

Video retrieval by sample clip is important in content
production (finding footage in archives) and in duplicates
finding (for legal purposes and for archives deduplication). In
our setting the sample video is limited to a single shot
discussed above, and the goal is to find semantically close
shots. This differs from many existing solutions based on e.g.
HSV histograms or SIFT/SURF descriptors.

We found that feature vector fv ℛ1024 extracted in
Algorithm 1 contains enough semantic information for
retrieving video shots having similar content with the sample
clip. A brute force solution involves comparing distance
between sample clip feature vector and every other shot’s
feature vector with some threshold, and including the shots
having smaller distance to the sample into the search results.
We compared Euclidean distance and cosine distance metrics
of vector distance and selected the cosine distance as preferred
one (6).

ddot(x, y) 

Where x - sample clip feature vector, y - other clip feature
vector.

In order to improve the performance we apply Wordnet
hierarchy to limit the scope of shots to check. Concretely we
select one or two hypernums of the categories of sample clip
by query (4). Only the shots matching this condition are
cycled through vector distance check. Thus we look at the
shots having similar lexical content and select the closest ones
by feature vector distance. This results in retrieving the
relevant shots by terms that are hard to formalize, see Fig. 5.
Figure 4(a) shows the results of a search by keyword elephant.
From these results a user have chosen a sample shot where a
herd of elephants, a lake and forest are filmed. Searching by
this sample retrieved a number of shots having these
characteristics proving that one image is better than hundreds
of words - see Fig. 4(b).

Average precision of search by video was 0.86. We
evaluated precision by searching by a keyword and then
searching by one of resulted shots with cosine distance
threshold 0.3. A human expert counted true/false positives. We
used 42 keywords for this evaluation. Figure 4(c) shows the
distribution of precision values measured by different
keywords.

C. Searching by Sample Images

In order to extend possibilities for video retrieval beyond
the scope of pre-set nomenclature of categories we explored
on-line training of linear classifiers over feature vectors
extracted by CNN.

In order to train classifier we obtained around 100 positive
samples by querying images search engine like Yandex or
Google. E.g. we queried Yandex for steamboat and chose 100
first search results. We scaled every image to 256x256 BGR
pixels and applied CNN [6] to both straight and horizontally

flipped central patch 224x224 px. We thus obtained 200
feature vectors from the output of layer “pool5/7x7_s1”.

(a)

(b)

(c)

Fig. 4. Search by example use case: (a) search results by keyword
“elephant”; (b) results of searching by sample clip – the last row of Fig. 5(a);
(c) histogram of precision values measured for different keywords.

For negative samples we randomly selected 25,000 shots
from our test archive, and averaged feature vectors of first K
frames of each shot, K = min(10, NFRAMES_IN_SHOT).

For online training we randomly shuffled positive and
negative samples and applied Vowpal Wabbit [16] to train a
logistic regression classifier. The following parameters

differed from default values: positive sample weight 200,
epochs number 3, learning rate 0.5. Training took less than a
second in standard Intel-based PC.

A brute force solution involves applying the trained
classifier to every shot’s feature vector, and including the shots
having positive classification into the search results.

Average precision of search by sample images was 0.64.
We evaluated precision by obtaining sample images from
Yandex by a random keyword and then searching our test
archive by 100 sample images. A human expert counted
true/false positives. We used 13 keywords for this evaluation.
Figure 5(a) shows some of the sample images from Yandex,
Fig. 5(b) shows some video shots retrieved from our test
archive, Fig. 5(c) shows the distribution of precision values
measured by different search requests.

V. CONCLUSION

We showed in this work that feature vector fv ℛ1024

extracted by CNN [6] contains enough semantic information
for segmenting raw video into shots with 0.92 precision;
retrieving video shots by keywords with 0.84 precision;
retrieving videos by sample video clip with 0.86 precision and
retrieving videos by online learning with 0.64 precision. All
that is needed for indexing is a single pass of feature vector
extraction and storing into the database. This is the only time
when expensive GPU-enabled hardware is needed. All video
retrieval operations may run in commodity servers e.g. in
cloud-based setting.

However more efforts are necessary to increase the
performance of samples-based video retrieval. While lexical
pruning of search space helps to limit the scope for brute force
algorithm it scales linearly with the data amount. We plan to
explore several approaches for lowering the feature vector
dimensionality in order to search in log time scale, e.g.
random projections and compact binary descriptors.

ACKNOWLEDGMENTS

This work was funded by Russian Federation Ministry of
Culture contract No. 2214-01-41/06-15.

REFERENCES

[1] Smith, J. R., Basu, S., Lin, C.-Y., Naphade. M., Tseng. B. Interactive
Content-based Retrieval of Video. IEEE International Conference on
Image Processing (ICIP-2002), September, 2002.

[2] Bangalore, S. System and method for digital video retrieval involving
speech recognition. US Patent 8487984, 2013.

[3] ISO/IEC 15938-5:2003 Information technology -- Multimedia content
description interface -- Part 5: Multimedia description schemes.
International Organization for Standardization, Geneva, Switzerland.

[4] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification
with deep convolutional neural networks. In NIPS, pp. 1106–1114, 2012.

[5] Karen Simonyan, Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv:1409.1556 , 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. CoRR, arXiv:1409.4842, 2014.

[7] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C.,
and Fei-Fei, L. ImageNet large scale visual recognition challenge.
CoRR, arXiv:1409.0575, 2014.

(a)

(b)

(c)

Fig. 5. Search by sample images use case: (a) sample images obtained from
Yandex by query “steamboat”; (b) some video clips retrieved from test
archive; (c) histogram of precision values by various requests for sample
images.

[8] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan,
Oriol Vinyals, Rajat Monga, George Toderici. Beyond Short Snippets:
Deep Networks for Video Classification.
http://arxiv.org/abs/1503.08909, 2015.

[9] Andrej Karpathy, Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. arXiv preprint arXiv:1412.2306, 2014.

[10] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal,
Hugo Larochelle, Aaron Courville. Describing Videos by Exploiting
Temporal Structure. arXiv preprint arXiv:1502.08029, 2015.

[11] Alex Krizhevsky, and Geoffrey E. Hinton. Using very deep autoencoders
for content-based image retrieval. ESANN, 2011.

[12] Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of
Exemplar-SVMs for Object Detection and Beyond. ICCV, 2011.

[13] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev,
Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio

and Darrell, Trevor. Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093, 2014.

[14] Princeton University "About WordNet." WordNet. Princeton University.
2010. http://wordnet.princeton.edu

[15] http://neo4j.com/blog/open-cypher-sql-for-graphs/.

[16] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project,
2007. http://hunch.net/?p=309.

	I. Introduction
	II. Related Work
	III. Video Indexing
	A. Features extraction and film segmenting
	B. Graph-oriented indexing

	IV. Video Retrieval
	A. Searching by Structured Queries
	B. Searching by Sample Video
	C. Searching by Sample Images

	V. Conclusion
	Acknowledgments
	References

