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Abstract— One of the key objectives of an ambient assisted 
living environment is to enable elderly people to lead a healthy and 
independent life. These assisted environments have the capability 
to capture and infer activities performed by individuals, which can 
be useful for providing assistance and tracking functional decline 
among the elderly community. This paper presents an activity 
recognition engine based on a hierarchal structure, which allows 
modelling, representation and recognition of ADLs, their 
associated tasks, objects, relationships and dependencies. The 
structure of this contextual information plays a vital role in 
conducting accurate ADL recognition. The recognition 
performance of the inference engine has been validated with a 
series of experiments based on object usage data collected within 
the home environment. 
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I. INTRODUCTION 
We live in an age where we are witnessing a significant 

demographic change, especially in the western world where it 
has been projected that the number of people aged 65 and over 
will increase by 23% from 10.3 million to 12.7 million in 2018. 
By 2035, this figure will be expected to reach 16.9 million [1]. 
This scenario leads to a range of challenges for the government, 
as it can lead to a financial burden on the National Health 
Services (NHS), welfare and pension schemes.  As the 
population ages there are increasing numbers of elderly people 
in society, less carers available and less money to pay for care. 
Therefore, we look to technological solutions to reduce the need 
for human carers. One specific way to reduce the burden on the 
health system is to create an environment that promotes 
independent and healthy living for the aging population. Having 
additional years of independence will not only help the elderly 
lead an independent life, but it will also lessen the financial 
burden on the local authorities, NHS and families. The ability to 
lead an independent life is dependent on how well an elderly 
person can conduct everyday activities such as personal 
dressing, cooking, bathing and cleaning [2]. These are known as 
Activities of Daily Living (ADL), whose recognition plays a 
crucial role in observing and tracking any functional decline [3]. 
Useful information about the safety and healthy wellbeing of an 
elderly person cannot only help them lead an independent life 
but can also allow the possibility of instituting safeguards given 

a potential harmful scenario. The work in this paper aims to 
establish a reliable inference engine for unobtrusively 
monitoring and identifying activities of individuals within a 
home environment.  

This paper makes the following contributions. Firstly, we 
introduce a novel concept of modelling and recognising ADLs 
as a hierarchal encapsulated entity, where each ADL has 
attributes that enable the inference engine to reason the internal 
structure and relationships of an ADL when carrying out 
recognition. The remainder of the paper is organised as follows. 
Section 2 provides an overview of the related literature, while 
Section 3 describes the structure and the key characteristics of a 
hierarchally structured ADL. Section 4 describes the inner 
workings of the inference engine and how it manages and 
recognises the hierarchally structured ADLs. Section 5 describes 
the experimental set up of home environment followed by the 
results that validate findings about the inference system. 

II. RELATED WORK

The ability to recognise an individual’s activities within an 
ambient assisted living environment is very much dependent on 
reliable feature detection techniques and the construction of 
human activity models. 

Feature detection can be carried out using visual based 
systems, which can be computationally expensive when 
analysing video footage and can be seen as intrusive. However, 
the contribution of vision-based systems should not be ignored, 
as there is a large body of work within this area. Also the 
activity recognition domain can be complex, hence solutions 
based on the fusion of multiple sensors (including vision 
sensors) should not be overlooked. 

An alternative to visual based systems is the use of 
anonymous binary sensors such as: motion detectors, break-
beam sensors, pressure mats, and contact switches. These can 
aid the process of tracking an individual around the home and 
complement the whole activity recognition process [4]. 
However, these types of systems do not have capability of 
remote monitoring of data. Additionally, it is not possible to 
have knowledge of the context or the sequence of activities 
being monitored. 

Wearing different types of sensors around the body is 
another technique for capturing features related to activities or 
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posture [5]. These types of sensors are known as wearable 
sensors, which can range from accelerometers to audio 
microphones that provide data about body motion and its 
surroundings where the data has been collected. These sensors 
can be stand-alone devices or incorporated into existing context 
aware devices such as smart phones [6], which have the ability 
to determine physical activities such as walking, running, 
climbing stairs and sitting [7][8][9]. While data maybe useful 
for a specific application domain (e.g. physical health and 
exercise), it is not very useful in isolation when trying to 
recognise the complex activities being conducted. 

Using a combination of wearable devices and passive 
transponders on objects within the home environment, can 
achieve recognition of activities and the ability to determine the 
individuals that conducted them. One such approach is 
capturing object usage data using non-intrusive wearable 
sensors [10] based on Radio Frequency Identification (RFID) 
technologies to collect activity information. This type of feature 
detection is known as “Dense Sensing” [11][12], which is based 
around numerous individual objects such as toasters and kettles 
being tagged with passive wireless battery-free transponders 
that transmit information to a computer via a RFID reader [13], 
[14] when the object is used or touched. An advantage of 
deploying passive transponders is that they are unobtrusive, 
cheap, small and easy to install onto a range of different objects. 
In addition, these passive transponders are not reliant on battery 
power, hence they can be deployed within the home 
environment for a very long time. However “Dense Sensing” 
does have its share of flaws. Firstly, the capturing of object 
usage data from the transponders is dependent on the end user 
(participants) to wear RFID reader on their hand or finger, 
which is bulky and requires regular charging. Secondly, the 
presence of metal or water can interfere with the signals, which 
can have detrimental affect on the recognition. In addition, 
trying to capture object usage data for small objects can be 
problematic, as the end user is likely to hold the object with 
their handing covering the passive transponder, which leads to 
a situation where no signal is received in order to confirm that 
the object has been touched [15]. 

Capturing noise-free reliable data only solves half of the 
activity recognition problem, as a vital component is based on 
the construction of human activity models, which make it 
possible to detect and predict activities from the captured 
stream of data. The most popular models within this area of 
work include Hidden Markov Models [16], Naïve Bayes 
classifiers [10] and Bayesian Networks [17]. Unfortunately, 
such approaches are not very reliable when trying to recognise 
activities carried out in a random order, which is a typical 
situation in typical daily life activities [16]. Another criticism is 
that these approaches can sometimes suffer from a 'cold start', 
as large datasets are required to carry out robust recognition 
[18]. 

Ontology-based approaches [19, 20] are a viable option for 
building robust activity models as they exploit the semantics of 
an ADL, which is based on the observation of a user’s current 
context such as current location, current time, and objects used 
to perform the activity.  

Other challenges associated with ADL recognition 
approaches is scalability. One such top-down, goal driven 
approach [21] addressed this by structuring activities in 
hierarchal manner, which was made up of abstract sensor 
mappings and series of execution conditions. The work 
proposed in this paper carries out a similar function, as it also 
structures ADLs as a hierarchal entity. 

To summarise, activity recognition frameworks can be 
divided into two main categories, inductive and deductive. 
Inductive frameworks such as machine learning have the 
potential to learn and generalize by example [22][23] while 
deductive methods can provide powerful means to encode 
semantic process knowledge [24]. Both frameworks have their 
benefits and limitations and the ultimate solution would be the 
one bringing the best of both worlds. In relation to this, the 
proposed hierarchal approach aims to achieve this, as the lower 
task recognition tier is based on an inductive framework, while 
the higher tier ADL recognition is based on a deductive 
framework. 

Existing approaches for ADL inference have been focused 
on classification techniques that have been based on pattern 
recognition. The primary objective of these approaches are 
based on designing models that are capable of recognising 
activities given sequences of observable [25][26], which can be 
then used to deduce behavioural patterns.  

The work proposed in this paper differs from traditional 
classification techniques, as it has the ability to accommodate 
multi-layered contextual scenarios by proposing a hierarchal 
structure for the modelling, representation and recognition of 
the ADLs, its associated tasks, objects, dependencies and their 
relationships. The organisation of this information in a 
contextual structure plays a key role in carrying out robust ADL 
recognition. 

III. ADL MODEL STRUCTURE

ADLs have been modelled in a hierarchal structure, where 
the lowest tier is responsible for feature detection. Features are 
captured as data streams, which are known as sensor events. 
Each sensor event represents the movement of an object (e.g. 
Tap motion has occurred) or the presence of a person entering a 
zone within an environment (e.g. John has entered the sink zone 
within the kitchen). Hence, a sensor event is used to represent a 
person within a zone or the movement of an object (Figure 2).   



Fig. 1. Hierarchal Structure of Make Breakfast ADL and Make Tea Sub-ADL 

These sensor events are then associated with actions, while 
zones are associated with objects. For example, in Figure 1, a 
kettle motion sensor event can be associated with the action 
Kettle used. 

Fig. 2. Sensor Event Representation 

A. Knowledge Base of ADL Characteristics 
Sub-ADL and Action Attributes 

Before discussing the recognition framework, it is important 
to highlight the key attributes and characteristics that form the 
information stored in the knowledge base (see Figure 1). The 
attributes in the knowledge base are associated with the Sub-
ADLs and actions within each ADL, as these are utilised for 
recognising ADLs (see Table 1) based on their characteristics. 

An ADL encompasses Sub-ADLs and actions, as each of 
them has attributes associated with the ADL they belong to. For 

example, the action use of toilet roll will be observed more 
frequently for defecation as opposed to urination ADL. 

TABLE I. SUB-ADLS AND ACTION ATTRIBUTES 

Attributes Description 
Maximum Duration This is threshold of the maximum duration of 

performing an action. 
Minimum Duration This is threshold of the minimum duration of 

performing an action. 
Maximum Occurrence This is threshold of the maximum number of 

times that a certain Sub-ADL or action may 
occur in an activity. 

Minimum Occurrence This is threshold of the minimum number of 
times that a certain Sub-ADL or action may 
occur in an activity. This also determines if an 
action is mandatory or optional for an activity, 
as an occurrence which is greater than 1 makes 
its mandatory that this action should be 
observed in order for the activity to be 
performed.  

Mutually Exclusive Sub-
ADL or Action 

This states whether the Sub-ADL or action are 
mutually exclusive to the ADL, hence they do 
not occur in any other ADL. For example, 
Toothpaste used would only occur in Brush 
Teeth ADL. 

Prerequisite Sub-ADL or 
Action 

This determines if certain Sub-ADLs and 
actions need to occur before any of the Sub-
ADLs and actions that will be expected to 
occur when this ADL is conducted. 



Fig. 3. ADL Recognition Engine 

ADL Attributes 
Like the attributes in Table 1, ADLs have attributes that are 

required for the recognition process. These are based on 
characteristics of the relationships between all the possible 
ADLs that have been modelled.  

The attributes described in Tables 1 and 2 collectively form 
the knowledge model necessary to bootstrap the system for 
initial ADL Recognition. The information in the knowledge 
model can be adjusted or modified based on the location setting 
in order to suit the current environment. 

IV. ADL RECOGNITION

The recognition of the ADLs is based on recognising the 
patterns and occurrences of Sub-ADLs and actions that are 
generated by sensor event sequences. However, there is an issue 
as regarding the length of the sensor event stream that should 
be used for recognition. The first option could be to use the 
entire sensor event stream captured. However, this could be 
very inefficient as only the most recent events are of interest 
within a particular time frame. The other option is to assign a 
sliding window of events, however this would raise an issue as 

to where the sliding window should start from. A sensible 
approach is to ensure that the sliding window starts when a 
person enters or exits a particular zone (e.g. sink zone), as this 
could mark the end of one ADL and the start of another. 
However, what would happen if a person moves between zones 
whilst carrying out an ADL? The proposed approach has 
addressed by combining a series of windows in order to 
accommodate interweaving ADLs that might be carried out 
over a series of windows that are not structured sequentially. 
The proposed ADL recognition engine is divided into a series 
of functions (see Figure 3), which represent the logical steps for 
recognising an ADL. A description of each function follows: 

A. Feature Detection – Sensor Event Detection 
The feature detection for the work in this paper has been 

conducted by installing a collection of Radio Frequency 
Identification (RFID) transponders onto household objects 
(such as utensils, cups, and everyday products) around the 
home environment. The motion duration of a touched object is 
based on the proximity the RFID reader has with the 
transponders that are attached to the objects. For example, the 
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first point of contact with a utensil would be the start of a 
motion, while the final point of contact would be end of the 
motion. The main components of the system and its usage 
within the home environment are summarised in table 3. 

TABLE II.  ADL ATTRIBUTES 

Attributes Description 
Maximum Duration This is threshold of the maximum duration of 

performing the ADL. 
Minimum Duration This is threshold of the minimum duration of 

performing the ADL. 
Associative Actions This determines whether the ADL has any Sub-

ADLs and actions that are associated with other 
ADLs. 

Interweaved ADL This determines if the ADL can be interweaved 
with another ADL. For example, a person can start 
brushing teeth and then start flossing, which can 
then be followed by brushing teeth. 

Shared ADL This determines whether the ADL can be 
performed simultaneously with another ADL in 
the same zone. For example, person x and person 
y using the Tap in the sink zone at the same time, 
where person x is brushing teeth and person y is 
washing hands. 

Assistive ADL This determines if two people are involved while 
the ADL is being performed. For example, person 
x is brushing teeth, while person y passes 
toothpaste to person x. 

Interruptible ADL This determines if ADL can be suspended, while 
another ADL is conducted.  

Repetitive ADL This determines if certain actions or Sub ADLs are 
likely to be repetitive when the ADL is being 
carried out. 

TABLE III.  COMPONENTS FOR FEATURE DETECTION SYSTEM 

Components Description 
RFID Reader The RFID reader is a size of match box, which is worn 

as a ring on the hand of the user conducting an activity. 
Every time a user touches an object, this information is 
then transmitted by the RFID reader via Bluetooth to a 
server. The reader also serves a positioning tag, so that 
the users location can be tracked within the different 
zones. 

RFID Object 
Transponders 

These transponders are affixed to everyday objects 
within the  home environment. 

Zone exciters Zone within rooms (e.g. sink area within kitchen) are 
created by low frequency exciters, which can be set at 
interval ranges between 0.15m and 15m in diameter.  

The reason for using RFID transponders is due to its low 
cost and its ability to unobtrusively monitor behaviours of 
multiple individuals within a household via object usage data. 

B. Windows Segmentation 
Once the data (streams of sensor events) has been captured 

by the feature detection component, the next step is to 
determine the length of the sensor event stream that is going to 
be used for inferring the activities and the individual that is 
conducting them. Hence the objective of this step is to segment 
the entire captured sensor event streams into individual 
windows, so that each window can be used for activity 
inference in the preceding step, which generates a utility for 
each window. 

The windows segmentation function is dependent on two 
following parameters:  

• Time intervals between observations: This is
considered when the time stamps of the sensor
events indicate that there has been a significant
interval between the movements of two objects.
For example, the last object (e.g. frying pan)
within the sensor event stream was captured at
19:26:05, which is then followed by another object
(e.g. Cup) at 23:12:42.

• Location of the observed person: This is based on
the person moving from one zone to another zone.
For example, moving from sink zone to
cooker/oven zone could signify the beginning or
end of an activity.

The segmentation function has two phases of segmentation. 
First phase is to segment the captured streams into windows 
given the interval length between the objects observed. The 
next phase then carries out further segmentation of the 
generated windows by segmenting based on movement of a 
person between zones. 

Algorithm: Windows Segmentation 
Input:  S= {s1, s2, s3…sn} is a stream of sensor events. 
Output: <IWk, sk1, sk2, sk3…skn > Individual Windows of 
sensor events. 

1. For each S do
i. Observe t (time interval) between sn and sn+1

ii. if t > t*tt

Return <Wk, sk1, sk2, sk3…skn > 
2. For each W do

i. Observe zn (zone) between skn and skn+1
ii. if zn = zn+1

Return <IWk, sk1, sk2, sk3…skn > 

C. Utility Function Algorithm 
This component is responsible for generating an initial 

utility for all possible ADLs being detected given the current 
window of sensor events. This function is computed once the 
sensor events have been associated with an action. 

The ADL that has the highest utility is considered to be the 
most probable ADL that is being conducted given the sensor 
event stream in each window. Figure 3 shows the structure of 
the utility function, which is divided into four steps that will 
determine the initial utility of each ADL. The output of the four 
steps is used to compute the initial utility.  A brief description 
for each step is described as follows: 

Step 1 – Duration Observation 
The ability to recognise the duration of an action plays an 
important role in determining the ADL being carried out. The 
objective of this step is to see if the duration of the observed 
actions are within the maximum and minimum duration 



thresholds that are stored in the ADL characteristics knowledge 
base. If the observed duration is within the threshold then the 
output of this function would be computed as 1. However, for 
cases where the observed duration is not within the threshold 
are computed as follows: 

Case 1: Observed duration is less than the minimum duration 
threshold 
If an observed duration for action (e.g. tap used) associated with 
ADL (e.g. wash hands) is less than the minimum duration 
threshold that is currently stored in the knowledge base then a 
linear probability scale is computed which is based on the linear 
difference between the observed start time and the minimum 
accepted duration. 

Fig. 4. Observed duration less than the minimum duration threshold 

For example in Figure 4, the minimum duration for Tap used is 
00:00:50, while the observed duration is 00:00:25. In this 
instance the linear probability scale will be computed based on 
the observed action and the associated threshold data stored in 
knowledge base, in this case it would be 0.5. 

This can be simplified as, 

 (1) 

where x is the observed duration, y is the minimum duration in 
the knowledge base and t represents the unit of time. For 
example: 

 

Case 2: Observed duration is greater than the maximum 
duration threshold 
If an observed duration for action (e.g. using kettle) associated 
with ADL (e.g. make tea) is greater than the maximum duration 
threshold that is currently stored in the knowledge base then 
another linear probability scale is computed as; 

 (2) 

where x is the observed duration, y is the minimum duration, z 
is the maximum duration while tt represents the unit of time. 
For example: 

 

In Figure 5, the minimum duration is 00:01:00, maximum 
duration is 00:02:00, while the observed duration is 00:04:00. 

The output of this function (2) based on the observation and the 
data in knowledge base would 0.5. 

Fig. 5. Observed duration greater than the maximum duration threshold 

Step 2 – Key Events Observation 

2a. Exclusive Action/Sub-ADL 
This step determines the proportion of actions and Sub-ADLs 
that are exclusive to the possible ADLs given the window of 
sensor events. For example, Toothpaste used would only occur 
in Brush Teeth ADL, hence this action would also be 
considered mandatory for this ADL to be recognised. This 
would be computed as: 

 (3) 

where x is the observed exclusive action and  are 
the total number of associated exclusive actions with possible 
ADLs given the window of sensor events. 

2b. Frequency of Exclusive Actions/Sub-ADLs 
The objective of this step is to determine the frequency of 
observed exclusive actions and Sub-ADLs, where the 
frequency is above the expected mandatory threshold of actions 
and Sub-ADLs for the possible ADLs given the window of 
events. For example, the ADL characteristics knowledge would 
identify the frequency of the action loo roll used to be in the 
range of 1 – 5 for the ADL defecation, which would be 
considered mandatory. However if the captured frequency 
event for this action were greater than 5 then this action would 
be considered optional. This is computed as the in Function (3), 
where x is the observed optional exclusive action and 

 are the total number of optional exclusive 
actions that are associated with the all possible ADLs given the 
window of sensor events. 

2c. Mandatory Actions/Sub-ADLs Occurred 
This step determines the proportion of mandatory actions and 
Sub-ADLs that have been observed given all the possible ADLs 
that could occur within the current window of sensor events. 
This is computed as in Function (3), where x is the observed 
mandatory actions and Sub-ADLs and  are the 
total number of actions and Sub-ADLs that are associated with 
all possible ADLs within the current window of sensor events. 

Optional ADLs 
This step determines the proportional of optional actions and 
Sub-ADLs that have been observed given all the possible ADLs 
that could occur within the current window of sensor events. 



ADL Relevance 
This step determines the proportion of unrelated actions and 
Sub-ADLs that have been observed given all the possible ADLs 
that could occur within the current window of events. 

The outputs of the four steps described are used to compute the 
utility of all the possible ADLs given the current window of 
events. The computation of the utility  is based on the 
average of the outputs of the 4 steps , which is as follows: 

 
(4) 

Based on the recognition environment the ratio of importance 
for each step can be changed, however for the following 
example (Table 4) the ratios are considered all equal. 

This utility function is applied in two phases, where the first 
phase is for individual windows to determine the ADLs given 
each window of events. While the second phase is applied to 
aggregate windows in order to determine ADLs that are 
interweaved. For example if window 1 is ADL x, window 2 is 
ADL y, and window 3 is ADL x, then this implies that ADL x 
is interweaved with ADL y. 

TABLE IV. INITIAL UTILITY FOR ADL X GIVEN WINDOW OF EVENTS 

Steps Ratio Output 
 Duration observation 1:4 1 

 Key Events Observation 1:4 0.8 
 Optional ADLs 1:4 0.3 
 ADL Relevance 1:4 0.7 

Initial Utility 0.7 

D. Aggregate Windows Algorithm 
There can be many instances where an activity can be 

carried out in parallel with another activity. For example, a 
person could be making tea while they put bread in the toaster 
to make toast. The recognition of these types of interweaving 
instances is made possible by grouping the detected windows 
into aggregate of related windows, which reflect the 
interweaved activities. 

Algorithm: Aggregate Windows  
Input:  W= {w1, w2, w3…wn} is a stream of individual 
windows. 
Output: <ak, Wk1, Wk2, Wk3…Wkn > Aggregate Windows of 
individual windows. 

1. Initialize a1 = w1
2. For each W do

i. Observe t (time interval) between wn and
wn+1 

ii. if t > t*tt

Return  <ak, Wk1, Wk2, Wk3…Wkn > 

Construction of the related aggregate windows is carried out 
by assigning the first recognised window  as a starting point 
for the newly constructed aggregate window . A linear search 

is then performed on the rest of detected windows to see if it is 
possible to add a related window  to the current aggregate 
window . The construction of the aggregate window is 
dependent on timing interval between the individual windows, 
because if the timing interval between two individual windows 
is over a certain threshold (e.g. 15 minutes) then the current 
aggregate window  can be finalised (Figure 6). 

Fig. 6. Construction of Aggregate Windows 

Once all of the aggregate windows  have been 
constructed, the utility function is then applied in order to carry 
out the second phase of classification based on the new 
constructed aggregate windows. 

V. EXPERIMENTAL SETUP 
The objective of the conducted experiments was to validate 

the performance of the inference engine given collected object 
usage data. The effectiveness of the proposed inference engine 
was measured by calculating the precision and recall rates of 
the ADLs recognised given the aggregate windows. 
The precision (P) and recall (R) for this experiment has been 
calculated as follows: 

(5) 
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Fig. 7. Experiment 1 ADL Precision and Recall Rates 

Fig. 8. Experiment 2  ADL Precision and Recall Rates 

Fig. 9. Experiment 3  ADL Precision and Recall Rates 
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The feature detection approach deployed for these 
experiments was based on a dense sensing [12] approach, where 
household objects (e.g. cup) are tagged with RFID 
transponders. Data based on the usage of these objects is 
collected by ring-link portable RFID reader, which transmits 
usage information to the server whenever the objects are 
touched or are within close proximity of the RFID reader. 
Intentionally there were many instance where the RFID reader 
captured noise and unrelated objects, which will validate the 
robustness of the proposed inference engine. 

TABLE V.  EXPERIMENT DESCRIPTION 

No. Experiment 
1. Each subject was asked to conduct a sequential sequence of ADLs

using a predefined order of objects.
2. Each subject was asked to perform a sequential sequence of ADLs

using a non prescribed order of objects. The objective was to assess
how well ADLs are recognised with different orderings of objects.

3. Each subject was asked to perform a set of Sub-ADLs in a parallel
sequence, for example making tea while making toast. The
objective was to assess how well the inference engine recognizes
interweaved activities as an aggregate ADL.

For this particular dataset, ten adult volunteers were recruited 
from the community to carry out a series of experiments. Table 
5 describes the objective of each experiment.  
For each experiment, the subjects were asked to record the 
ADLs they conducted, which was used a ground truth to 
validate the system output. The experiments were based around 
12 ADLs, which were made up of a series of Sub-ADLs that 
belonged to more than one ADL (see Table 6). This was done 
intentionally to test the robustness of the inference engine when 
trying to recognise similar ADLs. 

TABLE VI. ADL, SUB ADLS CARRIED OUT BY SUBJECTS FOR 
EXPERIMENTS 

ADLs Sub-ADLs 
Prepare Breakfast à Make Tea, Make Coffee, Make Toast 

Eat Breakfast à Drink Tea, Drink Coffee, Eat Toast 
Cleaning after Breakfast à Clean Table, Clean Dishes 

Prepare Lunch à Make Sandwich, Make Wrap 
Cleaning after Lunch à Clean Table, Clean Dishes 

Put Shopping Away à Fridge Shopping Away 
Cupboard Shopping Away 

Prepare Snack à Make Tea, Make Coffee, Get Biscuits 
Eat Snack à Drink Tea, Drink Coffee, Eat Biscuits 

Clean Kitchen Floor à Sweep Floor 
Clean Kitchen Worktop à Wipe Countertop with Wipes 

Laundry - Wash Clothes à 
Wash Clothes - Washing Machine 
Dry Clothes using Tumble Dryer 

Warm up Ready Meal à Heat up food in Microwave 

VI. RESULTS

The results for experiment 1 in figure 7 show that the 
precision rates ranged from 83% to 98%, which is based on the 
subjects conducting a sequential sequence of ADLs using a 
predefined order of objects. 

While the recall rates ranged from 91% to 100%, indicating 
that the inference engine was able to consider all possible 
relevant sub-ADLs and actions when carrying out ADL 

recognition, which demonstrates the robustness of the inference 
engine even where there is noise. The inference engine was able 
to recognise ADLs that were carried out using a prescribed 
order of objects. As expected, ADLs that consisted of sub-
ADLs that belong to more than one ADL had a slight drop in 
the recognition rates. 

The precision rates for experiment 2 (figure 8) ranged from 
81% to 95% and the recall rates ranged from 88% to 97%, 
which is based on the subjects performing a sequential 
sequence of ADLs using a non prescribed order of objects. 

The results for experiment 3 in figure 9 show that the 
precision rates ranged from 79% to 93%, while the recall rates 
ranged from 87% to 96%. This is a slight decrease from the 
other experiments, as each subject performed a set of sub-ADLs 
in parallel sequence. Taking into consideration issues related to 
noise and similar sub-ADLs, the inference engine was still able 
to recognise interweaved activities as aggregate ADLs. 

Overall the results indicate that the proposed inference 
engine was able to recognise and consider all sub-ADLs and 
actions when inferring a range of ADLs in different 
experimental scenarios (e.g. sequential and parallel ADLs 
performed using ordered and unordered objects). The precision 
and recall rates suggest that the proposed inference engine was 
able to recognise more relevant instances of an ADL made up 
of sub-ADLs and actions as opposed to irrelevant instances. 
This is made possible by the hierarchal modelling of the ADL, 
which takes into consideration the actual ADL, its associated 
sub-ADLs, actions and objects. 

The results from these three experiments is comparable in 
terms of the recognition rates achieved with existing ADL 
recognition approaches [27],[28]. Though the other approaches 
deployed feature detection techniques that captured richer data 
(e.g. ambient temperature readings, acceleration data for 
movement and pressure sensors). While the approach proposed 
in this work is based on object usage data collected by simple 
RFID transponders. In order to improve the recognition rates in 
this paper, we could deploy similar feature detection techniques 
that provide richer data for analysis. 

VII. CONCLUSION

The work described in this paper looked at how everyday 
ADLs have been modeled and recognised as a hierarchal 
encapsulated entity, where each ADL has attributes that enable 
the inference engine to reason the internal structure and 
relationships of an ADL when carrying out recognition. A 
series of experiments based on object usage data were 
conducted, which indicated that the hierarchal structure of the 
ADLs and inference engine made it possible to recognise ADLs 
given different recognition scenarios. The feature detection 
technique used was based on low cost simple RFID 
transponders, hence the inference engine had to be robust in 
terms of dealing with noise and missing data. 

The work presented in this paper has the potential to be used 
for intention analysis for the elderly community. As the 
hierarchal modelling of ADLs can enable recognition to be 
more pre-emptive in terms predicting ADLs of the elderly 
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person being monitored. This enables the possibility to initiate 
safeguards given a particular situation. 
Further work will be carried out, as the current engine has the 
potential to be adapted for real time recognition. This will be 
done by deploying a learning mechanism to populate the 
knowledge base given the changes that take place in the 
individual’s activity patterns associated with the attributes in 
the model. 
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