
Journal of Machine Learning Research 15 (2014) 3667-3690 Submitted 12/12; Revised 7/14; Published 11/14

Transfer Learning Decision Forests for Gesture Recognition

Norberto A. Goussies ngoussie@dc.uba.ar

Sebastián Ubalde seubalde@dc.uba.ar

Marta Mejail marta@dc.uba.ar

Departamento de Computación, Pabellón I

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Autónoma de Buenos Aires, C1428EGA

Argentina

Editor: Isabelle Guyon, Vassilis Athitsos, and Sergio Escalera

Abstract

Decision forests are an increasingly popular tool in computer vision problems. Their ad-
vantages include high computational efficiency, state-of-the-art accuracy and multi-class
support. In this paper, we present a novel method for transfer learning which uses decision
forests, and we apply it to recognize gestures and characters. We introduce two mecha-
nisms into the decision forest framework in order to transfer knowledge from the source
tasks to a given target task. The first one is mixed information gain, which is a data-
based regularizer. The second one is label propagation, which infers the manifold structure
of the feature space. We show that both of them are important to achieve higher accu-
racy. Our experiments demonstrate improvements over traditional decision forests in the
ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against
other state-of-the-art classifiers.
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1. Introduction

Machine learning tools have achieved significant success in many computer vision tasks,
including face detection (Viola and Jones, 2004), object recognition (Felzenszwalb et al.,
2010), character recognition (LeCun et al., 1998) and gesture recognition (Guyon et al.,
2013). Those tasks are often posed as a classification problem, namely identifying to which
of a set of categories a new observation belongs. Such classifiers are usually learned from
scratch using a training data set collected for the task. A major advantage of using machine
learning tools is that they tend to deal robustly with the complexities found in real data.

However, in many cases it is difficult to create new training data sets for each new
computer vision task. Although the problem remains unsolved, some progress has already
been made in certain computer vision tasks, such as object recognition (Fei-Fei et al., 2006)
and action recognition (Seo and Milanfar, 2011). The key insight is to try to replicate the
ability of the human brain, which is capable of learning new concepts applying previously
acquired knowledge.

Transfer learning aims at extracting the knowledge from one or more source tasks, and
applying that knowledge to a target task. As opposed to multi-task learning, rather than
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simultaneously learning the source and target tasks, transfer learning focus more on learning
the target task. The roles of the source and target tasks are not symmetric (Pan and Yang,
2010). The goal is to exploit the knowledge extracted from the source tasks so as to improve
the generalization of the classifier in the target task.

Many examples can be found in computer vision where transfer learning can be truly
beneficial. One example is optical character recognition, which seeks to classify a given
image into one of the characters of a given alphabet. Most methods have focused on
recognizing characters from the English alphabet (LeCun et al., 1998). The recognition of
characters from other alphabets, such as French, implies collecting a new training data set
(Grosicki and Abed, 2011). In that case, it would be helpful to transfer the classification
knowledge into the new domain.

The need for transfer learning also arises in gesture recognition (Guyon et al., 2013),
which aims at recognizing a gesture instance drawn from a gesture vocabulary. For example,
a gesture vocabulary may consist of Italian gestures or referee signals. In this case, the
classifier needs to predict the gesture of the vocabulary that corresponds to a given video.
Again, it would be interesting to improve the performance of a system by exploiting the
knowledge acquired from similar vocabularies.

In this paper, we present a novel method for transfer learning which extends the decision
forests framework (Breiman, 2001; Criminisi et al., 2012), and we apply it to transfer knowl-
edge from multiple source tasks to a given target task. We introduce two mechanisms in
order to transfer knowledge from the source tasks to the target task. The first one is mixed
information gain, which is a data-based regularizer. The second one is label propagation,
which infers the manifold structure of the feature space.

Decision forests have certain properties that make them particularly interesting for com-
puter vision problems. First, decision forests are multi-class classifiers; therefore it is not
necessary to train several binary classifiers for a multi-class problem. Second, they are fast
both to train and test. Finally, they can be parallelized, which makes them ideal for GPU
(Sharp, 2008) and multi-core implementations.

The first key contribution is to revise the criterion for finding the parameters of each
internal node of the decision forests in the transfer learning setting. The novel criterion
exploits the knowledge from the source tasks and the target task to find the parameters
for each internal node of the decision forests. The additional information penalizes split
functions with a high information gain in the target task and a low information gain in the
source tasks. We prove that the novel criterion is beneficial.

The second key contribution is to propagate labels through leaves in order to infer the
manifold structure of the feature space. The aim of this step is to assign a predictive model
to the leaves without training samples of the target task after the trees of the decision forest
are grown. We create a fully connected graph, for each tree in the forest, where the nodes
are the leaves of the tree and the weight of each edge takes into account the training data
reaching the leaves. An implicit assumption of this step is that nearby leaves should have
similar predictive models.

We extensively validate our approach in two challenging data sets. First, our exper-
iments in the ChaLearn gesture challenge data set (Guyon et al., 2012) show that our
method does not have a uniform margin of improvement over all the tasks. However, we
demonstrate that when there are source tasks related to the target task, we obtain greater

3668



Transfer Learning Decision Forests for Gesture Recognition

improvements. Second, our experiments in the MNIST data set (LeCun et al., 1998) show
that greater improvements are obtained, compared to classification decision forests, when
there are only a few training samples.

This paper is organized as follows. We summarize previous work on transfer learning in
Section 2. Section 3 describes the novel transfer learning decision forest in, illustrates its
performance on some artificial data sets, and proves some properties of the mixed informa-
tion gain. In Section 4 we show how the transfer learning decision forests can be used to
recognize gestures when there is only one training sample. We present our experiments on
the ChaLearn data set and the MNIST data set in Section 5. Finally, Section 6 details our
conclusions.

2. Related Work

In the following we will review transfer learning techniques which have been applied to
computer vision problems. A recent survey (Pan and Yang, 2010) provides a comprehensive
overview of the developments for classification, regression and clustering. In recent years,
the computer vision community has become increasingly interested in using transfer learning
techniques, especially for object recognition (Levi et al., 2004; Sudderth et al., 2005; Fei-Fei
et al., 2006; Bart and Ullman, 2005; Torralba et al., 2007; Quattoni et al., 2008; Bergamo
and Torresani, 2010; Gopalan et al., 2011; Saenko et al., 2010; Tommasi et al., 2014).

A variety of methods have been proposed in the generative probabilistic setting (Fei-
Fei et al., 2006; Sudderth et al., 2005). These models consider the relationships between
different object parts during the training process. The key idea is to share some parameters
or prior distributions between object categories, using the knowledge from known classes as
a generic reference for newly learned models. The association of objects with distributions
over parts can scale linearly (Sudderth et al., 2005), or exponentially (Fei-Fei et al., 2006).

Moreover, discriminative models have been extended to the transfer learning setting
(Dai et al., 2007; Yao and Doretto, 2010; Aytar and Zisserman, 2011; Tommasi et al.,
2014; Lim et al., 2011; Torralba et al., 2007). Transfer learning has been applied to the
SVM framework, during the training process of the target detector the previously learned
template is introduced as a regularizer into the cost function (Tommasi et al., 2014; Aytar
and Zisserman, 2011). Based on boosting (Freund and Schapire, 1997) a framework that
allows users to utilize a small amount of newly labeled data has been developed (Dai et al.,
2007). Later, the framework has been extended for handling multiple sources (Yao and
Doretto, 2010) .

More similar to our method, instance transfer approaches (Pan and Yang, 2010) consider
source and target data together during the training process. A loss function for borrowing
examples from other classes in order to augment the training data of each class has been
proposed by Lim et al. (2011). A method for learning new visual categories is described
by Quattoni et al. (2008), using only a small subset of reference prototypes for a given
set of tasks. As mentioned earlier, a boosting-based algorithm that allows knowledge to
be effectively transferred from old to new data has been proposed by Dai et al. (2007)
and extended later by Yao and Doretto (2010). The effectiveness of the novel algorithm is
analyzed both theoretically and empirically. In this paper, we develop an instance transfer
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approach that exploits source and target data to find the parameters of each internal node
of the decision forest.

Few researchers have addressed the problem of transfer learning using decision forests
or trees. Leistner et al. (2009) extends random forests to semi-supervised learning. In order
to incorporate unlabeled data a maximum margin approach is proposed, which is optimized
using a deterministic annealing-style technique. Wang et al. (2008) proposed to treat each
input attribute as extra task to bias each component decision tree in the ensemble. Pei
et al. (2013) proposed a novel criterion for node splitting to avoid the rank deficiency in
learning density forests for lipreading. The method proposed by won Lee and Giraud-
Carrier (2007) learns a new task by traversing and transforming a decision tree previously
learned for a related task. The transfer learning decision tree learns the target task from
a partial decision tree model induced by ID3 (Quinlan, 1986). In this paper, we follow a
different approach, first we consider the source and target data when we build each tree of
the decision forest. Second, decision forests reduce the variance of the classifier aggregating
the results of multiple random decision trees.

Our approach shares some features with the work by Faddoul et al. (2012), who propose
to transfer learning with boosted C4.5 decision trees. The main difference is that their
method reduces the variance of the decision trees by means of boosting, which has been
shown to be less robust against label noise when compared with decision forests (Breiman,
2001; Leistner et al., 2009). In addition, we use label propagation to learn the manifold
structure of the feature space, and assign predictive models only to the leaves of the trees.

There has been a growing interest in applying transfer learning techniques to gesture
recognition. A method for transfer learning in the context of sign language is described by
Farhadi et al. (2007). A set of labeled words in the source and target data is shared so as
to build a word classifier for a new signer on a set of unlabeled target words. A transfer
learning method for conditional random fields is implemented to exploit information in both
labeled and unlabeled data to learn high-level features for gesture recognition by Liu et al.
(2010). More recently, the ChaLearn Gesture Competition (Guyon et al., 2013) provided
a benchmark of methods that apply transfer learning to gesture recognition. Several ap-
proaches submitted to the competition have been published (Malgireddy et al., 2013; Lui,
2012; Wan et al., 2013).

3. Transfer Learning Decision Forests

We consider N + 1 classification tasks T0, . . . , TN over the instance space Rd and label sets
Y0, . . . ,YN . We are interested in solving the classification task T0 using the knowledge of the
other tasks in order to improve classification accuracy. Our transfer learning algorithm will
take as input the training set S = {(xi,yi, j)|xi ∈ Rd, yi ∈ Yj , j ∈ {0, . . . , N}, 1 ≤ i ≤M}.
The projected sets TjS = {(xi,yi)|xi ∈ Rd, yi ∈ Yj , (xi,yi, j) ∈ S} are the training sets
for each task Tj . The empirical histogram for a training set S of a task T is defined as
p̂TS(y) = 1

|TS|
∑

(x′,y′)∈TS δy′(y) where δy′(y) is the Kronecker delta and the empirical

entropy is defined as H(TS) = −
∑

y∈Y p̂TS(y) log(p̂TS(y)), we will note p̂S(y) or H(S) to
make the notation simpler when it is convenient and unambiguous.

The goal is to find a decision forest F = {F1, . . . , FT }, defined as an ensemble of T
decision trees F , which minimizes the classification error. A decision tree F is a strictly
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binary tree in which each node k represents a subset Rk in the instance space Rd and all the
leaves ∂F form a partition P of Rd. In addition, each leaf k ∈ ∂F of a decision tree F has a
predictive model associated with it: pF (y|x ∈ Rk). The internal nodes k ∈ F ◦ of a decision
tree have a linear split function: h(x,θk) = x · θk, where θk are the parameters of node k.
The subset represented by the left child kL of node k is defined as RkL = RLk = {x ∈ Rd|x ∈
Rk ∧ h(x,θk) < 0} and, similarly, we define RkR = RRk = {x ∈ Rd|x ∈ Rk ∧ h(x,θk) ≥ 0}
as the subset represented by the right child kR. The training set reaching node k is defined
as Sk = {(x,y, j) ∈ S|x ∈ Rk}.

3.1 Training

The training algorithm of a decision forest F consists in training each of the trees F ∈ F
independently, introducing a certain level of randomness in the training process in order to
de-correlate individual tree predictions and improve generalization.

We grow each tree using an extension of the classical training algorithm (Criminisi et al.,
2012). The algorithm follows a top-down approach, optimizing the parameters θ of the root
node in the beginning and recursively processing the child nodes. The recursion is stopped
when all the items in the training set have the same labels, or the maximum depth D is
reached, or the number of points reaching the node is below the minimum number of points
allowed κ.

In this paper, we adapt the procedure for optimizing the parameters θk for each node
k ∈ F ◦ to the transfer learning setting (Pan and Yang, 2010). The difference between
the classification decision forest (Criminisi et al., 2012) and the transfer learning decision
forest is the objective function. In the former, the information gain is used to find the best
parameters, taking into account only one task. By contrast, in this paper we use the mixed
information gain function as described in Section 3.1.1.

The partition P defined by the leaves ∂F after making a tree F grow might contain
regions R with no training samples of the target task T0. Therefore, we cannot define a
predictive model for those regions. In order to overcome this issue we infer the labels from
the regions that have training samples of task T0, as described in Section 3.1.2.

3.1.1 Mixed Information Gain

We believe that valuable knowledge can be transferred from the source tasks T1, . . . , TN to
the target task T0, as it happens with humans. For example, it is simpler to learn a new
sign language if another sign language has already been learned. In other words, there is
latent information that can be understood as common sense.

In our formulation, this common sense information is included in the process of making
each tree F ∈ F in the forest grow. The main idea is, therefore, to find parameters θk
for each k ∈ F ◦ in order to obtain a partition P of the feature space Rd such that, in
each region R ∈ P, the training samples of each task T have the same label. This aims
at improving the generalization capabilities of each tree independently, since each region
R ∈ P is found using more training samples, and is more general because it is encouraged
to split the training samples of several tasks simultaneously.

Unfortunately, this is a very difficult problem. For this reason, we use a greedy heuristic
which consist in recursively choosing for each internal node k ∈ F ◦ the parameters θk of the
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split function h(x,θk), which makes the training samples reaching the child nodes as “pure”
as possible. The information gain achieved by splitting the training set TSk reaching the
internal node k ∈ F ◦ of a task T using parameter θk is computed using the information
gain function

I(TSk,θk) = H(TSk)−
∑

i∈{L,R}

|TSik|
|TSk|

H(TSik)

where TSLk = {(x,y)|(x,y) ∈ TSk ∧ h(x,θk) < 0} and TSRk = {(x,y)|(x,y) ∈ TSk ∧
h(x,θk) ≥ 0}. In this paper, the parameters θk of each internal node k ∈ F ◦ are found
maximizing the information gain of all the tasks T0, . . . , TN simultaneously

θ∗k = arg max
θk∈Tk

(1− γ)I(T0Sk,θk) + γ

N∑
n=1

pn,kI(TnSk,θk) (1)

where γ is a scalar parameter that weights the two terms, Tk ⊂ Rd is a small subset of the
instance space available when training the internal node k ∈ F ◦, and pn,k is the fraction of

samples of the source task Tn in the samples reaching the node k, pn,k = |TnSk|∑N
j=1 |TjSk|

.

The maximization of (1) is achieved using randomized node optimization (Criminisi
et al., 2012). We perform an exhaustive search over subset Tk of the feature space parameters
Rd. The size of the subset is a training parameter noted as ρ = |Tk|. The randomized node
optimization is a key aspect of the decision forest model, since it helps to de-correlate
individual tree predictions and to improve generalization.

The first term of the objective function in (1) is the information gain associated with
the training samples reaching node k for the target task T0. This term encourages the
parameters θk to find a split function h(x,θk) that decreases the entropy of the training set
of the target task T0 reaching the children nodes of k.

Additional information is introduced into the second term of the objective function in (1)
for the purposes of increasing the generalization performance. This information encourages
the parameters θk to make the training samples of source tasks reaching the descendant
nodes of k as pure as possible. The key idea is that this term penalizes split functions
h(x,θk) with a high information gain in the target task T0 and a low information gain in
the source tasks T1, . . . , TN . Those splits might have a high information gain in the target
task T0 only because the training set for task T0 is limited, and if we choose them the
generalization performance will decrease.

A key insight of our work is an alternative representation of the second term in (1).
It is possible to consider all the source tasks T1, . . . , TN together concatenating the label
sets Y1, . . . ,YN , denoted by Y1...N = ⊕Nn=1Yn. The new task is noted as T1...N and the
training sample is noted as T1...NS = {(x,y)|(x,y, j) ∈ S, j ∈ {1, . . . , N},y ∈ ⊕Nn=1Yn}.
Using the generalized grouping rule of the entropy (Cover and Thomas, 2006) an alternative
expression for the second term in (1) is found

I(T1...NSk,θk) =

N∑
n=1

pn,kI(TnSk,θk).

This equation relates the information gain of several source tasks T1, . . . , TN to the
information gain of another source task T1...N . An important consequence of this equation

3672



Transfer Learning Decision Forests for Gesture Recognition

is that we can combine the training set of the simpler tasks T1, . . . , TN to obtain a larger
training set for another source task T1...N . Therefore, increasing the number of training
samples per source task or the number of source tasks has a similar effect.

This observation has previously been made in the multi-task learning literature (Faddoul
et al., 2012). However, Faddoul et al. (2012) avoids the high variance of the decision trees
by using the boosting framework, whereas we use a different approach, based on decision
forest, for the same purpose.

We explain in more detail how the combination of the information gain of tasks T0, . . . , TN
for finding the optimal parameters θk improves the generalization properties of the decision
forests. The parameters θk are found using an empirical estimation of the entropy H(Sk)
of the training samples Sk reaching node k and its children. Consequently, errors in esti-
mating entropy can result in very different trees. Tighter bounds for the expected entropy
are found by increasing the number of training samples, as explained in Theorem 1.

Theorem 1 Let P be a probability distribution on Rd × Y such that the marginal dis-
tribution over Y is a categorical distribution with parameters p1, . . . , p|Y|, and suppose

SK = {(x1,y1), . . . , (xK ,yK)} is the set generated by sampling K times from Rd × Y
according to P . Let H(P ) = −

∑|Y|
y=1 py log(py) be the entropy of distribution P . Then

E(H(SK)) +
∑

y∈Y py log
(

1 +
1−py
Kpy

)
≤ H(P ) ≤ E(H(SK)).

This theorem is proved in the Appendix A.
Theorem 1 shows that the empirical entropy H(SK) is closer to the entropy of the

distribution P when the training set is larger, since when K → ∞, log
(

1 +
1−py
Kpy

)
→ 0.

Therefore, if we assume that the source tasks are related to the target task i.e., both have
a similar distribution P , using Theorem 1 we can conclude that the mixed information
gain (1) finds parameters θk that achieve lower generalization errors than the traditional
information gain I(T0Sk,θk).

To gain some insight into how the mixed information gain works, Figure 1 considers a
toy problem with two tasks, each with two labels. It is intuitively clear that the problem
of estimating the information gain of a split with only a few training samples of the target
task is that there are a lot of possible splits with the same empirical information gain but
different generalization capabilities. Our goal is to discover which split to use, and we intend
to choose the one with the best generalization capability. In Figure 1 all the splits have the
same information gain but different mixed information gain. When, in our formulation, we
use the additional training samples from the source tasks to compute the information gain
of a split, some of the splits are penalized for having a low information gain in the source
task and, thus, this allows us to find a split with increased generalization.

One of the major problems with decision trees is their high variance. A small change
in the training data can often result in a very different series of splits. The major reason
for this instability is the hierarchical nature of the process: the effect of an error in the top
split is propagated down to all the splits below it (Hastie et al., 2003). Decision forests
(Breiman, 2001) build a large collection of de-correlated decision trees, and hence reduce
the variance averaging the prediction of each of them. The mixed information gain is a
complementary approach for reducing their variance which increases the generalization of
each tree independently. It is important to note that the mixed information preserves the
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Figure 1: Illustration of mixed information gain on a toy problem in which there are two
tasks, each with two labels. The thickness of the blue lines indicates the mixed
information gain of the split (all the splits have the same information gain).
Task T0 has two green labels (Y0 = {×, ∗}) and task T1 has two red labels
(Y1 = {©,�}).

diversity of the forests, which is essential to improve the generalization error. The random
nature of the random node optimization (Criminisi et al., 2012) used to optimize (1) allows
us to keep a high diversity among the trees.

Figures 2a and 2b compare the output classification on all the points in a rectangular
section of the feature space for a decision forest classifier and for our transfer learning
decision forest classifier. Both decision forests were trained with the same maximum depth
D = 8, and have the same number of trees |F| = 100. The data set for the target and
source task is organized in the shape of a two-arm spiral. We can see that the classification
decision forests have serious generalization problems since, even when all the training data
of the target task is correctly classified, the spiral structure is not predicted accurately. In
contrast, the spiral structure is predicted by the transfer learning decision forests as shown
in Figure 2a.

3.1.2 Label Propagation

For each leaf k ∈ ∂F of each tree F ∈ F , we must have a predictive model pF (y|x ∈ Rk) that
estimates the probability of label y ∈ Y0 given a previously unseen test input x ∈ Rk ⊆ Rd.
This poses a problem when we make each tree grow using the mixed information gain
because we may end up with leaves k ∈ ∂F that have no training samples of the target task
T0 to estimate the predictive model pF (y|x ∈ Rk). In this paper we use label propagation
to assign a predictive model pF (y|x ∈ Rk) to those leaves.

We are given a set of leaves U ⊆ ∂F without training samples of the target task T0

and a set of leaves L ⊆ ∂F with training samples of the target task T0. The goal is to
obtain a predictive model pF (y|x ∈ Rk) for the leaves k ∈ U avoiding the propagation of
labels through low density regions but, at the same time, propagating labels between nearby
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(a) (b)

Figure 2: Left: Output classification of a transfer learning decision forest, tested on all
points in a rectangular section of the feature space. The color associated with
each test point is a linear combination of the colors (red and green) corresponding
to the two labels (�,©) in the target task. The training data for the target task
is indicated with big markers and the training data for the source task is indicated
with small markers. Right: Output classification of a decision forest tested in the
same feature space section as before but trained using only data for the target
task.

leaves. We construct a complete graph G = (V, E), where V = ∂F is the vertex set and E is
the edge set with each edge eij ∈ E representing the relationship between nodes i, j ∈ ∂F .

Edge eij ∈ E is weighted taking into account the training samples of tasks T0, . . . , TN .
For each leaf k ∈ ∂F we define the estimated mean µk and estimated covariance Σk using
the training samples reaching the node

µk =
1

|Sk|
∑

(x,y,j)∈Sk

x

Σk =
∑

(x,y,j)∈Sk

∑
(x′,y′,j′)∈Sk

(x− µk)(x
′ − µk)

T .

We use the estimated mean µk and estimated covariance Σk to define the weight between
two nodes eij ∈ E

eij =
1

2

(
dTijΣidij + dTijΣjdij

)
where dij = µi − µj is the difference between the estimated mean of the leaves i, j ∈
∂F . Weight eij ∈ E is the symmetric Mahalanobis distance. We use it to discourage the
propagation of labels through low density regions. For each node k ∈ U we find the shortest
path in graph G to all the nodes in L. Let s∗k ∈ L be the node with the shortest path to
node k. We assign the predictive model pF (y|x ∈ Rs∗k) to pF (y|x ∈ Rk).

Label propagation methods are usually at least quadratic O(n2) in terms of the number
of training samples, making them slow when a large number of training samples is avail-
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Figure 3: Illustration of the label propagation procedure between regions, as before the
training data for the target task is indicated with big markers and the training
data for the source task is indicated with small markers. The ellipses in black are
the isocontours of a Gaussian distribution learned by maximum likelihood for each
region using the training samples in the region. (a, b) show the predictive model
for two different trees F ∈ F before propagating labels. The color associated with
each region is a linear combination of the colors (red and green) corresponding
to the two labels (�,©) in the target task. The regions in yellow are the ones
without training data of the target task. (c, d) show the predictive model after the
label propagation. (e) Output classification of the final transfer learning decision
forest.

able. We avoid this problem by propagating the predictive model of the leaves, instead of
propagating the labels of the training samples.

We illustrate the behavior of label propagation in Figure 3 using a 2D toy example. We
consider the same two-arm spiral problem of Figure 2 which has data that follow a complex
structure. We show the predictive models for the regions of two randomly grown trees
before and after propagating labels. We observe that the predictive models are propagated
following the intrinsic structure of the data, as a consequence of taking into account the
training data of each region.

3.2 Testing

The predictive model of all the trees F ∈ F is combined to produce the final prediction of
the forest

PF (y = y|x) =
1

|F|
∑
F∈F

PF (y = y|x).
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Let lF : Rd → ∂F be the function that, given a sample x ∈ Rd, returns the leaf such
that x ∈ RlF (x). The prediction for a tree F is:

PF (y = y|x) = PF
(
y = y|x ∈ RlF (x)

)
.

Finally, let k ∈ ∂F be the leaf that is reached by sample x ∈ Rd. The class distribution
for that leaf is:

PF (y = y|x ∈ Rk) =

{
p̂T0Sk

(y) if T0Sk 6= ∅
p̂T0Ss∗

k
(y) otherwise .

Thus, PF (y = y|x) is the empirical histogram of the training samples of the target task
T0 reaching node lF (x) if any. Otherwise, PF (y = y|x) is the empirical histogram associated
with the node that has the shortest path to lF (x).

4. Gesture Recognition

Gesture recognition is one of the open challenges in computer vision. There is a big number
of potential applications for this problem, including surveillance, smart-homes, rehabilita-
tion, entertainment, animation and human–robot interaction and sign language recognition
just to mention a few. The task of gesture recognition is to determine the gesture label that
best describes a gesture instance, even when performed by different people, from various
viewpoints and in spite of large differences in manner and speed.

To reach that goal, many approaches combine vision and machine learning tools. Com-
puter vision tools are employed to extract features that provide robustness to distracting
cues and that, at the same time, are discriminative. Machine learning is used to learn a sta-
tistical model from those features, and to classify new examples using the models learned.
This poses a problem in gesture recognition since it is difficult to collect big data sets to
learn statistical models. Therefore, in this paper we perform experiments aimed at showing
that our transfer learning decision forests are useful to mitigate this problem.

Recently, the ChaLearn competition (Guyon et al., 2012) provided a challenging data
set to evaluate whether transfer learning algorithms can improve their classification perfor-
mance using similar gesture vocabularies. The data set is organized into batches, with only
one training example of each gesture in each batch. The goal is to automatically predict
the gesture labels for the remaining gesture sequences (test examples). The gestures of
each batch are drawn from a small vocabulary of 8 to 12 unique gestures, when we train a
classifier to predict the labels of a target batch (or task) T0 we use the training samples of
T0 and of the other batches T1, . . . , TN .

Each batch of the ChaLearn competition includes 100 recorded gestures grouped in
sequences of 1 to 5 gestures performed by the same user (Guyon et al., 2012). There is
only one gesture in the training sequences, but there might be more than one gesture in
the testing sequences. Therefore in order to use the method described in this section we
need to temporally segment the testing sequences. To this end, we use the dynamic time
warping (DTW) implementation given by the organizers.

In this section, we describe the features and the classifiers used to validate our approach,
as well as their application to the ChaLearn competition (Guyon et al., 2012). First, Section
4.1 describes the features, and then, Section 4.2 describes the classifier.
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τ \ ξ 16 24 32 40

1 32.61 ± 0.14 % 32.61 ± 0.24 % 30.35 ± 0.22 % 29.26 ± 0.26 %

4 30.43 ± 0.17 % 31.52 ± 0.15 % 29.26 ± 0.15 % 28.17 ± 0.19 %

8 30.43 ± 0.13 % 27.35 ± 0.16 % 28.09 ± 0.14 % 27.06 ± 0.18 %

12 32.12 ± 0.23 % 32.61 ± 0.29 % 34.78 ± 0.31 % 29.35 ± 0.33 %

16 33.72 ± 0.28 % 32.61 ± 0.29 % 34.78 ± 0.25 % 30.43 ± 0.31 %

Table 1: Classification error in the test set of the devel11 batch for different combination
of MHI parameters. In all the experiments we leave the the spatial resolution of
each frame fixed to ω1 × ω2 = 16× 12.

4.1 Motion History Images

Given a depth video V where V (x, y, t) is the depth of the pixel with coordinates (x, y)
at the tth frame. We compute the motion history image (MHI) (Bobick and Davis, 1996,
2001; Ahad et al., 2012) for each frame using the following function:

Hτ (x, y, t) =

{
τ if |V (x, y, t)− V (x, y, t− 1)| ≥ ξ
max(0, Hτ (x, y, t− 1)− 1) otherwise

where τ defines the temporal extent of the MHI, and ξ is a threshold employed to perform
the foreground/background segmentation at frame t. The result is a scalar-valued image
for each frame of the original video V where pixels that have moved more recently are
brighter. MHI Hτ represents the motion in an image sequence in a compact manner, the
pixel intensity is a function of the temporal history of motion at that point. A common
problem when computing MHI Hτ using the color channel is the presence of textured objects
in the image sequence; here we use the depth video V to overcome this issue. This is a
relevant problem in gesture recognition, because, as a result of the clothes texture, the MHI
is noisy (Ahad et al., 2012).

An interesting property of the MHI is that it is sensitive to the direction of motion;
hence it is well suited for discriminating between gestures with an opposite direction. An
advantage of the MHI representation is that a range of times may be encoded in a single
frame, and thus, the MHI spans the time scale of human gestures. After computing MHI
Hτ we reduce the spatial resolution of each frame to ω1 × ω2 pixels. Then, we flatten the
MHI for each frame and obtain a feature xm ∈ Rω1ω2 .

Figure 4 contrasts the result of computing the MHI using the RGB channel with the
one obtained using the depth channel. In the first row, we see that the clothes texture
generates noise in the MHI computed using the RGB channel. In the second row, the MHI
of the RGB channel is noisy because of the shadow from the moving arm. Both problems
are avoided using the depth channel for computing the MHI. The parameters to compute
the MHI in all the cases were τ = 15, and ξ = 30. Table 1 shows the classification error
in the test set of the devel11 batch of the ChaLearn competition, after training a decision
forest with the following parameters D = 8, T = 50.
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Figure 4: Comparison of the MHI computed using the depth channel or the RGB channel
for two different training videos of the ChaLearn competition. The first two
columns show the RGB channel and the depth channel, whereas the third and
fourth columns show the MHI computed using the RGB channel and the MHI
computed using the depth channel, respectively.

4.2 Naive Bayes

A main research trend in gesture recognition is to train hidden Markov models (HMMs)
and theirs variants (Bowden et al., 2004; Kurakin et al., 2012), in order to exploit the
temporal relation of a gesture. A drawback of this approach is that many training samples
are required to train the large number of parameters of an HMM. Additionally, recognition
rates might not improve significantly (Li et al., 2008). This limitation has been recognized
by Bowden et al. (2004) and a two-stage classifier was proposed to obtain one-shot learning.

Since in the ChaLearn competition (Guyon et al., 2012) there is only one labeled training
sample of each gesture, we use the naive Bayes model which has a smaller number of
parameters than HMM. We use transfer learning decision forests to predict the probability
that each frame will be part of a given gesture. We combine the predictions of the transfer
learning decision forests for each frame using the naive Bayes model. An advantage of the
naive Bayes assumption is that it is not sensitive to irrelevant frames (the probabilities for
all the labels will be quite similar).

Given a video V of an isolated gesture, we want to find its label y ∈ Y0. Assuming that
the class prior p(y) is uniform we have:

ŷ = arg max
y∈Y0

p(y|V ) = arg max
y∈Y0

p(V |y)

Let x1, . . . ,xM denote the MHI for each frame of a video V with M frames. We assume
the naive Bayes model i.e., that the features x1, . . . ,xM are i.i.d. given the label y, namely:

p(V |y) = p(x1, . . . ,xM |y) =

M∏
m=1

p(xm|y) =

M∏
m=1

p(y|xm)
p(xm)

p(y)
(2)
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Figure 5: Effect of the training parameters for the frame label classification error p(y|x)
(left) and video label classification error p(y|V ) (right) in the devel11 batch using
the transfer learning decision forests.

We compute the probability p(y|xm) using our proposed transfer learning decision forest
F . The data set for training the forest F consists of all the frames in each training video
in the target task T0 and source tasks T1, . . . , TN . We propose to use the frames of the
training videos in the source tasks to obtain a better classifier for each frame.

Taking the logarithm in (2) and ignoring the constant terms we obtain the following
decision rule:

ŷ = arg max
y∈Y0

p(y|V ) = arg max
y∈Y0

M∑
m=1

log (pF (y|xm))

Note that we use the same forest F for computing the label distribution of all the frames
in video V . For this reason, given a frame x, we expect distribution pF (y|x) to be multi-
modal, which is an issue for several statistical methods. However, since the transfer learning
decision forest has a predictive model for each leaf of its tree, it can deal with this type of
distribution without major problems

Figure 5 compares the classification error when predicting the label of a frame p(y|x)
with the classification error when predicting the label of a video p(y|V ), for different combi-
nations of training parameters in the devel11 batch. We observe that the maximum depth
D has a larger impact to predict the label of a video than the number of trees |F|. Moreover,
the classification error when predicting the label of a frame is greater than the classification
error when predicting the label of a video. This means, as expected, that some frames
are more discriminative than others, and that the misclassification of some frames is not a
decisive factor for classifying a video correctly.
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5. Experiments

In this section we present a series of experiments on the ChaLearn Gesture Challenge (Guyon
et al., 2012) and MNIST data set (LeCun et al., 1998) to assess the performance of our
proposed algorithm.

5.1 ChaLearn Gesture Challenge

Here, we evaluate the transfer learning decision forests on the ChaLearn Gesture Challenge.
First, we compare the results obtained for different parameters of the transfer learning
decision forests, and then we compare these results with the ones reported in related works.
For the MHI computation in this section, we set the temporal extent τ = 8, the threshold
ξ = 25, and reduce the spatial resolution of each frame to ω1 × ω2 = 16× 12 pixels.

5.1.1 Transfer Decision Learning Parameters

To obtain a general idea of the effect of the training parameters, Figure 6 evaluates the
classification error for different combinations of training parameters. We report the average
classification error obtained in the devel batches. We use the temporal segmentation of the
videos provided by the ChaLearn competition organizers. The experiments show that when
the mixing coefficient γ is between 25% and 50%, the classification error is the smallest.
This means that we obtain improvements when transferring knowledge from related tasks
but, nevertheless, we still need to make the decision trees grow using information of the
target task.

It is important to remark that when γ = 0 we are not using the training data of the
source tasks and our mixed information gain simplifies to the usual information gain, thus,
only the label propagation extension is being used. The classification error for the case γ = 0
indicates that we achieve an improvement using the label propagation alone. We obtain an
additional improvement when γ is between 25% and 75%, therefore we can conclude that
both extensions are important to reduce the classification error.

The maximum depth of the trees is a highly relevant parameter for the transfer learning
decision forests, and has some influence for the classification decision forests. As expected,
the greater the maximum depth, the smaller the classification error. It is interesting to
observe that the difference in the classification error between different values of the mixing
coefficients γ is reduced when the maximum depth is increased.

Figure 7 shows the confusion matrices for the classifiers of the transfer learning decision
forests (TLDFs) and the decision forests (DFs) in the batches devel06, devel11 and devel14.
To train the TLDFs, we set the number of trees T = 50, the maximum depth D = 8, the
mixing coefficient γ = 25%, and the size of the subset |T | = 50. In these batches the TLDFs
classifier shows improvements over the DFs classifier. The improvement is not uniform for
all the gestures of the batches, but only for some of them. This is because not all the
gestures can benefit from the training data of the source tasks. Only the gestures that
have, at least, one similar gesture in a source task show improvements.

The confusion matrix for the devel06 batch in Figure 7 shows significant improvements
in the classification of the last gesture. Figure 8 shows a representative image of that gesture
and similar gestures in the devel13 and devel15 batches. The person in front of the camera
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Figure 6: Comparison of the classification error using different combination of training pa-
rameters.

moves the left hand to a fixed position and then shows a similar pattern of the fingers, for
all these gestures. The frames of these gestures are usually found in the same leaf after
training the decision forest.

5.1.2 Devel and Final Data

Table 2 compares our results for the development batches of the ChaLearn Challenge with
the ones previously reported by Lui (2012) and Malgireddy et al. (2013), using the evaluation
procedure of the ChaLearn competition (Guyon et al., 2012). To train the TLDFs, we set
the number of trees T = 50, the maximum depth D = 8, the mixing coefficient γ = 25%,
and the size of the search space |T | = 50. As shown in Table 2, for most batches, our
transfer learning decision forests obtain improvements over the DFs, and for some batches,
they obtain the smallest errors.

Table 3 compares our results for the final evaluation data with the final results of the
ChaLearn competition (Guyon et al., 2013). The Joewan team proposed a novel feature
which fuses RGB-D data and is invariant to scale and rotation (Wan et al., 2013). Most of
the other teams have not described their approach in a publication.

(a) (b) (c) (d) (e) (f)

Figure 7: Comparison of the confusion matrices obtained using the DF (a),(b),(c) and
TLDF (d),(e),(f) classifiers on the devel06, devel11 and devel14 batches.
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Figure 8: Similar gestures in different batches. The first, second and third rows show a
gesture in the devel06, devel13 and devel15 batches respectively. The first column
shows the RGB image for a representative frame of the video, the second column
shows the corresponding depth image and the last column shows the MHI.

devel01 devel02 devel03 devel04 devel05 devel06 devel07 devel08 devel09 devel10
Principal motion 6.67% 33.33% 71.74% 24.44% 2.17% 43.33% 23.08% 10.11% 19.78% 56.04%
Lui (2012) – – – – – – – – – –
Malgireddy et al. (2013) 13.33% 35.56% 71.74% 10.00% 9.78% 37.78% 18.68% 8.99% 13.19% 50.55%
DF 4.44% 28.89% 65.22% 25.56% 3.26% 48.89% 19.78% 17.98% 19.78% 59.34%
TLDF 3.89% 25.00% 62.50% 13.89% 4.89% 45.00% 14.29% 10.11% 15.38% 60.99%

devel11 devel12 devel13 devel14 devel15 devel16 devel17 devel18 devel19 devel20 Avg.
Principal motion 29.35% 21.35% 12.50% 39.13% 40.22% 34.48% 48.91% 44.44% 60.44% 39.56% 33.15%
Lui (2012) – – – – – – – – – – 24.09%
Malgireddy et al. (2013) 35.87% 22.47% 9.09% 28.26% 21.74% 31.03% 30.43% 40.00% 49.45% 35.16% 28.73%
DF 42.39% 23.60% 19.32% 45.65% 26.09% 31.03% 53.26% 40.00% 60.44% 46.15% 34.14%
TLDF 39.13% 19.10% 25.00% 27.71% 31.52% 27.01% 45.11% 38.33% 54.95% 67.22% 31.55%

Table 2: Comparison of reported results using the Levenshtein distance.

3683



Goussies, Ubalde and Mejail

Team Private score For comparison score
set on final set #1 on final set #2

alfnie 0.0734 0.0710
Joewan 0.1680 0.1448
Turtle Tamers 0.1702 0.1098
Wayne Zhang 0.2303 0.1846
Manavender 0.2163 0.1608
HIT CS 0.2825 0.2008
Vigilant 0.2809 0.2235
Our Method 0.2834 0.2475
Baseline method 2 0.2997 0.3172

Table 3: ChaLearn results of round 2.

1/-1 2/-2 3/-3 4/-4 5/-5 6/-6
Adaboost (Faddoul et al., 2012) 91.77±1.89% 83.14±2.35% 82.96±1.24% 83.98±1.41% 78.42±0.69% 88.95±1.60%
MTL (Quadrianto et al., 2010) 96.80±1.91% 69.95±2.68% 74.18±5.54% 71.76±5.47% 57.26±2.72% 80.54±4.53%
MT-Adaboost (Faddoul et al., 2012) 96.80±0.56% 86.87±0.68% 87.68±1.04% 90.38±0.71% 84.25±0.73% 92.88±0.90%
Our approach 97.23±0.44% 96.74±0.31% 93.29±0.96% 90.10±1.23% 92.79±1.62% 97.35±0.45%

7/-7 8/-8 9/-9 0/-0 Avg.
Adaboost (Faddoul et al., 2012) 87.11±0.90% 77.51±1.90% 81.84±1.85% 93.66±1.29% 84.93%
MTL (Quadrianto et al., 2010) 77.18±9.43% 65.85±2.50% 65.38±6.09% 97.81±1.01% 75.67%
MT-Adaboost (Faddoul et al., 2012) 92.81±0.57% 85.28±1.73% 86.90±1.26% 97.14±0.42% 90.10%
Our approach 95.55±1.39% 91.99±1.30% 84.76±1.67% 98.05±0.28% 93.78%

Table 4: Comparison of the accuracies on the MNIST data set.

5.2 MNIST

The MNIST (LeCun et al., 1998) data set has been used to compare transfer learning results
(Quadrianto et al., 2010; Faddoul et al., 2012). A small sample of the training set is used to
simulate the situation when only a limited number of labeled examples is available. For each
digit 0 . . . 9, we consider a binary task where label +1 means that the example belongs to the
digit associated with the respective task, and label −1 means the opposite. We randomly
choose 100 training samples for each task and test them on the 10, 000 testing samples.
The experiments are repeated ten times and the results are summarized in Table 4. We
train the TLDFs with D = 6, T = 40, γ = 50%, and we do not apply any preprocessing to
the sample images. The experiments show that our approach achieves better results than
state-of-the-art methods in terms of transfer learning.

To analyze the influence of the number of training samples, we compare the classification
error of the TLDFs with the classification error of the DFs. Figure 9 plots the classification
error as a function of the number of training samples for each classifier. As we did previously,
we compute the classification error using the 10000 test samples of the MNIST data set.
We see that the classification error of the TLDF is smaller than that of the DF. In addition,
it is interesting to note that the gap between both classifiers is larger when the number of
training samples is smaller, thus suggesting that the TLDF is more suitable than DF for
small training samples.

3684



Transfer Learning Decision Forests for Gesture Recognition

Figure 9: This figure evaluates the classification error as a function of the number of training
samples.

6. Conclusions

In this paper we have introduced a novel algorithm to transfer knowledge from multiple
source tasks to a given target task. The result is a classifier that can exploit the knowledge
from similar tasks to improve the predictive performance on the target task. Two extensions
were made to the decision forest framework in order to extract knowledge from the source
tasks. We showed that both extensions are important in order to obtain smaller classification
errors. The major improvements are obtained when there are only a few training samples.

We have applied the algorithm to two important computer vision problems and the
results show that the proposed algorithm outperforms decision forests (which are a state-of-
the-art method). We believe that transfer learning algorithms will be an essential component
of many computer vision problems.
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Appendix A

We prove Theorem 1. First, we prove E(H(SK)) +
∑

y∈Y py log
(

1 +
1−py
Kpy

)
≤ H(P )

By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK)) = −E

∑
y∈Y

p̂SK
(y) log(p̂SK

(y))

 = −
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))]
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Using the definitions of the empirical histogram p̂SK
(y) and the expectation:

−
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))] = −
∑
y∈Y

K∑
j=0

P

(
p̂SK

(y) =
j

K

)
j

K
log

j

K

Assuming that the samples are iid, then:

= −
∑
y∈Y

K∑
j=0

(
K

j

)
pjy(1− py)K−j

j

K
log

j

K

Note that, in this equation, py is the true probability of distribution P . After some algebraic
manipulations, we obtain the following:

= −
∑
y∈Y

py

K−1∑
j=0

(
K − 1

j

)
pjy(1− py)K−1−j log

j + 1

K

= −
∑
y∈Y

py

K−1∑
j=0

P

(
p̂SK

(y) =
j

K

)
log

j + 1

K

Applying Jensen’s inequality for the convex function − log(x), we obtain:

≥ −
∑
y∈Y

py log

K−1∑
j=0

P

(
p̂SK

(y) =
j

K

)
j + 1

K


= −

∑
y∈Y

py log
(K − 1)py + 1

K

= −
∑
y∈Y

py log

(
py +

1− py
K

)

= −
∑
y∈Y

py log

(
py

(
1 +

1− py
Kpy

))

= −
∑
y∈Y

py log py −
∑
y∈Y

py log

(
1 +

1− py
Kpy

)

= H(P )−
∑
y∈Y

py log

(
1 +

1− py
Kpy

)
Now we prove H(P ) ≤ E(H(SK)).
By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK)) = −E

∑
y∈Y

p̂SK
(y) log(p̂SK

(y))

 = −
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))]
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Applying Jensen’s inequality for the convex function x log x, we obtain the following:

≤ −
∑
y∈Y

E [p̂SK
(y)] log(E [p̂SK

(y)])

Since E [p̂SK
(y)] = py, we have:

= −
∑
y∈Y

py log(py) = H(P )
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