Skip to main content

Brain-Machine Interface Development for Finger Movement Control

  • Chapter
  • First Online:
Brain-Computer Interface Research

Abstract

There have been many developments in brain-machine interfaces (BMI) for controlling upper limb movements such as reaching and grasping. One way to expand the usefulness of BMIs in replacing motor functions for patients with spinal cord injuries and neuromuscular disorders would be to improve the dexterity of upper limb movements performed by including more control of individual finger movements. Many studies have been focusing on understanding the organization of movement control in the sensorimotor cortex of the human brain. Finding the specific mechanisms for neural control of different movements will help focus signal acquisition and processing so as to improve BMI control of complex actions. In a recently published study, we demonstrated, for the first time, online BMI control of individual finger movements using electrocorticography recordings from the hand area of sensorimotor cortex. This study expands the possibilities for combined control of arm movements and more dexterous hand and finger movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Kubánek, K.J. Miller, J.G. Ojemann, J.R. Wolpaw, G. Schalk, Decoding flexion of individual fingers using electrocorticographic signals in humans. J. Neural Eng. 6(6), 66001 (2009)

    Article  Google Scholar 

  2. C.A. Chestek et al., Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas. J. Neural Eng. 10(2), 26002 (2013)

    Article  Google Scholar 

  3. G. Hotson et al., Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13(2), 26017 (2016)

    Article  Google Scholar 

  4. S.N. Flesher et al., Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. aaf8083 (2016)

    Google Scholar 

  5. M.J. Morrell, Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13), 1295–1304 (2011)

    Article  Google Scholar 

  6. T. Tsubokawa, Y. Katayama, T. Yamamoto, T. Hirayama, S. Koyama, Chronic motor cortex stimulation in patients with thalamic pain. J. Neurosurg. 78(3), 393–401 (1993)

    Article  Google Scholar 

  7. Y. Katayama, C. Fukaya, T. Yamamoto, Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J. Neurosurg. 89(4), 585–591 (1998)

    Article  Google Scholar 

  8. J.-P. Nguyen et al., Treatment of chronic neuropathic pain by motor cortex stimulation: results of a bicentric controlled crossover trial. Brain Stimul. 1(2), 89–96 (2008)

    Article  Google Scholar 

  9. Z.C. Chao, Y. Nagasaka, N. Fujii, Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng. 3, 3 (2010)

    Google Scholar 

  10. N.E. Crone, D.L. Miglioretti, B. Gordon, R.P. Lesser, Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(12), 2301–2315 (1998)

    Article  Google Scholar 

  11. K.J. Miller, M. den Nijs, P. Shenoy, J.W. Miller, R.P.N. Rao, J.G. Ojemann, Real-time functional brain mapping using electrocorticography. NeuroImage 37(2), 504–507 (2007)

    Google Scholar 

  12. E.C. Leuthardt et al., Electrocorticographic frequency alteration mapping: a clinical technique for mapping the motor cortex. Oper. Neurosurg. 60, 260–271 (2007)

    Article  Google Scholar 

  13. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran, A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63 (2004)

    Article  Google Scholar 

  14. G. Schalk et al., Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5(1), 75 (2008)

    Article  Google Scholar 

  15. E.C. Leuthardt, K.J. Miller, G. Schalk, R.P.N. Rao, J.G. Ojemann, Electrocorticography-based brain computer Interface-the seattle experience. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 194–198 (2006)

    Article  Google Scholar 

  16. K.J. Miller, G. Schalk, E.E. Fetz, M. den Nijs, J.G. Ojemann, R.P.N. Rao, Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci. 107(9), 4430–4435 (2010)

    Article  Google Scholar 

  17. W. Wang et al., An electrocorticographic brain interface in an individual with tetraplegia. PLoS ONE 8(2), e55344 (2013)

    Article  Google Scholar 

  18. M.G. Bleichner, Z.V. Freudenburg, J.M. Jansma, E.J. Aarnoutse, M.J. Vansteensel, N.F. Ramsey, Give me a sign: decoding four complex hand gestures based on high-density ECoG. Brain Struct. Funct. 1–14 (2014)

    Google Scholar 

  19. T. Pistohl, T. Ball, A. Schulze-Bonhage, A. Aertsen, C. Mehring, Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Methods 167(1), 105–114 (2008)

    Article  Google Scholar 

  20. T. Pistohl, A. Schulze-Bonhage, A. Aertsen, C. Mehring, T. Ball, Decoding natural grasp types from human ECoG. NeuroImage 59(1), 248–260 (2012)

    Article  Google Scholar 

  21. T. Yanagisawa et al., Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114(6), 1715–1722 (2011)

    Article  Google Scholar 

  22. M.S. Fifer et al., Simultaneous neural control of simple reaching and grasping with the modular prosthetic limb using intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 695–705 (2014)

    Article  Google Scholar 

  23. L.R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  24. J.L. Collinger et al., High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet 381(9866), 557–564 (2013)

    Article  Google Scholar 

  25. T. Aflalo et al., Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237), 906–910 (2015)

    Article  Google Scholar 

  26. B. Wodlinger, J.E. Downey, E.C. Tyler-Kabara, A.B. Schwartz, M.L. Boninger, J.L. Collinger, Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12(1), 16011 (2015)

    Article  Google Scholar 

  27. C.E. Bouton et al., Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602), 247–250 (2016)

    Article  Google Scholar 

  28. S.B. Hamed, M.H. Schieber, A. Pouget, Decoding M1 neurons during multiple finger movements. J. Neurophysiol. 98(1), 327–333 (2007)

    Article  Google Scholar 

  29. V. Aggarwal et al., Asynchronous decoding of dexterous finger movements using M1 neurons. IEEE Trans. Neural Syst. Rehabil. Eng. 16(1), 3–14 (2008)

    Article  MathSciNet  Google Scholar 

  30. S. Acharya, F. Tenore, V. Aggarwal, R. Etienne-Cummings, M.H. Schieber, N.V. Thakor, Decoding individuated finger movements using volume-constrained neuronal ensembles in the M1 hand area. IEEE Trans. Neural Syst. Rehabil. Eng. 16(1), 15–23 (2008)

    Article  Google Scholar 

  31. K. Liao, R. Xiao, J. Gonzalez, L. Ding, Decoding individual finger movements from one hand using human EEG signals. PLoS ONE 9(1), e85192 (2014)

    Article  Google Scholar 

  32. A.Y. Paek, H.A. Agashe, J.L. Contreras-Vidal, Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography. Front. Neuroeng. 7 (2014)

    Google Scholar 

  33. S. Acharya, M.S. Fifer, H.L. Benz, N.E. Crone, N.V. Thakor, Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand. J. Neural Eng. 7(4), 46002 (2010)

    Article  Google Scholar 

  34. R. Flamary, A. Rakotomamonjy, Decoding finger movements from ECoG signals using switching linear models. Front. Neurosci. 6 (2012)

    Google Scholar 

  35. N. Liang, L. Bougrain, Decoding finger flexion from band-specific ECoG signals in humans. Front. Neurosci. 6 (2012)

    Google Scholar 

  36. Y. Nakanishi et al., Decoding fingertip trajectory from electrocorticographic signals in humans. Neurosci. Res. 85, 20–27 (2014)

    Article  Google Scholar 

  37. J. Hammer et al., Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb. Cortex 26(6), 2863–2881 (2016)

    Article  Google Scholar 

  38. G. Schalk et al., Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4(3), 264 (2007)

    Article  Google Scholar 

  39. D.T. Bundy, M. Pahwa, N. Szrama, E.C. Leuthardt, Decoding three-dimensional reaching movements using electrocorticographic signals in humans. J. Neural Eng. 13(2), 26021 (2016)

    Article  Google Scholar 

  40. W. Penfield, E. Boldrey, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain J. Neurol. (1937)

    Google Scholar 

  41. P. Hluštík, A. Solodkin, R.P. Gullapalli, D.C. Noll, S.L. Small, Somatotopy in human primary motor and somatosensory hand representations revisited. Cereb. Cortex 11(4), 312–321 (2001)

    Article  Google Scholar 

  42. R.M. Sanchez-Panchuelo, S. Francis, R. Bowtell, D. Schluppeck, Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J. Neurophysiol. 103(5), 2544–2556 (2010)

    Article  Google Scholar 

  43. M.H. Schieber, Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86(5), 2125–2143 (2001)

    Google Scholar 

  44. J.N. Sanes, J.P. Donoghue, V. Thangaraj, R.R. Edelman, S. Warach, Shared neural substrates controlling hand movements in human motor cortex. Science 268(5218), 1775–1777 (1995)

    Article  Google Scholar 

  45. I. Indovina, J.N. Sanes, On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13(6), 1027–1034 (2001)

    Article  Google Scholar 

  46. M.H. Schieber, Somatotopic gradients in the distributed organization of the human primary motor cortex hand area: evidence from small infarcts. Exp. Brain Res. 128(1–2), 139–148 (1999)

    Article  Google Scholar 

  47. C.E. Vargas-Irwin, G. Shakhnarovich, P. Yadollahpour, J.M.K. Mislow, M.J. Black, J.P. Donoghue, Decoding complete reach and grasp actions from local primary motor cortex populations. J. Neurosci. 30(29), 9659–9669 (2010)

    Article  Google Scholar 

  48. M. Saleh, K. Takahashi, Y. Amit, N.G. Hatsopoulos, Encoding of coordinated grasp trajectories in primary motor cortex. J. Neurosci. 30(50), 17079–17090 (2010)

    Article  Google Scholar 

  49. M. Saleh, K. Takahashi, N.G. Hatsopoulos, Encoding of coordinated reach and grasp trajectories in primary motor cortex. J. Neurosci. 32(4), 1220–1232 (2012)

    Article  Google Scholar 

  50. J.C. Kao, P. Nuyujukian, S.I. Ryu, M.M. Churchland, J.P. Cunningham, K.V. Shenoy, Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759 (2015)

    Article  Google Scholar 

  51. S.A. Overduin, A. d’Avella, J. Roh, J.M. Carmena, E. Bizzi, Representation of muscle synergies in the primate brain. J. Neurosci. 35(37), 12615–12624 (2015)

    Google Scholar 

  52. A. d’Avella, A. Portone, L. Fernandez, F. Lacquaniti, Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)

    Google Scholar 

  53. S.A. Overduin, A. d’Avella, J. Roh, E. Bizzi, Modulation of muscle synergy recruitment in primate grasping. J. Neurosci. 28(4), 880–892 (2008)

    Google Scholar 

  54. A. d’Avella, A. Portone, F. Lacquaniti, Superposition and modulation of muscle synergies for reaching in response to a change in target location. J. Neurophysiol. 106(6), 2796–2812 (2011)

    Google Scholar 

  55. C.R. Mason, J.E. Gomez, T.J. Ebner, Hand synergies during reach-to-grasp. J. Neurophysiol. 86(6), 2896–2910 (2001)

    Google Scholar 

  56. P.H. Thakur, A.J. Bastian, S.S. Hsiao, Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J. Neurosci. 28(6), 1271–1281 (2008)

    Article  Google Scholar 

  57. R. Vinjamuri, M. Sun, C.-C. Chang, H.-N. Lee, R.J. Sclabassi, Z.-H. Mao, Dimensionality reduction in control and coordination of the human hand. IEEE Trans. Biomed. Eng. 57(2), 284–295 (2010)

    Google Scholar 

  58. S.A. Overduin, A. d’Avella, J.M. Carmena, E. Bizzi, Microstimulation activates a handful of muscle synergies. Neuron 76(6), 1071–1077. (2012)

    Google Scholar 

  59. S.A. Overduin, A. d’Avella, J.M. Carmena, E. Bizzi, Muscle synergies evoked by microstimulation are preferentially encoded during behavior. Front. Comput. Neurosci. 8 (2014)

    Google Scholar 

  60. M.S. Graziano, C.S. Taylor, T. Moore, Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5), 841–851 (2002)

    Article  Google Scholar 

  61. M. Desmurget et al., Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus. Proc. Natl. Acad. Sci. U.S.A. 111(15), 5718–5722 (2014)

    Article  Google Scholar 

  62. M. Mollazadeh, V. Aggarwal, N.V. Thakor, M.H. Schieber, Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements. J. Neurophysiol. 112(8), 1857–1870 (2014)

    Article  Google Scholar 

  63. E. Kirsch, G. Rivlis, M.H. Schieber, Primary motor cortex neurons during individuated finger and wrist movements: correlation of spike firing rates with the motion of individual digits versus their principal components. Front. Neurol. 5 (2014)

    Google Scholar 

  64. J.S. Duncan, X. Papademetris, J. Yang, M. Jackowski, X. Zeng, L.H. Staib, Geometric strategies for neuroanatomic analysis from MRI. NeuroImage 23(Supplement 1), S34–S45 (2004)

    Article  Google Scholar 

  65. Y. Guo, T. Hastie, R. Tibshirani, Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2007)

    Article  MATH  Google Scholar 

  66. M.S. Johannes, J.D. Bigelow, J.M. Burck, S.D. Harshbarger, M.V. Kozlowski, T. Van Doren, An overview of the developmental process for the modular prosthetic limb. Johns Hopkins APL Tech. Dig. 30(3), 207–216 (2011)

    Google Scholar 

  67. A. Harris, K. Katyal, M. Para, J. Thomas, Revolutionizing prosthetics software technology, in 2011 IEEE International Conference on Systems, Man, and Cybernetics (2011), pp. 2877–2884

    Google Scholar 

  68. M.M. Bridges, M.P. Para, M.J. Mashner, Control system architecture for the modular prosthetic limb. Johns Hopkins APL Tech. Dig. 30(3) (2011)

    Google Scholar 

  69. M.S. Fifer, S. Acharya, H.L. Benz, M. Mollazadeh, N.E. Crone, N.V. Thakor, Towards electrocorticographic control of a dexterous upper limb prosthesis. IEEE Pulse 3(1), 38–42 (2012)

    Article  Google Scholar 

  70. Amputee Makes History with APL’s Modular Prosthetic Limb, http://www.jhuapl.edu/newscenter/pressreleases/2014/141216.asp. Accessed 30 Nov 2016

  71. APL’s Modular Prosthetic Limb Reaches New Levels of Operability, http://www.jhuapl.edu/newscenter/pressreleases/2016/160112.asp. Accessed 30 Nov 2016

  72. D.P. McMullen et al., Demonstration of a semi-autonomous hybrid brain–machine Interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 784–796 (2014)

    Article  Google Scholar 

  73. A.J. Szameitat, S. Shen, A. Conforto, A. Sterr, Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. NeuroImage 62(1), 266–280 (2012)

    Article  Google Scholar 

  74. R.J. Nelson, Interactions between motor commands and somatic perception in sensorimotor cortex. Curr. Opin. Neurobiol. 6(6), 801–810 (1996)

    Article  Google Scholar 

  75. M.S. Christensen, J. Lundbye-Jensen, S.S. Geertsen, T.H. Petersen, O.B. Paulson, J.B. Nielsen, Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat. Neurosci. 10(4), 417–419 (2007)

    Google Scholar 

  76. T.B. Crapse, M.A. Sommer, Corollary discharge circuits in the primate brain. Curr. Opin. Neurobiol. 18(6), 552–557 (2008)

    Article  Google Scholar 

  77. V. Gritsenko, N.I. Krouchev, J.F. Kalaska, Afferent input, efference copy, signal noise, and biases in perception of joint angle during active versus passive elbow movements. J. Neurophysiol. 98(3), 1140–1154 (2007)

    Article  Google Scholar 

  78. H. Sun et al., Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. (2015)

    Google Scholar 

  79. G. Hotson, R.J. Smith, A.G. Rouse, M.H. Schieber, N.V. Thakor, B.A. Wester, High precision neural decoding of complex movement trajectories using recursive Bayesian estimation with dynamic movement primitives. IEEE Robot. Autom. Lett. 1(2), 676–683 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lal, T.M. et al. (2017). Brain-Machine Interface Development for Finger Movement Control. In: Guger, C., Allison, B., Ushiba, J. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57132-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57132-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57131-7

  • Online ISBN: 978-3-319-57132-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics