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Preface

Distance geometry (DG) is a distinct mathematical research area which includes
mathematics and computer science as fundamental components. The fundamental
problem of DG is to determine the spatial locations (coordinates) for a set of points,
in a given geometric space, using distances between some of them.

DG is considered to have originated in 1928, when Menger [62] characterized
several geometric concepts using the idea of distance [16]. However, only with the
results of Blumenthal [10], in 1953, did the topic become a new area of knowledge
known as DG.

The main challenge of DG at that time was to find necessary and sufficient
conditions in order to decide if a given matrix is a distance matrix D. That is,
decide whether or not a given matrix D is a symmetric matrix such that there is an
integer number K and a set of points in R

K , where the Euclidean distances between
these points are equal to the entries of the matrix D [51]. Note that, in this case, all
distances are considered known.

To the best of our knowledge, the first explicit mention of the fundamental
problem of DG delineated above, where not all distances are known, was given
by Yemini [81], in 1978. In this case, the problem may be harder.

Another important moment in the history of DG is related to its application to
the calculation of molecular structures, with the 1988 publication of Crippen and
Havel’s book [15], considered pioneers of DG in the analysis of protein structures.
More information on the DG history can be found in [52].

The first edited book fully dedicated to DG was published by Springer in 2013
[67]. The book brought together different applications and researchers in DG. In the
same year, in June 2013, the first international workshop dedicated to DG was held
with speakers from various international institutions (Princeton University, IBM TJ
Watson Research Center, University of Cambridge, École Polytechnique, Institut
Pasteur, École Normale Supérieure, SUTD-MIT International Design Center).
The event also had the support of several international scientific societies and
universities, indicating the importance of DG in many areas of knowledge (more
details at http://dga2013.icomp.ufam.edu.br/).
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vi Preface

The interest in DG as a topic of research arises from the wealth and diversity of
its applications, in addition to its mathematical depth and beauty. Recent surveys
on DG highlighting the theory and applications can be found in [9, 18, 57]. For
example, applications can be found in problems from astronomy, biochemistry,
statistics, nanotechnology, robotics, and telecommunications.

In astronomy, the problem is related to the determination of star positions using
information about the distances between some of them [60]. In biochemistry, the
problem appears in the determination of three-dimensional structures of protein
molecules using the information obtained from nuclear magnetic resonance (NMR)
experiments. In statistics, there are problems related to visualization of data [22]
and dimensionality reduction [50]. In these cases, points and distances are given
in a high dimensional space R

n and the problem is how represent them in a lower
dimension, say R

2 or R3, in order to have a visual idea of the data. This application is
also linked to a current topic of research called Big Data [2, 61]. In nanotechnology,
the problem is similar to the problem in biochemistry, but on a “nano” scale
[21, 39]. There is a direct relationship between the application to robotics and the
calculations related to molecular geometry [23, 70]. That is, given a set of robotic
arm lengths (distances), the problem is to find the locus of points that the robot
arm can reach [68]. In telecommunications, the problem is related to the positioning
of a wireless sensor network, where the distances can be estimated by the amount
of power necessary for performing peer-to-peer sensor communication. The further
the sensors, the more power is necessary. Since both sensors know how much power
they used, both sensors can compute their distance. An example of this is for router
positioning [24, 81].

The theoretical nature and the wide variety of applications have resulted in DG
becoming its own research area in applied mathematics, which includes fundamental
concepts from mathematics (measures, norms, geometry, optimization, combina-
torics, graph theory, symmetry, uncertainty) and computer science (algorithms,
solvability, complexity).
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