
Know Your Enemy:
Stealth Configuration-Information Gathering in SDN

Mauro Conti
University of Padova
conti@math.unipd.it

Fabio De Gaspari
Sapienza University

degaspari@di.uniroma1.it

Luigi V. Mancini
Sapienza University

mancini@di.uniroma1.it

Abstract—Software Defined Networking (SDN) is a network
architecture that aims at providing high flexibility through the
separation of the network logic from the forwarding functions.
The industry has already widely adopted SDN and researchers
thoroughly analyzed its vulnerabilities, proposing solutions to
improve its security. However, we believe important security
aspects of SDN are still left uninvestigated.

In this paper, we raise the concern of the possibility for
an attacker to obtain knowledge about an SDN network. In
particular, we introduce a novel attack, named Know Your Enemy
(KYE), by means of which an attacker can gather vital infor-
mation about the configuration of the network. This information
ranges from the configuration of security tools, such as attack
detection thresholds for network scanning, to general network
policies like QoS and network virtualization. Additionally, we
show that an attacker can perform a KYE attack in a stealthy
fashion, i.e., without the risk of being detected. We underline
that the vulnerability exploited by the KYE attack is proper of
SDN and is not present in legacy networks. To address the KYE
attack, we also propose an active defense countermeasure based
on network flows obfuscation, which considerably increases the
complexity for a successful attack. Our solution offers provable
security guarantees that can be tailored to the needs of the specific
network under consideration.

Keywords: Network Security, SDN, OpenFlow, Side-
Channel Attack, Configuration Information Gathering, Intel-
ligence Gathering

I. INTRODUCTION

Software Defined Networking (SDN) is a network architec-
ture proposed in recent years to address the shortcomings of
traditional architectures. SDN posits that the implementation
of network functions and the control logic of the network are
two separate concepts, and should therefore be separated in
different entities. To this end, SDN introduces the concepts
of data plane and control plane: the data plane is com-
prised of the physical network devices (from here on, called
switches) and implements the forwarding functionalities of the

network, while the control plane manages the network logic
and decision making process. In SDN, the control plane takes
the decisions on how traffic flows are managed and pushes
these decisions to the data plane, that will in turn enforce
them. This separation between logical control and physical
implementation of the network functions provides a high
degree of flexibility, which is one of the main reason for the
widespread adoption of SDN even amongst big companies [3],
[30].

While the programmability of SDN allows for fast prototyp-
ing and high adaptability to different scenarios, it also opens
new venues for attacks [13]. Indeed, while the decision making
process is centralized in the control plane, the enforcement
of the decision is distributed throughout all switches, which
follow the rules pushed by the control plane. We show that,
by exploiting this distributed policy-enforcement mechanism,
an attacker can gather intelligence about the control logic of
the network in a stealthy fashion. In particular, to run the
attack we propose in this paper, the adversary needs to have
only a flow table side-channel, i.e., a way of learning which
rules are installed, for a single switch (which we call entry
switch, see Section III). By analyzing the conditions under
which a rule is pushed, and the type of such rule, an attacker
can infer sensitive information regarding the configuration of
the network. The final result is that through a single switch, the
attacker can gather information which, in a classical network,
would have required access to numerous distinct devices, such
as firewalls, intrusion detection/prevention systems, etc. The
information gathered can subsequently be exploited to mount
different attacks, tailored to the target network, without being
detected.

To summarize, our contribution in this paper is as follows:
• We propose a novel, attack, the Know Your Enemy (KYE)

attack, that allows stealth intelligence gathering about the
configuration of a target SDN network. The information
that an adversary can obtain ranges from configuration
of security tools, such as attack detection thresholds for
network scanning, to general network policies like QoS
and network virtualization.

• We prove the feasibility and efficacy of the KYE attack
through its implementation and a thorough experimental
evaluation on a test network.

• We propose a countermeasure to the KYE attack, based
on obfuscation of inbound network flows.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the authors (for reproduction of an entire
paper only), and the author’s employer if the paper was prepared within the
scope of employment.

ar
X

iv
:1

60
8.

04
76

6v
1 

 [
cs

.C
R

] 
 1

6 
A

ug
 2

01
6



II. PRELIMINARIES: OPENFLOW

SDN is a general architectural principle: it broadly defines
general guidelines and overall architecture. When discussing
SDN in real world scenarios, we refer to specific SDN im-
plementations. In the remainder of this paper we focus on the
OpenFlow implementation of SDN, due to its wide adoption in
academia [39] and industry (including companies like Google
and Microsoft [3], [30]). However, it is worth noting that all
our considerations are not specifically tied to OpenFlow, but
hold true in general for SDN.

The OpenFlow specification defines the communication
protocol between the network controllers in the control plane
and the network devices, called OpenFlow switches, in the
data plane. Additionally, OpenFlow defines the general archi-
tecture and the functionalities of OpenFlow switches. Figure 1
provides and overview of the architecture of an OpenFlow
switch. In OpenFlow, each switch maintains a set of flow
tables. Each of these flow tables contains a set of flow rules;
flow rules are installed on OpenFlow switches by the control
plane, and define what actions a switch needs to apply to
a certain network flow. A flow rule can match one or more
network flows, through the use of wildcards, and a network
flow can be matched by one or more flow rules. Through
combination of different rules and actions, the controller can
instruct the switches to perform arbitrarily complex operations
on the packets belonging to a given network flow. One of the
main strengths of OpenFlow is the on-demand management
of network flows: when a switch receives an inbound network
flow for which it has no matching flow rule, it will contact
the controller to request the installation of a new rule. This
dynamic management of rules allows the controller to evaluate
the current state of the network before deciding how to
handle a network flow, which allows for the implementation
of complex and flexible network policies. The communication
between OpenFlow switches and the control plane can be
either in plain text, or secured through TLS. The specification
does not mandate TLS support, and in many cases commercial
OpenFlow switches do not support it [17].

Fig. 1. Overview of the architecture of an OpenFlow switch.

III. ASSUMPTIONS AND SDN ISSUES

While having a logically centralized point of control al-
lows to improve the decision-making process, distributing the
policy enforcement introduces new problems with regard to

information disclosure. Where network functions in legacy
networks are relegated to the specific devices implementing
them, providing higher control over access to their config-
uration, in SDN they are distributed throughout the Open-
Flow switches. Indeed, network policies and functionalities
like intrusion detection/prevention systems (IDS/IPS), network
virtualization, or access control, are often enforced by the
OpenFlow switches, through the application of the flow rules
installed by the controller [20], [23], [24]. Unfortunately, this
behaviour considerably broadens the attack surface for an
attacker.

Indeed, as we show in this paper, by having a flow ta-
ble side-channel on a single OpenFlow switch (called entry
switch), an attacker can gather a relevant amount of informa-
tion regarding the behaviour and configuration of the SDN
network the switch belongs to. A flow table side-channel is
defined as any mean by which an attacker can learn or infer
the content of the flow table of a switch. The KYE attack is
independent from how this side-channel is obtained, and the
detailed description of how to obtain it is out of the scope of
this paper. However, for completeness, we list here some of
the possibilities an attacker could leverage:

• Connect to a passive listening port on the entry switch to
retrieve the flow table. In fact, most OpenFlow switches
can be remotely debugged by means of a passive listening
port, which also allows retrieval of the flow table [17],
[36]. For instance, an attacker could use the dpctl
utility [7] on the unprotected listener port of an HP
Procurve [1].

• Use Round Trip Time (RTT) variance to infer information
about the content of the flow table [21], [32].

• Sniff the control traffic. Indeed, the use of TLS on the
control channel is optional [6], and many commercial
switches do not support it [17]. Additionally, in most
cases OpenFlow switches that support TLS do not im-
plement certificate authentication [36].

• Exploit a backdoor in the OS of the switch to read the
flow table or decrypt the control traffic [2].

• Use an hardware device to physically read the flow
table [19]. Such devices can acquire the content of
the memory of the switch and copy it to an external
destination.

It is worth noting that the attacker uses the flow table side-
channel only to read the state of the flow table, therefore
the overall state of the entry switch is not modified in any
way. This means that, even in case of a controller monitoring
the integrity of the entire state of the switches, e.g., through
direct query [31] or checksum [17], the flow table side-
channel would not be detected. Through the KYE attack
the attacker can learn all sorts of relevant information, from
routing policies, to more complex and important behaviours
regarding attack detection and defense mechanisms.

Finally we would like to point out that the KYE attack
exploits a structural vulnerability of SDN, which derives from
the on-demand management of network flows, that in turn is
one of the main features and strengths of this new network

2



paradigm. Therefore, it is not something that can be easily
modified or circumvented.

Threat Model. Our threat model assumes that the attacker
has a flow table side-channel for a single OpenFlow switch.
In particular, the only abilities of the attacker are (i) sending
packets through the target network and (ii) using the side-
channel to learn the flow rules that are installed on the entry
switch. The attacker can be either internal or external, does
not have control over the switch, and does not modify the
behaviour of the switch. Furthermore, we assume that the
switch only provides the functionality described in the Open-
Flow standard [6]. Therefore, the attacker does not modify the
software or add capabilities to the switch in any way.

IV. THE KYE ATTACK

From a high level view, the KYE attack follows a general
attack strategy to obtain information on a target network. The
details of the attack vary based on the specific information the
attacker wants to gather (see Section V). However, all instance
of the KYE attack share a common kernel, as detailed below.
The main idea behind the attack comes from the observation
that, in an SDN network, rules are pushed from the controller
to the switches only when needed [6]. This behaviour holds
true for all types of rules; for instance, the controller will
push a flow rule to counter a denial of service (DoS) attack
only when one is under way and detected. The KYE attack
exploits this on-demand installation of flow rules, allowing an
attacker to gather knowledge about which conditions trigger
the installation of a given flow rule, as illustrated in Figure 2.
The KYE attack is structured in two phases: (A) the probing
phase and (B) the inference phase.

In the probing phase (A), which is repeated numerous times,
the attacker attempts to trigger the installation of flow rules
on the entry switch (steps 1 through 5 in, Figure 2):

• The attacker sends carefully crafted probing traffic
through the entry switch in order to trigger the installation
of new flow rules. The specific characteristics of the
probing traffic depend on what kind of information the
attacker is interested in learning (see Section V and
Section VI).

• Through the flow table side-channel, the attacker obtains
the flow rule (if any) installed in response to the probing
traffic.

In the inference phase (B), the attacker analyzes the correla-
tion between the probing traffic generated during the probing
phase and the corresponding flow rules installed (step 6 in
Figure 2). From this analysis, he can infer what network policy
is enforced for specific types of network flows. For instance, if
in response to scanning traffic generated in the probing phase
the controller installs drop rules, the attacker infers that the
defense policy against network scanning is traffic filtering.
Additionally, by studying the features of the probing traffic, the
attacker can potentially infer the trigger conditions for network
policies that require a specific trigger before being activated
(see Section VI).

Fig. 2. Overview of a general KYE attack.

The final result is that, through the KYE attack, the attacker
is able to learn the control logic of the SDN network regarding
a specific type of network flow. Moreover, when the attacker is
able to learn the trigger condition for a given network policy
(e.g., policy against network scanning attacks), he can then
exploit this knowledge to perform additional attacks without
triggering detection (see Section VI-B). It is worth noting
that the probing traffic might be directed to an end host that
is not part of the target network. Indeed, the KYE attack only
requires that the probing traffic is routed through a switch
of the target SDN. This might be the case, for instance, of
an ISP providing defense measures against network attacks
to their clients. An attacker could perform a KYE attack to
gather intelligence on the ISP network, using as a destination
host for the probing traffic the hosts of one of the clients of
the ISP. Moreover, introducing probing traffic in the network
does not expose the KYE attack to detection. Indeed, one
of the strengths of the KYE attack is that it hides behind
other attacks: for instance, an attacker performing a KYE
attack to gather information related to DoS countermeasures
will generate DoS traffic through the target network. When
this traffic is detected, the network will simply conclude
that a DoS attack is underway, and the KYE attack will
remain undetected. Effectively, the probing traffic creates a
smokescreen that hides the KYE attack to the network, making
it extremely hard to detect in any reliable fashion.

V. KYE INSTANCES

As we discussed before, the KYE attack is a general attack
strategy, and the details of the attack vary based on the specific
information the attacker wants to gather. In this section, we
discuss different instances of the KYE attack, with respect
to what type of information the attacker wants to obtain.
Section V-A presents the KYE attack in relation to the dis-
closure of security-related network configuration information.
In Section V-B we discuss how the KYE attack can be used
to gather intelligence on SDN-related network configuration.
Finally, in Section V-C we analyze the use of the KYE
attack to disclose general network configuration information.

3



Additionally, we provide a non-exhaustive list of concrete
examples of KYE attack, showing how an attacker can exploit
the flow table side-channel to infer different configuration
features of the network.

A. Gathering Network Security Configuration Information

When planning an attack, knowing what detection and
defense mechanisms are used by the target network is
obviously invaluable to an attacker. In this section we discuss
how, through repeated probing and analysis of the flow table,
an attacker can infer detection mechanisms and defense
measures in place in an SDN network for different types of
attack. Due to space limitations, in our analysis we focus on
some popular SDN-based defense mechanisms proposed in
the literature [10], [39].

1) Worm Infection/Scanning: Scanning is one of the main
preliminary intelligence gathering techniques, used by attack-
ers to gather information about a given target network and by
worms to detect vulnerable targets to spread the infection to.
Through scanning, an attacker can learn about the number,
type and address of hosts in a network, along with what
services are offered on which port. This information is a pre-
requisite for mounting more complex attacks. Therefore, being
able to detect and mitigate scanning is extremely important for
any network.

KYE Attack. In SDN, an attacker can infer information
regarding the type of defense mechanisms used to mitigate
scanning and, depending on the detection mechanism em-
ployed, the detection threshold for scans. In order to infer
such information, an attacker simply needs to send scanning
probes from a spoofed address IPA, varying the characteristics
of the scan (e.g., increasing scanning rate, different duration
of the scan, various success/failed connection ratios). After
each probe, the attacker reads the content of the flow table
of the OpenFlow switch and takes note of the new flow rule
installed in response to the probe. As long as the scanning is
not detected, the flow rules installed simply instruct the switch
to forward the traffic coming from IPA towards different exit
ports, based on the destination address. When the scanning
rate becomes high enough or the scanning activity lasted long
enough for the attack to be detected [35], the controller will
install flow rules implementing an appropriate defense measure
against scanning.

Detection and Defense Mechanism Inference. Depending
on the defense measure used by the network, different types of
flow rules will be installed, for instance: traffic filtering [28],
rate limiting [35], [46], honeypot redirection [43], or whitehole
network approaches [13], [44]. All these defense mechanisms
require the installation of very specific flow rules, which
differ from the normal flow rules installed when no attack
is detected (see Section V-D). Consequently, by recognizing
this change in the type of rules installed, the attacker can
learn that the network scanning was detected. Moreover, the
flow rules required by these mechanisms are easily identifiable
and, just by looking at what rule is installed, the attacker

can infer the defense mechanism used by the network (see
Section V-D). Finally, for some defense mechanisms that are
activated on-demand by the controller, the attacker can also
infer the traffic features that trigger detection by the network.
For instance, if we consider TRW-CB [38], which is one of the
most frequently used anomaly detection algorithms [15] and is
already implemented in SDN [35], [43], the attacker can learn
the ratio between successful/unsuccessful connections used as
detection criteria through repeated probing. Once the attacker
discovers the detection threshold, he is then able to carry out
the network scan undetected in a second phase, by alternating
unsuccessful scanning with successful connections.

Implementation. In Section VI-A we report on the
implementation of this instance of the KYE attack. We
show that, for realistic detection and defense mechanisms,
an attacker is able to learn both the scanning traffic features
that trigger detection and the defense mechanism applied in
response.

2) Denial of Service: DDoS attacks are one of the most
widespread type of attacks and their diffusion and sophistica-
tion increases every year [5]. Indeed, attackers often use DDoS
attacks as a smokescreen to cover data theft and malware
installation on target systems [5]. Moreover, the financial
damage these attacks cause can range in hundreds of thousands
of dollars in peak hours [9]. As a consequence, most orga-
nizations adopt one or more DDoS detection and mitigation
system [9]. In the context of SDN, DDoS detection schemes
tend to employ lightweight mechanisms, such as threshold
and entropy-based systems [28], [23] to avoid overloading the
controller. Other more complex and computationally expensive
approaches do exist, like [18], where the authors employ
machine learning techniques to detect possible DoS attacks.
Depending on which detection mechanism is used, an attacker
can perform a KYE attack to learn if a DoS detection mecha-
nism exists, what defense measure is applied by the network
and potentially even the detection criteria employed.

KYE Attack. The KYE Attack for DoS detection is very
similar to the one used for network scanning; in the probing
phase, the attacker starts a DoS with a low attack rate,
simulating a behaviour that is as close as possible to that of a
legit client, then gradually increases the profile of the attack.
Throughout the attack, the attacker monitors the flow rules
installed by the controller on the OpenFlow switch, looking
for a change in the flow rules pushed. Indeed, under normal
circumstances the controller will simply instruct the switch to
route the traffic towards the destination host. However, when
the DoS attack is detected, the controller pushes different rules
based on the defense mechanism employed by the network,
allowing the attacker to learn that the DoS was detected.

Detection and Defense Mechanisms Inference. Defense
mechanisms proposed against DoS attacks, like traffic
redirection [34], rate limiting [46], [35] or traffic filtering [28],
require very specific flow rules that an attacker can easily
distinguish from normal routing rules (see Section V-D).
Therefore, as soon as these security flow rules are installed on

4



the monitored OpenFlow switch, the attacker will know that
the DoS was detected. By analyzing the specific flow rules
installed, he can also infer the defense mechanism applied
(see Section V-D). Additionally, when the attack is detected,
the attacker can try to infer the detection criteria used by the
network. Indeed, for certain type of detection mechanisms
such as threshold [23] or entropy-based [28], it is possible
to find a good approximation of when exactly an attack is
detected. In order to learn these detection thresholds, an
attacker can repeat the probing phase several times varying the
characteristics of the attack. Upon detection, the attacker will
log such characteristics, like duration, attack rate and number
of packets sent from each IP address, for instance. After
obtaining a sufficiently large sample, the attacker can look for
correlations between the characteristics of the detected attacks
to learn approximately what values trigger the detection.
Even in case of more complex detection systems based on
machine learning [18], the attacker can still obtain knowledge
about the traffic features used for detection. Indeed, previous
work on the area of machine learning shows that it is possible
to infer meaningful information about the training set of a
classifier [16], which in our case would reveal information
about which flows are considered malicious or benign.

3) Access Control: Access control mechanisms, like fire-
walls, are the first and most basic defense mechanism used
by networks to enforce security policies [12]. Through its
centralized view of the network and distributed enforcement of
rules, SDN provides the optimal functionality to implement a
consistent distributed firewall in the network [29], [45], [47].
Given that such access control systems are the first defense
mechanism that an attacker needs to bypass before attacking
a network, learning the exact configuration of such devices
would provide a huge advantage in preparing an attack. While
this would be extremely challenging in classical networks,
due to the fact that access control rules are relegated only
to specific security devices, this task is considerably simpler
in SDN.

KYE Attack. By performing a KYE attack, the attacker
can infer all the access control policies he is interested in by
simply probing the monitored OpenFlow switch. In its most
basic form, the attacker will send a probe packet to test any
given access control policy. For instance, the attacker can try
to connect to a protected service using a set of different IPs,
in order to understand which subnets are allowed to access
that service. For each of these probes the controller will push
either a forwarding flow rule, to forward the packets to their
destination, or a drop rule if the access is not allowed [12].
By repeating the probing for all interesting services and using
different source IP addresses, the attacker can map which
addresses (or address ranges) are allowed towards/from a
certain critical service.

Defense Mechanism Inference. For access control en-
forcement, the policy that is most used in general is to drop
unauthorized traffic flows [12]. If such defense mechanism is
in place, the attacker is able to recognize it immediately just

by reading the new flow rule installed (see Section V-D). SDN
also allows for more complex defense mechanisms to enforce
access control, like traffic redirection towards a honeypot/IDS
for instance [34], [43]. As we discuss in Section V-D, the at-
tacker can easily identify even this more complex mechanisms
just through observation of the OpenFlow switch flow table.

Implementation. In Section VI-B we report on the imple-
mentation of this instance of the KYE attack. We show that,
given an access control mechanism, an attacker is able to learn
the complete access control matrix enforced by the controller.

B. Gathering SDN-Related Configuration Information

Through a KYE attack, an attacker can infer vital
information about SDN-related network configuration,
such as flow table management [11], [22] and control
plane scalability measures [13], [44]. Knowledge about the
configuration of such critical systems provides an attacker
with a wider attack surface, as well as allowing him to better
focus his resources during an attack.

1) Flow Table Saturation: Flow rules, and therefore flow
tables, are the core enablers of SDN in OpenFlow. While
fine-grained flow rules allow for targeted policy enforcement,
the number of flow rules that can be installed on OpenFlow
switches is limited. If the flow rule limit is reached (e.g.,
as a result of a deliberate saturation attack), the switch will
not be able to accept rules for new inbound network flows,
which will be ignored. To mitigate this vulnerability, the
control plane can employ wildcard rules to aggregate the
management of multiple network flows with a single flow
rule [11], [22]. From the point of view of an attacker, learning
under which conditions the controller uses wildcard rules and,
more importantly, how to force it to install targeted flow rules,
is essential to successfully mount saturation attacks.

The main consideration behind aggregate network flow
management is that, in general, it is important to route flows on
an individual basis only under certain conditions. In particular,
for the purpose of network engineering, this conditions are
generally related to the weight of a specific network flow;
network flows that surpass a certain threshold (be it a data
rate [11] or size [22] threshold), are marked for individual
routing through targeted flow rules.

KYE Attack. Through a KYE attack an attacker can infer
the thresholds used to classify network flows, allowing him
to flood the network with flows for which the controller will
generate targeted flow rules. Indeed, similarly to a KYE attack
against threshold based detection systems (see Section V-A1),
an attacker can easily detect if such aggregation systems
are in place and, if so, what thresholds they employ. As a
first step, the attacker reads the OpenFlow switch flow table
and creates a new network flow not matching any flow rule
present. If network flow aggregation is in use, the new flow
rule installed on the switch will be a wildcard flow rule,
otherwise it will be a flow rule targeted specifically at the new
network flow. If a wildcard rule is installed, the attacker can
then increase the data rate transmission for that network flow

5



until a new, flow-specific rule is installed by the controller. At
this point, the attacker knows the exact attack rate and/or size
of the flow (cumulative amount of data transmitted) required
for the controller to install a targeted flow rule.

2) Control Plane Scalability: An important issue in SDN
lies within the scalability of its control plane. Indeed, pre-
vious research demonstrates that, due to the communication
required between data and control plane, SDN is subject to a
particular type of DoS attack known as control plane saturation
attack [13], [44]. This attack aims at overloading the control
plane with flow requests by flooding OpenFlow switches with
a high number of unique network flows. To mitigate this
problem, researchers proposed data plane extension modules
aimed at validating the inbound traffic before forwarding a
flow request to the controller [13], [44]. For an attacker,
detecting if such countermeasures exist is fundamental in order
to successfully attack the target network. The core idea behind
these countermeasures is to perform the traffic validation at
the data plane, before contacting the controller. In [44], for
instance, the traffic validation is done through the use of SYN
proxy as soon as an OpenFlow switch receives a SYN packet.

KYE Attack. An attacker can detect the presence of this
kind of defense mechanisms by means of the KYE attack;
indeed when SYN proxy techniques are used, the OpenFlow
switch answers to any SYN packet without a flow rule being
installed by the controller. An attacker can exploit this be-
haviour by generating a new connection request (SYN packet)
for which there are no flow rules already installed in the
flow table. Upon receiving a SYN-ACK response, if there
are still no matching flow rules for the generated connection
request, then SYN proxy countermeasures are in place in the
OpenFlow switches. This behaviour exposes the use of SYN
proxy techniques at the data plane level to the attacker, who is
then free to attack the network through vulnerabilities of the
SYN proxy approach [13].

C. Gathering General Network Configuration Information

Beside security and SDN-related applications and
mechanisms, networks have numerous general functionalities
and policies ranging from network virtualization [24], [40]
to traffic shaping and quality of service (QoS) [26], [27]. In
this section we discuss how an attacker can gather knowledge
about such functionalities through the KYE attack.

1) Network Virtualization: Network virtualization is a key
component to enable sharing of physical resources. In this
context, the abstraction and programmability offered by SDN
provide great advantages in the implementation of such net-
work virtualization techniques. Indeed, there have been sev-
eral proposals in the literature on how to employ SDN to
obtain efficient resource sharing in the context of network
virtualization [24], [40]. Although they provide considerable
benefits, virtualization and resource sharing also create new
problems and vulnerabilities. In fact, sharing physical hard-
ware between multiple tenants can lead to leakage of critical

information [37]. From the point of view of an attacker,
learning if some type of network virtualization is applied and,
if so, gathering as much information as possible from it, is
therefore clearly important. When we consider SDN-related
virtualization schemes like FlowN [24], network virtualization
is implemented through flow tagging: edge routers tag the
traffic with an additional header, which is used by the control
plane to map a flow with the routing logic specified by the
appropriate tenant.

KYE Attack. Through a KYE attack an attacker can learn,
for instance, how network flows are managed by other tenants
in the network or which tenants he is sharing a physical
machine with. Learning flow management for other tenants
is straightforward, since all the flow rules for all tenants are
installed in the same set of flow tables. The attacker can just
read the various flow rules present in the flow table of the
OpenFlow switch, differentiating them based on the header
for the specific flow (which indicates the tenant owning that
flow).

In order to gather knowledge about which tenants are co-
resident on the same physical machine, an attacker just needs
to generate probe packets directed to a service run by the
tenants he is interested in. If the target tenant is co-resident
on the same physical machine as the attacker, the new flow
rule installed in response to the probe will instruct the switch
to output the traffic to the same port it came from. Once the
attacker learns if he is sharing the same physical server with
his target, he can then mount additional targeted attacks [37].

D. Correlating Flow Rules and Network Policies

Through the KYE attack, an attacker can infer the exact
network-level defense mechanism employed against specific
attacks. In this section, we present a non-exhaustive set of
defense policies [20] that are used in relation to our examples
in Section V-A. Furthermore, we explain how an attacker can
correlate a sequence of flow rules obtained during the probing
phase to the network policy they implement.

a) Traffic Filtering: One of the most basic network-level
defense mechanisms is traffic filtering. A traffic filtering policy
can be employed to mitigate a large range of attacks, including
scanning and DoS attacks [13], [28]. In SDN, traffic filtering
is implemented simply by installing a drop rule matching the
offending network flows on OpenFlow switches. An attacker
monitoring the flow table of an OpenFlow switch can easily
detect the application of such defense mechanism. Indeed,
before the policy is applied, the control plane will push on the
OpenFlow switch normal flow rules, instructing the switch to
forward the inbound traffic based on the destination address.
When the attack is detected and the filtering is applied, the
control plane will install only a single drop rule for the all the
traffic coming from the attacker’s IP address.

b) Rate Limiting: Rate limiting is a simple, yet effective
defense mechanism to mitigate a wide variety of attacks like
scanning and DoS [35], [46]. The most basic rate limiters, the
ones assigning a maximum bandwidth to a given aggregate of
network flows, are immediately recognizable for an attacker

6



since they are directly defined in the flow rule matching
the aggregate network flows [6]. More complex rate limiting
approaches like those implemented in [35], [46] limit the rate
of new network flows by delaying the installation of flow rules.
In particular, [46] introduces the notion of working set: for
each given host, its working set is defined as the set of recently
contacted hosts. Whenever a host creates a new network flow
addressed at a host outside its working set, the controller will
withhold the installation of the corresponding flow rule on
the switch for a certain time. After this waiting time expires,
the controller instructs the switch to forward the network flow
without installing a flow rule. Only when the switch receives
a positive reply from the destination host, the controller will
install a new flow rule on the switch. An attacker can infer
the presence of this defense mechanism by constantly probing
the flow table of the switch after creating a new network
flow. If rate limiting is in use, the attacker will notice that,
even for extremely distant hosts, he will receive a response
as soon as the flow rule is installed in the OpenFlow switch.
Conversely, when no such technique is used, there will be a
delay between the installation of the flow rule on the switch,
which would happen as soon as the packet from the attacker
reaches the OpenFlow switch, and the moment the reply is
received. Therefore, by monitoring the delay in receiving a
response after a flow rule is installed, the attacker can infer
the use of this defense mechanism.

c) Whitehole Network: Another defense mechanism pro-
posed in the literature is SYN proxy [13], [44]. SYN proxy
techniques aim at countering the SDN-specific control plane
saturation attack [13], [44]. Additionally, SYN proxy imple-
ments a whitehole network [44] at the switch level, providing
mitigation also against network scans. When such counter-
measures are employed, the scenario is slightly different since
these are pro-active techniques that are always active, rather
than triggered by the installation of a flow rule. Even in this
case though, the attacker can infer the existence and the exact
type of the defense mechanism employed by the network.
Indeed when SYN proxy techniques are used, the attacker
will receive a response SYN-ACK packet without a flow rule
being installed on the OpenFlow switch [44]. Additionally,
the attacker will always receive a response SYN-ACK packet
to each and every of his probes, even if directed to himself.
This behaviour exposes the use of proxy techniques at the
data plane level to the attacker, who can attack the OpenFlow
switches through vulnerabilities of the proxy approach [13].

d) Traffic Redirection: Traffic redirection is a popular
defense mechanism since it provides many opportunities to
defend a system [34], [41], [43]. For instance, a defender
can opportunistically route malicious traffic towards a hon-
eypot, allowing it to isolate the attacker and to study his
behaviour [43]. In SDN these defense mechanisms are easy
to detect for an attacker. Indeed, by monitoring how the
control plane updates flow rule entries for some given network
flows, the attacker can infer if his attack traffic is diverted
towards a security middlebox/honeypot, nullifying the effect
of the countermeasure. In order to do so, an attacker first

generates a new legit network flow towards a given destination
D1 which is routed through a port Pi on the entry switch.
The attacker then repeats this step with different destinations,
until for a given destination Dn the controller pushes a flow
rule instructing the switch to output the matching flow on
a port Pj <> Pi. As a second step, the attacker generates
probing traffic with a high profile (e.g., high scanning or
DoS rate) towards destinations D1 and Dn for a length of
time, observing the flow rules installed in response. If traffic
redirection techniques are in place, the control plane will
install on the switch a new rule diverting the attack traffic
towards the remote middlebox/honeypot. Therefore, all the
attack traffic will be routed through the same output port on the
OpenFlow switch. Since in the first phase the attacker selected
the destinations D1 and Dn such that packets towards them
would be outputted on different ports, if all attack packets
towards those same destinations are tunneled through the same
output port, then a redirection mechanism is present in the
network.

VI. KYE IMPLEMENTATIONS

In order to prove the feasibility and effectiveness of the
KYE attack, we implemented two instances of the attack
on a test network. In this section, we present the detailed
implementation of our attacks, that were aimed at disclosing:

1) The presence of a scanning detection and defense mech-
anism in the network. If present, we also wanted to
estimate the detection threshold.

2) The presence of a subnetwork access control mechanism.
If present, we wanted to learn the subnetwork access
control matrix.

Figure 3 depicts the setup used for the evaluation, which
includes: the attacker h0, a single OpenFlow switch s1 con-
nected to the controller c, and 100 legit hosts h1 − h100.
Hosts h1 − h100 represent known web servers that always
reply to connection requests. Hosts h1−h100, if needed, may
be used by the attacker to obtain different connection success
ratios during probing, and are not necessarily part of the target
network.

In order to simplify the simulation, in our experiments the
target network is comprised only of the switch s1 and the
network controller c. Even though in our test network we
deployed only a single controller and a single switch, our
experiments do not lose generality. This is because the logic
used by the controller is the same that would be used in a more
complex network, and the rules pushed by the controller are
also the same. It is worth noting that it is not a requirement for
the attacker to be directly connected to the OpenFlow switch,
nor it is for hosts h1 − h100. This is just a simplification
we adopted in order to run our simulation. In this test
network, we implemented the TRW-CB scanning detection
algorithm, which is one of the most used anomaly detection
algorithms [15]. Our implementation of TRW-CB follows the
SDN implementation detailed in [35]. The test network also
implements an IP-based access control mechanism. We ran

7



all our experiments in a simulated network using the Mininet
network simulator [4] and the POX network controller [8].

Fig. 3. Experimental setup used for the evaluation.

A. Disclosing Scanning Detection and Defense Mechanisms

The target network implements TRW-CB at the control
plane as a scanning detection mechanism, and traffic filtering
as a defense measure (see Section V-D). TRW-CB employs
both credit limiting, used to limit the amount of first contact
connections pending, and sequential hypothesis testing to
detect scanning hosts. In particular, we configured the TRW-
CB algorithm with the same parameters used in the original
paper [38] (base credit of 10, false positive rate ≤ 0.00005,
precision ≥ 0.99).

As an attacker, the first step is to learn if the target network
has any kind of scanning detection mechanism in place. To
this end, we first initiated a scan with high packet/sec ratio
using a spoofed IP, towards a remote subnet which is protected
by the target SDN. At the same time, we constantly moni-
tored the flow table for a flow rule implementing a defense
mechanism, which would indicate the presence of a scanning
detection mechanism. With our configuration, after the first
10 connection attempts failed, TRW-CB correctly identified
our probes as scanning activity. Upon detection, the controller
pushed a drop flow rule matching all packets coming from the
attacker’s IP address. Since we were monitoring the flow table
of the switch, we detected the rule installation and concluded
that the network indeed implements a detection mechanism
for scanning attacks, as well as that it uses traffic filtering as
a defense measure.

After confirming the existence of a scanning detection
mechanism, the following step is to learn which detection
criteria are used. As discussed in Section V-A1, in order to do
so we initiate several batches of network scans with different

0 20 40 60 80 100

number of issued requests

0

5

10

15

20

25

30

n
u
m

b
e
r 

o
f 

re
sp

o
n
se

s

Fig. 4. Number of responses received vs. number of requests issued towards
h1, h100 at each batch.

0 20 40 60 80 100

connection request

0.0

0.5

1.0

1.5

2.0

co
n
n
e
ct

io
n
 r

e
su

lt

Fig. 5. Connection result for each request of the batch sent towards a
known host. 1 indicates a successful connection, 0 a failure (i.e., no response
received).

characteristics, like scan rate and successful/failed connections
ratio. The results of these batches of scans show two visible
characteristics:

1) The scanning activity is detected regardless of the scan-
ning rate. This behaviour excludes rate-based scanning
detection mechanisms.

2) For scan batches where connection requests were sent
only towards h1, h100 (which should all send back a
response), we received replies only from some of them,
as illustrated in Figure 4.

The behaviour shown in Figure 4 is consistent with rate lim-
iting techniques, where connection requests sent at a rate above
a certain threshold are dropped. To investigate this anomaly,
we started a new scan towards h1, h100 with slightly lower
rate. The results are illustrated in Figure 5. As we can see,
connections are allowed in bursts: replies were received for
the first 10 connections, then 39 requests were dropped, after
which connection attempts 50 through 69 were successful, and
then connections were dropped once again. Since the scanning

8



0 200 400 600 800 1000 1200

batch of scans

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
e
ss

fu
l/
to

ta
l 
co

n
n
e
ct

io
n
 r

a
ti

o

Fig. 6. Ratio of the number of successful connections over the number of
total connections, for each batch of scans which resulted in detection.

rate was constant for all the 100 connection attempts, this
behaviour excludes a standard rate limiting technique. Indeed,
from Figure 5 we can see how a host is allowed to contact
up to 10 new hosts (i.e., 10 starting credits), after which
connections are blocked until pending replies are received.
Upon receiving the replies, new credits are allocated to the
host, whose connections are correctly forwarded once again.
This pattern is consistent with the presence of a credit based
rate limiting mechanism [38].

At this point, through the KYE attack, we learned that:

• The network is using a detection mechanism for scanning,
which is not rate based.

• The network is using drop rules as a defense mechanism
against scanning. Moreover, the network employs an
additional preemptive defense measure in the form of
credit based rate limiting. Each host is assigned a starting
balance of 10 credits and for each successful connection
the hosts receives 2 additional credits (the initial 10
successful connections allowed 20 more connections after
replies were received).

In the final step of the KYE attack, we initiated several
batches of scans, with varying successful/failed connection
ratios and scan duration. Each scanning batch terminated either
after all planned scans were preformed, or abruptly upon
detection. Since we are only interested in the characteristics
of the scanning attacks that are detected, we isolate detected
batches from undetected ones. For the batches of scans that
were detected, figure 6 shows the ratio of successful connec-
tions over the total number of connections issued and Figure 7
shows the cumulative distribution function of the ratio of failed
connections over total number of connections. As these two
figures show, the scanning detection criteria employed by the
network is clearly based on the ratio of successful and failed
connections. Indeed, from Figure 6 we see that network scans
are never detected when the ratio of successful connection
over the total number of issued connections is above ∼ 0.45.
Conversely, from Figure 7 we can see that network scans are

0.0 0.2 0.4 0.6 0.8 1.0

failed/total connections ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

u
la

ti
v
e
 f

ra
ct

io
n
 o

f 
d
e
te

ct
e
d
 b

a
tc

h
e
s

Fig. 7. Empirical cumulative distribution function of the ratio of failed
connections over total number of connections, for batches of scans which
resulted in detection.

detected when the ratio of failed connections over total number
of issued connections is above ∼ 0.55, and never detected
when it is below that threshold.

B. Disclosing the Subnetwork Access Control Matrix

After learning the scanning detection criteria used by the
network through a KYE attack, we show that we can also
infer the complete access control matrix used by the network
without being detected by the controller. In our test network,
we configured the POX controller with a set of static access
control policies, where access to a certain subnetwork is
allowed only from a subset of all subnetworks. Whenever a
connection request from an unauthorized address is received,
the controller instructs the switch to drop the packet without
installing any flow rule. If the connection request is from an
authorized address, the controller installs a normal forwarding
flow rule on the switch for subsequent packets. In this setting,
we perform a KYE attack, sending scan probes from each
subnetwork to every other. Since with the previous attack
we inferred the detection criteria used by the network for
scans, we can now perform this network scan attack completely
undetected.

The attack itself is very simple: at each scan probe, we
spoof the source address to make it look like the source of the
connection is part of a given subnetwork. We repeat the scan
for each pair of source and destination remote subnetworks
in the range 10.0.0.0\24 − 10.0.255.0\24, while opening
enough successful connections to remain below the detection
threshold. After each scan, we read the flow table of the switch
to detect which rule is installed. By monitoring the flow table,
we see that no flow rules are installed when the source IP
is not allowed to access the subnetwork, while a forwarding
rule is installed when the access is authorized. Through this
observation we are able to build the access control matrix
illustrated in Table I, which reflects exactly the access control
rules that were set up at the network controller.

9



10.0.0.0/24 10.0.1.0/24 10.0.2.0/24 10.0.3.0/24 10.0.5.0/24 10.0.8.0/24 10.0.10.0/24
10.0.0.0/24 3 3 7 7 7 7 7
10.0.1.0/24 3 3 7 7 7 7 7
10.0.2.0/24 7 7 3 3 7 7 7
10.0.3.0/24 7 7 3 3 7 7 3
10.0.5.0/24 7 7 7 7 3 3 7
10.0.8.0/24 7 7 7 7 3 3 7
10.0.10.0/24 7 7 7 3 7 7 3

TABLE I
SUBNETWORK ACCESS MATRIX FOR THE TARGET NETWORK, LEARNED BY THE ATTACKER THROUGH A KYE ATTACK. NOTATION 3: ACCESS ALLOWED;

NOTATION 7: ACCESS RESTRICTED.

VII. COUNTERMEASURE TO THE KYE ATTACK

When considering potential countermeasures, the main
problem is that the behaviour responsible for the vulnerability
exploited by the KYE attack is also the main strength of SDN:
programmability. Therefore, it is not possible to just remove or
sensibly alter such behaviour without denaturating SDN itself.
Additionally, classical techniques used to avoid eavesdropping,
like randomized routing for instance [25], are not applicable
against the KYE attack (see Section IX).

In this section, we propose a countermeasure to the KYE
attack that does not require modifications to SDN, but rather
that takes advantage of SDN programmability. We call this
countermeasure flow obfuscation. In this section, we use a
stronger attack model than the one presented in Section III.
While in our presentation of the attack we used the threat
model that is least favourable to the attacker (i.e., the attacker
has a side-channel only for a single switch), for our counter-
measure we consider a threat model that is least favourable to
the defender: we assume that the attacker can obtain a flow
table side-channel for up to n switches in the target SDN
network.

A. Flow Obfuscation

In order to successfully mount a KYE attack, an attacker
needs to be able to correlate (i) the network flows he generates
to (ii) the reaction they cause in the network. In SDN, this
corresponds to the installation of a specific flow rule that
the attacker can detect, and from which he can obtain some
knowledge about the network. Therefore, if it was possible to
prevent the attacker from understanding which network flow
caused the installation of which flow rule, the KYE attack
would become unfeasible. In order to achieve this goal, we
exploit the ability of OpenFlow switches to modify packets in
transit. Figure 8 provides an overview of this countermeasure.

Any time a new network flow fi is received by a switch,
the controller installs a single flow rule on the switch, with
two actions: the first action instructs the switch to modify
some header fields of the packets of fi (e.g., source and
destination IP), while the second action tells the switch which
output port to use for packet forwarding. This process is
repeated for the first k − 1 switches s1, ..., sk−1 in the path,
after which, at switch sk, the controller installs a rule to
enforce the appropriate network policy for fi. The goal of

this countermeasure is to prevent the attacker from learning
which network flow causes the installation of a given flow
rule; indeed, since the attacker can control up to n switches,
when k > n he will never be able to obtain the complete
knowledge required for a successful KYE attack. In fact, when
k > n there are two possible scenarios:

• If the attacker monitors s1, ..., sk−1, then he does not
monitor sk, which is the switch applying the network
policy flow rule.

• If the attacker monitors sk, then he can not know if the
installation of a rule on sk is caused by a network flow
he generated. This is because the previous k−1 switches
modify the packets at each step, and the attacker does not
monitor all of them.

Please note that the use of source and destination IP to
identify network flows is just used to present the countermea-
sure. In general, network flows can be matched on more or
even completely different header fields. Even in such cases,
the flow obfuscation countermeasure can be implemented by
modifying these fields through set field actions [6].

1) Choosing the Value of K: While in order to prevent
with 100% probability all possible KYE attacks k needs to be
greater than n, in the general case this is not required. Indeed,
depending on the average out-degree of the switches in the
network, even with a value of k ≤ n the probability of the
attacker obtaining a side-channel on the exact k switches used
for flow obfuscation can be low. Given an SDN network, let
us assume that o+1 is the average out-degree of a switch and
that an attacker knows the number of switches used in flow
obfuscation. If an attacker a can monitor at most n switches
(for simplicity, we assume n mod k = 0), the probability
P s
s1,sk of him monitoring exactly the k switches s1, ..., sk used

for flow obfuscation is:

P s
s1,sk =

(
(n/k)

o

)k−1

,

since attacker always knows the identity of s1 (the edge switch
through which the attacker’s traffic is routed). A network
manager can decide the appropriate value for k based on the
expected value of n and the maximum probability P s

s1,sk that
he is willing to accept.

2) Limitations: The flow obfuscation countermeasure can
effectively prevent the KYE attack and is configurable to the

10



Fig. 8. Overview of the flow obfuscation countermeasure. The red dashed lines indicate the flow table side-channel.

needs of the network, but also presents some drawbacks. The
first drawback is related to the delay in the application of
network policies to network flows. Indeed, while in a normal
SDN environment network policies are applied immediately
at the ingress switch, when flow obfuscation is in place the
network policy is delayed to the k-th hop in the network. While
this behaviour might not impact all flows, in case of flows that
require less than k hops to reach the destination (e.g., flows
that would be immediately dropped) it adds additional load on
the network. The second drawback is related to the additional
work required at the control plane. In fact, in order to correctly
route the network flows the controller needs to keep track of
each header modification applied by the switches. The higher
k is, the higher the amount of bookkeeping the controller has
to do to correctly identify the network flows.

These drawbacks can be mitigated by applying flow ob-
fuscation in an intelligent manner. Indeed, the length of the
flow obfuscation path can be tailored to the average length
of network flows in the network; this way, on average flow
obfuscation will add only a negligible delay to the application
of network policies and the controller will incur a reduced
overhead. Moreover, while on average flow obfuscation will
indeed increase the load on network links, this load can
be effectively distributed by the controller by dynamically
changing the flow obfuscation path. This allows the controller
to avoid link saturation, even in case of deliberate DoS
attacks, thanks to the global network visibility provided by
SDN. Additionally, it is worth noting that when applying
flow obfuscation, the controller incurs overhead only for the
first packet of each network flow. In fact, once the header-
modification and forwarding flow rules are installed on the
switches, all packets will be modified and correctly routed
without the intervention of the controller.

VIII. LIMITATIONS OF THE KYE ATTACK
AND FUTURE WORK

The KYE attack requires constant assessments of the flow
table by the attacker and the ability to recognise deviations in

the type of flow rules installed. A human attacker can find this
process bothersome and non-trivial in certain cases, leading to
imprecise identification of detection conditions and/or defense
measures applied. Additionally, the attacker might not be able
to correctly identify the network policy applied if the policy
itself is new or unknown to the community. While this might
be the case, we argue that the attacker does not necessarily
need to learn the exact nature of the network policy applied, as
long as he is able to learn enough information for his purposes.
For instance in case of network scanning, not being able to
identify the defense mechanism used might be acceptable for
the attacker, as long as he is able to understand when the
scanning traffic is detected and when it is not. The attacker can
learn when the scanning is detected by observing a deviation
in the flow rules installed for different types of probing traffic
(e.g., very low scan rate probing traffic v.s. fast scan rate
probing traffic).

In our future work, we plan on automating the KYE attack
by means of machine learning techniques. Indeed, the efficacy
of the KYE attack is based on the ability to recognising
patterns in the features of the generated traffic and in the
flow rules installed in response, as well as to recognise
significant deviations from such patterns. We believe that
machine learning can be successfully applied to detect the
baseline behaviour of the control plane under normal traffic
conditions. Once this baseline behaviour has been identified,
we can use a classifier to detect and categorize deviations
from such behaviour triggered by specific traffic flows. It
would then be possible to use another classifier to find the
most relevant features of the attack traffic which caused the
abnormal network state (e.g., detection of an attack). In this
system model, the OpenFlow switch acts as an oracle: the
switch can be repeatedly queried to learn if some network
flows trigger a deviation in the usual type of flow rules
installed. By analyzing the difference between the features
of network flows that triggered the abnormal network state
versus those which did not, it is possible to learn which are
the characteristics that caused the reaction.

11



In complex real-world networks, it is possible to have
several subnetworks, each with separate network policies. In
this scenario, the KYE attack allows to learn the network
configuration of the subnetwork for which the attacker has
a flow table side-channel. If the attacker wishes to learn the
configuration of other subnetworks, he will need to obtain
a flow table side-channel for one switch on each of those
subnetworks.

IX. RELATED WORK

SDN has become a popular research topic in recent years,
especially in relation to security. Despite significant research
efforts, to the best of our knowledge this is the first work to
analyze the vulnerabilities caused by the distributed enforce-
ment of rules in SDN. In [33], Kreutz et al. discuss the effects
of an attacker compromising a switch in the network, which
can result in traffic injection attacks, man-in-the-middle attacks
and traffic filtering. Similarly, in [14] the authors consider an
attacker with full control over the switch and discuss several
possible attacks like man-in-the-middle, state, and topology
spoofing. However, both of these works assume a stronger
attacker, with full control over the switch, differently from
us. Moreover, in these works [14], [33] the attacker actively
modifies the state of the OpenFlow switch, exposing the
attack to detection by the controller through querying [17],
[31] the state of the switch or RTT analysis [14]. In [32],
Klöti et al. analyze the overall security of OpenFlow using
the STRIDE methodology. Between other threats, the authors
also identify the risk of information disclosure in OpenFlow-
based SDN. Indeed, they prove that by analyzing the RTT
for a specific network flow, an attacker is able to infer if
a flow rule for a specific network flow is already installed
in an OpenFlow switch. While the goal of this attack is to
obtain some information on the state of a switch, the KYE
attack allows to learn a much greater amount of information
about the logic and policies of the network, such as attack
detection threshold and defense mechanisms applied. Another
set of works related to ours pertain to SDN fingerprinting [42].
SDN fingerprinting techniques use RTT to infer if a given
network is an SDN or a classical network. These techniques
apply the observation, made in [32], that in SDN the first
packet belonging to a network flow has a higher RTT then
subsequent ones. By exploiting this asymmetry, an attacker can
successfully infer if a network is an SDN with high accuracy.
Fingerprinting attacks are related to our work in the sense that
they also try to gather intelligence about the configuration of
a network. However, the approach and the type of information
obtained are completely different from our proposal and the
amount of information retrieved with the KYE attack is much
greater.

The family of countermeasures that may seem applicable to
the KYE attack are route randomization countermeasures [25].
These countermeasures aim to provide resistance to recon-
naissance and eavesdropping. However, there are two major
differences between the KYE attack and a classical eavesdrop-
ping scenario that make these countermeasures not applicable.

First, with the KYE attack, the attacker only needs to have
a flow table side-channel on the switch through which the
attacker’s traffic enters the network, rendering randomized
routing ineffective. This is because, contrary to a classical
eavesdropping scenario where the goal is to sniff the traffic
of a victim, the attacker knows which switch in the network
will be the gateway for his own traffic. Second, the duration
of the network flow in case of the KYE attack and in case
of classical eavesdropping are different. Indeed, while in a
classical eavesdropping scenario the duration of the network
flow is limited, in case of the KYE attack it can last as long
as the attacker needs it to. Therefore even if the attacker’s
traffic is routed through the entry switch only a fraction of the
time, this simply means the attacker will have to increase the
duration of the probing phase of the KYE attack. In particular,
the attacker can opportunistically suspend the probing when
the traffic is not routed through the entry switch anymore, and
resume when the traffic is routed through it once again. Finally,
the KYE attack can be used to learn the characteristics of the
randomized routing mechanism itself, like the duration of the
randomization intervals.

X. CONCLUSIONS

In this paper, we proposed a thorough analysis of the
vulnerability introduced by the on-demand installation of flow
rules in SDN. We presented the novel KYE attack which,
with minimal requirements, allows an adversary to gather an
extensive amount of information regarding the configuration
of the network, ranging from security-related aspects to net-
work engineering policies. We implemented the KYE attack
and conducted a thorough evaluation, showing its feasibility
against a popular scanning detection algorithm and against
standard access control policies. Finally, we proposed the flow
obfuscation countermeasure to the KYE attack, which provides
provable security guarantees and can be tailored to the needs
of a specific network under consideration.

REFERENCES

[1] Hp procurve 5400 openflow switch. http://archive.openflow.org/wk/
index.php/Configuring HP Procurve. Accessed: 08-2016.

[2] Juniper screenos authentication backdoor. https://
community.rapid7.com/community/infosec/blog/2015/12/20/
cve-2015-7755-juniper-screenos-authentication-backdoor. Accessed:
08-2016.

[3] Microsoft’s DEMON. https://sharkfest.wireshark.org/sharkfest.12/
presentations/A-4 Leveraging Openflow to create a Large Scale
and Cost Effective Packet Capture Network.pdf. Accessed: 07-2016.

[4] Mininet network simulator. http://mininet.org/. Accessed: 05-2016.
[5] Neustar annual ddos attacks and impact report. https:

//www.neustar.biz/resources/whitepapers/ddos-protection/
2014-annual-ddos-attacks-and-impact-report.pdf. Accessed: 03-2016.

[6] Openflow specification. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.1.pdf. Accessed: 03-2016.

[7] Openflow wiki. http://archive.openflow.org/wk/index.php/OpenFlow
Tutorial. Accessed: 08-2016.

[8] Pox network controller. https://github.com/noxrepo/pox. Accessed: 05-
2016.

[9] US DDoS attacks and protection report. https://www.neustar.biz/
ddos-attacks-report. Accessed: 03-2016.

12

http://archive.openflow.org/wk/index.php/Configuring_HP_Procurve
http://archive.openflow.org/wk/index.php/Configuring_HP_Procurve
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://sharkfest.wireshark.org/sharkfest.12/presentations/A-4_Leveraging_Openflow_to_create_a_Large_Scale_and_Cost_Effective_Packet_Capture_Network.pdf
https://sharkfest.wireshark.org/sharkfest.12/presentations/A-4_Leveraging_Openflow_to_create_a_Large_Scale_and_Cost_Effective_Packet_Capture_Network.pdf
https://sharkfest.wireshark.org/sharkfest.12/presentations/A-4_Leveraging_Openflow_to_create_a_Large_Scale_and_Cost_Effective_Packet_Capture_Network.pdf
http://mininet.org/
https://www.neustar.biz/resources/whitepapers/ddos-protection/2014-annual-ddos-attacks-and-impact-report.pdf
https://www.neustar.biz/resources/whitepapers/ddos-protection/2014-annual-ddos-attacks-and-impact-report.pdf
https://www.neustar.biz/resources/whitepapers/ddos-protection/2014-annual-ddos-attacks-and-impact-report.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial
http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial
https://github.com/noxrepo/pox
https://www.neustar.biz/ddos-attacks-report
https://www.neustar.biz/ddos-attacks-report


[10] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov. Security in software
defined networks: A survey. IEEE Communications Surveys Tutorials,
2015.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In Proceed-
ings of the 7th USENIX Conference on Networked Systems Design and
Implementation, NSDI’10, 2010.

[12] E. S. Al-Shaer and H. H. Hamed. Modeling and management of firewall
policies. IEEE Transactions on Network and Service Management, 2004.

[13] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran. Lineswitch:
Efficiently managing switch flow in software-defined networking while
effectively tackling dos attacks. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ASIACCS ’15, 2015.

[14] M. Antikainen, T. Aura, and M. Särelä. Spook in your network:
Attacking an sdn with a compromised openflow switch. In Secure IT
Systems: 19th Nordic Conference, NordSec 2014, 2014.

[15] A. B. Ashfaq, M. J. Robert, A. Mumtaz, M. Q. Ali, A. Sajjad, and S. A.
Khayam. A comparative evaluation of anomaly detectors under portscan
attacks. In Proceedints of the 11th International Symposium on Recent
Advances in Intrusion Detection, RAID, 2008.

[16] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici. Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers. International Journal
of Security and Networks, 2015.

[17] K. Benton, L. J. Camp, and C. Small. Openflow vulnerability assess-
ment. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, 2013.

[18] R. Braga, E. Mota, and A. Passito. Lightweight ddos flooding attack de-
tection using nox/openflow. In Proceedings of the 35th IEEE Conference
on Local Computer Networks, LCN, 2010.

[19] B. D. Carrier and J. Grand. A hardware-based memory acquisition
procedure for digital investigations. Digit. Investig., 2004.

[20] C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang. Nice: Network
intrusion detection and countermeasure selection in virtual network
systems. IEEE Transactions on Dependable and Secure Computing,
2013.

[21] H. Cui, G. O. Karame, F. Klaedtke, and R. Bifulco. On the fingerprint-
ing of software-defined networks. IEEE Transactions on Information
Forensics and Security, 2016.

[22] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In Proceedings of the ACM SIGCOMM Conference, SIG-
COMM ’11, 2011.

[23] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. Sphinx: Detecting
security attacks in software-defined networks. In Proceedings of the
2015 Network and Distributed System Security Symposium, NDSS 2015.

[24] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization
in software-defined networks. IEEE Internet Computing, 2013.

[25] Q. Duan, E. Al-Shaer, and H. Jafarian. Efficient random route mutation
considering flow and network constraints. In Proceedings of the IEEE
conference on Communications and Network Security, CNS, 2013.

[26] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp. Openqos:
An openflow controller design for multimedia delivery with end-to-
end quality of service over software-defined networks. In Proceedings
of the Signal Information Processing Association Annual Summit and
Conference, APSIPA ASC, 2012.

[27] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar. Scalable
video streaming over openflow networks: An optimization framework for
qos routing. In Proceedings of the 18th IEEE International Conference
on Image Processing, 2011.

[28] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris. Combining openflow and sflow for an effective and scalable
anomaly detection and mitigation mechanism on sdn environments.
Computer Networks, 2016.

[29] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. Flowguard: Building robust
firewalls for software-defined networks. In Proceedings of the Third

Workshop on Hot Topics in Software Defined Networking, HotSDN ’14,
2014.

[30] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. SIGCOMM Comput. Commun. Rev., 2013.

[31] A. Kamisiński and C. Fung. Flowmon: Detecting malicious switches
in software-defined networks. In Proceedings of the 2015 Workshop on
Automated Decision Making for Active Cyber Defense, SafeConfig ’15,
2015.

[32] R. Klöti, V. Kotronis, and P. Smith. Openflow: A security analysis.
In Proceedings of the 21st IEEE International Conference on Network
Protocols, ICNP, 2013.

[33] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and depend-
able software-defined networks. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, 2013.

[34] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. Dfence:
Transparent network-based denial of service mitigation. In Proceedings
of the 4th USENIX Conference on Networked Systems Design and
Implementation, NSDI’07, 2007.

[35] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting traffic anomaly
detection using software defined networking. In Proceedings of the 14th
International Symposium on Recent Advances in Intrusion Detection,
RAID, 2011.

[36] G. Pickett. Abusing software defined networks. BlackHat, 2014.
[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get

off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, 2009.

[38] S. E. Schechter, J. Jung, and A. W. Berger. Fast detection of scanning
worm infections. In Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection, RAID, 2004.

[39] S. Scott-Hayward, S. Natarajan, and S. Sezer. A survey of security in
software defined networks. IEEE Communications Surveys Tutorials,
2016.

[40] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar. Can the production network be the testbed?
In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, 2010.

[41] S. Shin and G. Gu. Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?). In Proceedings of the 20th IEEE
International Conference on Network Protocols, ICNP, 2012.

[42] S. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
2013.

[43] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.
Fresco: Modular composable security services for software-defined
networks. In Proceedings of the 20th Annual Network and Distributed
System Security Symposium, NDSS 2013.

[44] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable
and vigilant switch flow management in software-defined networks. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’13, 2013.

[45] M. Suh, S. H. Park, B. Lee, and S. Yang. Building firewall over the
software-defined network controller. In Proceedings of the 16th Inter-
national Conference on Advanced Communication Technology, 2014.

[46] J. Twycross and M. M. Williamson. Implementing and testing a virus
throttle. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12, SSYM’03, 2003.

[47] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng. Towards
a security-enhanced firewall application for openflow networks. In
Proceedings of the 5th International Symposium on Cyberspace Safety
and Security, CSS’13, 2013.

13


	I Introduction
	II Preliminaries: OpenFlow
	III Assumptions and SDN Issues
	IV The KYE Attack
	V KYE Instances
	V-A 99993em.5Gathering Network Security Configuration Information
	V-A1 Worm Infection/Scanning
	V-A2 Denial of Service
	V-A3 Access Control

	V-B 99993em.5Gathering SDN-Related Configuration Information
	V-B1 Flow Table Saturation
	V-B2 Control Plane Scalability

	V-C 99993em.5Gathering General Network Configuration Information
	V-C1 Network Virtualization

	V-D Correlating Flow Rules and Network Policies

	VI KYE Implementations
	VI-A 99993em.5Disclosing Scanning Detection and Defense Mechanisms
	VI-B Disclosing the Subnetwork Access Control Matrix

	VII Countermeasure to the KYE Attack
	VII-A Flow Obfuscation
	VII-A1 Choosing the Value of K
	VII-A2 Limitations


	VIII Limitations of the KYE Attackand Future Work
	IX Related Work
	X Conclusions
	References

