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Abstract. In 2010, Resch and Plank proposed a computationally secure
secret sharing scheme, called AONT-RS. We present a generalisation of
their scheme and discuss two ways in which information is leaked if used
to distribute small ciphertexts. We discuss how to prevent such leak-
age and provide a proof of computational privacy in the random oracle
model. Next, we extend the scheme to be robust and prove the robust
AONT-RS achieves computational privacy in the random oracle model
and computational recoverability under standard assumptions. Finally,
we compare the security, share size and complexity of the AONT-RS
scheme with Krawczyk’s SSMS scheme.

1 Introduction

A (t, n)−threshold secret sharing scheme describes how to distribute data amongst
n servers such that t are required to collaborate in order to reconstruct the data.
Any fewer than t servers learn nothing about the data. Secret sharing is useful
in distributed storage systems where data is stored across multiple servers. A
user wishing to access the data must access a threshold number of servers and
combine the retrieved shares. This enables greater availability, adds redundancy
and offers security without the reliance on cryptographic keys.

In 2010, Resch and Plank proposed a dispersed storage system, called AONT-
RS [14], which blends an all-or-nothing transform (AONT) [15] with Reed-
Solomon (RS) coding [13]. The result is a computationally secure (t, n)−threshold
secret sharing scheme. The AONT-RS is a feature in the object storage system
sold by Cleversafe, a company recently acquired by IBM [7], who renamed the
product to IBM Cloud Object Storage. In 2016 the system was rated the overall
leader in the Gartner Critical Capabilities for Object Storage Report [4].

We present a generalised version of the AONT-RS that enables users the
flexibility to choose a block cipher mode of operation and an Information Dis-
persal Algorithm (IDA). We specify (previously undefined) security properties
the building blocks of our generalised AONT-RS must satisfy and discuss infor-
mation leakage and prevention.



Resch and Plank claim the AONT-RS has integrity because they use a canary,
which enables an authorised user to confirm whether or not the correct data has
been recovered. However, the submission of an incorrect share will prevent the
correct data from being recovered. Although the user knows the recovered data
is wrong, they are unable to recover the correct data. To address this, we remove
the canary and extend the scheme to be robust by using commitment schemes,
as in [16]. This ensures that, even if a bounded number of servers submitted false
shares, the original data will be uniquely recovered.

Resch and Plank claim the AONT-RS achieves computational security but
no thorough security analysis is provided. We prove both the generalised and
robust AONT-RS achieve computational privacy in the random oracle (RO)
model, then prove the robust AONT-RS achieves computational recoverability
under standard assumptions.

We then compare the generalised AONT-RS with Krawczyk’s secret sharing
made short scheme (SSMS) [9]. This comparison is applicable to the robust
AONT-RS with a robust extension of SSMS by Bellare and Rogaway, called HK2
[16]. In our comparison, we consider the security, the share size and the number
of bitwise XORs required to distribute and recover data via both schemes.

Related Work. Shamir and Blakely independently introduced secret sharing
schemes in 1979 [17] [2]. Shamir’s scheme is ideal and perfectly secure.

In 1994, Krawczyk published a paper focusing on computationally secure
schemes (CSS) in the non-robust setting [9] and proposed his SSMS scheme.
Krawczky also proposed goals for a robust CSS scheme, along with a candidate
solution. Previously, the CSS goal had been mentioned by Karnin et al. [8]. Prior
to Krawczyk’s work, robustness had only be studied in the information-theoretic
setting in [11] and [18]. Krawczyk’s motivation was to achieve shares smaller than
were possible in perfectly secure secret sharing schemes [8].

Krawczyk’s work was revisited in 2007 by Bellare and Rogaway [16], in
which they proposed formal definitions for a CSS and proved Krawczyk’s robust
scheme to be secure in the RO model. They then proposed a refined version
of Krawczyk’s scheme (called HK2), which achieves the robust CSS goals un-
der standard assumptions. Since Bellare and Rogaway’s work, based on our best
knowledge, there have been no new solutions for robust CSS schemes until Resch
and Plank’s AONT-RS scheme in 2011 [14], which is studied in detail here.

Contributions. Our contribution can be summarised as follows:

– We present a generalised version of the AONT-RS and highlight the (previ-
ously undefined) security properties each element of the scheme must have.

– We discuss and illustrate two examples of information leakage in both the
original and our AONT-RS scheme and discuss how to prevent this.

– We prove the AONT-RS achieves computational privacy in the RO model.

– We extend AONT-RS to be robust and provide a proof of computational
privacy in the RO model and recoverability under standard assumptions.



– We compare the generalised AONT-RS scheme with Krawczyk’s SSMS. Our
comparison is applicable to the robust AONT-RS and HK2.

Organisation. In Section 2 we present notation and definitions. In Section 3
we present a generalised version of the AONT-RS and discuss information leak-
age. We then prove the generalised AONT-RS achieves computational privacy
in the RO model. In Section 4 we extend the AONT-RS to be robust and prove
computational privacy in the RO model and recoverability under standard as-
sumptions. In Section 5 we introduce Krawczyk’s SSMS and compare it with the
generalised AONT-RS. We conclude in Section 6.

2 Preliminaries

In this section we introduce the definitions and notation used throughout.

2.1 Secret Sharing Schemes

Definition 1. Let n, t ∈ N with 2 ≤ t ≤ n and let P = {P1, . . . , Pn} be a set of n
players. A (t, n)−secret sharing scheme Π consists of two algorithms: Share and
Recover. Share is probabilistic and takes as input a secret s chosen from a secret
space S and outputs an n−vector S. Player Pi receives the share S[i]. Recover is
deterministic and takes as input shares and outputs some s′ ∈ {S∪⊥}. The secret
s should be recoverable by any set of at least t players, and private, meaning
any fewer than t players (called unauthorised sets) are unable to recover s.

A (t, n)−secret sharing scheme can either have perfect or computational se-
curity. These security models can be defined by two security games [16] as in
Figure 1: one defining privacy and the other recoverability. Note that if an algo-
rithm A is deterministic, we write x ← A(·). If the algorithm is probabilistic,

then x
$←− A(·) means to choose x according to the distribution induced by A.

In the privacy game Priv, for parameters t and n, the challenger chooses a
bit b. The adversary chooses secrets s0, s1 ∈ S and sends them to the challenger,
who inputs sb to Share, which outputs S. The adversary then makes up to t−1
Corrupt(i) queries for 1 ≤ i ≤ n and receives the share S[i]. The adversary then
outputs a guess b′ for b and wins if b′ = b.

Let A be an adversary playing the Priv game against a secret sharing scheme
Π. Call A a privacy adversary. Let Pr[PrivA] denote the probability A outputs
the correct guess b′ = b during finalise and define the advantage of A as

AdvPrivΠ (A) = 2 · Pr[PrivA]− 1. (1)

The recoverability game models an adversary’s ability to prevent the recovery
of s by deleting or altering shares. The set T denotes the players the adversary
corrupts. Let T = ∅. The adversary chooses and submits a secret s ∈ S to the
challenger, who inputs it to Share. The adversary then makes up to n−t queries



Game Priv

– Procedure Initialise(t, n)

b
$←− {0, 1}; j = 1

– Procedure Deal(s0, s1)
If s0, s1 /∈ S

Return ⊥
Else S

$←− Share(sb)
– Procedure Corrupt(i)

If j ≤ t− 1
Return S[i]; j = j + 1

Else halt.
– Procedure Finalise(b′)

Return b′ = b

Game Rec

– Procedure Initialise(t, n)
T ← ∅; j = 1

– Procedure Deal(s)
If s /∈ S

Return ⊥
Else S

$←− Share(s)
– Procedure Corrupt(i)

If j ≤ (n− t)
Return S[i]
j = j + 1; T ← T ∪ {i}

Else halt.
– Procedure Finalise(ST )

Return s 6= s′ ← Recover(ST ∪ ST )

Fig. 1: Privacy and recoverability games for a (t, n)−secret sharing scheme.

of the form Corrupt(i) for 1 ≤ i ≤ n and receives the share S[i] in return. Each
i is noted in T . To finalise, the adversary outputs a partially complete n−vector
ST , consisting of at most t altered (and the rest deleted) shares queried during
the corrupt procedure. This vector is completed by the challenger filling the
remaining t elements with valid shares noted in the vector ST . The vector ST∪ST
is then submitted to Recover. The adversary wins if s′ 6= s.

Call adversaryA playing the gameRec a recoverability adversary. Let Pr[RecA]
denote the probability s is not correctly recovered. Define the advantage of A as

AdvRecΠ (A) = Pr[RecA]. (2)

Definition 2. A perfectly secure (t, n)−threshold scheme (PSS) is a (t, n)−
threshold scheme in which a privacy adversary and a recoverability adversary
restricted to only deleting shares both have an advantage of zero.

The size of the share S[i] must be at least the size of the secret [1]; if this
bound is met the scheme is ideal. This bound can be particularly problematic
if s is large or the storage available to each player is small. For the application
of AONT-RS, we will focus on distributing large amounts of data. Relaxing the
security to be computational can achieve smaller shares.

Definition 3. A computationally secure (t, n)− scheme (CSS) is a (t, n)− thresh-
old secret sharing scheme in which a privacy adversary has a negligible advantage
and a recoverability adversary restricted to only deleting (and not corrupting)
shares has an advantage of zero.

CSSs are less secure than PSSs but are able to achieve smaller shares. In
general, CSSs are sufficient for most applications [9].

In PSS and CSS schemes, the recoverability adversary is limited to only
deleting, and not corrupting, shares. A robust scheme ensures the recovery of



the secret when the recoverability adversary is allowed to both corrupt and
delete a (bounded) number of shares.

Definition 4. A robust, computationally secure (t, n)−secret sharing scheme is
a (t, n)−secret sharing scheme in which a privacy adversary and a recoverability
adversary both have a negligible advantage at winning their respective games.

Ramp schemes further relax the security to achieve even smaller shares and
are defined information theoretically. Let S denote the discrete random variable
corresponding to the choice of s and let A denote the discrete random variable
corresponding to the set of shares given to the players in the set A ⊆ P.

Definition 5. A (t0, t1;n)−ramp scheme distributes a secret s such that any set
of at least t1 players can recover s and a set of t0 or fewer players reveals no
information about the secret. A (t0, t1;n)−ramp scheme is said to be linear if,
for any set of players A ⊆ P such that |A| = r, where t0 ≤ r ≤ t1,

H(S|A) =
t1 − r
t1 − t0

H(S). (3)

Note that in a (t0, t1;n)−linear ramp scheme, for every player after the initial
t0 players have contributed shares, a fixed amount of information is learnt about
s. This continues in a linear fashion until t1 players have contributed and s is
learnt completely. Observe that a (t, n)−PSS is a (t− 1, t;n)−ramp scheme.

2.2 Symmetric Key Encryption

Let E = (M,K, C,KenGen, Enc,Dec) be a symmetric key encryption scheme
with message space M, keyspace K, ciphertext space C and key generation,
encryption and decryption algorithms KeyGen,Enc and Dec.

Game Ind

– Procedure Initialise
k

$←− KeyGen{0, 1}λ; b
$←− {0, 1}

– Procedure Finalise(b′)
Return b′ = b

– Procedure Deal(M0,M1)
If M0 = M1, |M0| 6= |M1|, or M0,M1 /∈M

Return ⊥
Else, C

$←− Enck(Mb)
Return C

Fig. 2: Game defining indistinguishability in an encryption scheme E

Figure 2 defines the notion of indistinguishability in E [16]. Call adversary
A playing Ind an indistinguishability adversary. Let Pr[IndA] denote the prob-
ability A outputs the correct guess b′. Define the advantage of A as

AdvIndE (A) = 2 · Pr[IndA]− 1 (4)

and say E has indistinguishability if the advantage is negligible.
In Ind, A can repeat the deal procedure multiple times. We can limit A to

call the procedure only once; this A is called an ind-1 adversary.



2.3 Commitment Schemes

Let CS be a commitment scheme with parameter generation algorithm ParGen,
commitment algorithm Ct and verification algorithm V f . Let M denote the
message to be committed to, H be a committal and R a decommittal. A com-
mitment scheme should satisfy the hiding and binding properties, defined in
two security games in Figure 3 and described in [16]. Intuitively, a commitment
scheme allows a sender to commit to a message M and reveal it at a later date.

Call adversary A playing Hide against CS a hiding adversary. Let Pr[HideA]
be the probability A correctly guesses b′ = b. The advantage of A is

AdvHideCS (A) = 2 · Pr[HideA]− 1. (5)

Say CS is ε(·)−hiding if AdvHideCS (A) ≤ ε(q) for any adversary that makes at
most q queries during the deal procedure.

Call adversary A playing Bind a binding adversary. The advantage of A is

AdvbindCS (A) = Pr[BindA]. (6)

Game Hide

– Procedure Initialise
π

$←− ParGen; b
$←− {0, 1}

– Procedure Deal(M0,M1)
If M0,M1 /∈M

Return ⊥
Else (H,R)

$←− Ct(π,Mb)
Return H

– Procedure Finalise(b′)
Return b′ = b

Game Bind

– Procedure Initialise
π

$←− ParGen
– Procedure Commit(M0)

If M0 /∈M
Return ⊥.

Else (H,R0)
$←− Ct(π,M0)

Return (H,R0)
– Procedure Finalise(M1, R1)

If M1 /∈M, return ⊥.
Return M0 6= M1 and
V f(H,M0, R0) = V f(H,M1, R1) = 1

Fig. 3: Games defining the hiding and binding security properties of CS.

2.4 Error Correcting Codes

An error correcting code (ECC) E is a method of encoding data with some
redundant information to ensure the original data can be recovered, even if a
number of errors occur during either data transmission or storage [10].

A code E of length n over a finite alphabet F is a subset of Fn. Elements of
E are called codewords. The size of E is |E| = m. The minimum distance d is
the minimum Hamming distance between any two distinct codewords.

Let E be a linear code, meaning that for all u,w ∈ E, we have u + w ∈ E,
where addition is modulo q with |F | = q. If u1, . . . , ut is a basis for E, then E
has dimension t. There are qt possible codewords and we call E a [n, t, d]−code.



One important ECC is a maximum distance separable (MDS) code [10], which
is a linear code that meets the Singleton bound: d = n − t + 1. For any MDS
code, recovery of a codeword is possible from any t of the n symbols. Denote
such a code as (t, n)−ECC. A Reed Solomon (RS) code [13] is an MDS code. A
code where message string appears in the codeword is called systematic.

Let U
$←− ShareECC(u) denote the distribution of a word u via a (t, n)−ECC,

resulting in a codeword represented by an n−vector U . The word u is recoverable
from any t elements of U via the deterministic algorithm RecoverECC .

2.5 Information Dispersal Algorithms

Information dispersal was first introduced by Rabin [12].

Definition 6. Let t, n ∈ N, t ≤ n. A (t, n)−information dispersal algorithm
(IDA) with message spaceM consists of two algorithms ShareIDA and RecoverIDA.
ShareIDA takes as input a message M ∈ M and outputs an n−vector S.
RecoverIDA takes as input elements of the vector S. If at least t elements are
submitted correctly to RecoverIDA, the algorithm outputs the message M .

A (t, n)−IDA shares M between n players such that any t players can recover
M . This is equivalent to the recoverability property of a (t, n)−secret sharing
scheme. A (t, n)−secret sharing scheme satisfies the conditions of an IDA but
additionally guarantees privacy, which IDAs do not. IDAs are able to achieve
smaller share sizes by taking advantage of the lack of privacy.

Resch and Plank’s IDA. In the AONT-RS scheme, a systematic IDA, which
is a variant of an RS code [14], is specified. We refer to this as the systematic
RS IDA with algorithms ShareRS−IDA and RecoverRS−IDA.

Let F = GF (2ω) be a Galois field of characteristic 2. ShareRS−IDA is a
probabilistic algorithm that takes as input M and parses M into t words, treating
this as a t−vector, M ∈ F t. This vector is multiplied on the left by a public
n× t binary matrix G, where multiplication of elements b ∈ {0, 1} and d ∈ F is
defined as: {0, 1}×F → F , where 0× d = 0 ∈ F and 1× d = d ∈ F . The matrix
G is constructed such that the first t rows form the t× t identity matrix and any
t of the n rows are linearly independent; the last n− t rows can be generated in
any manner as long as this condition is satisfied. The resulting n vector is the
codeword vector G ·M = V ∈ Fn. Each player receives the share V [i].

In order to recover M , t shares are submitted to RecoverRS−IDA and a
t−vector V ′ is created from these shares. A t× t matrix G′ is formed, consisting
of the t rows of G corresponding to the shares pooled. This matrix is inverted and
multiplied by V ′ to return (G′)−1 ·V ′ = M , from which M can be constructed.

It is known that an RS code, which is a [n, t, n− t+ 1]−code, is equivalent to
a (0, t;n)−linear ramp scheme [5]. Thus the systematic RS IDA used by Resch
and Plank is equivalent to a (0, t;n)−linear ramp scheme, as in Definition 5.



3 The AONT-RS

In this section, we consider the Resch and Plank’s AONT-RS scheme [14]. We
present a generalised version, then discuss information leakage. Finally, we prove
the AONT-RS scheme achieves computational privacy in the RO model.

3.1 Generalising the AONT-RS

Resch and Plank propose a CSS in [14], which they call AONT-RS. It com-
bines an All or Nothing Transform (AONT) with an RS code. An AONT is an
encryption mode that allows the data to be learnt only if all of it is known [3].

Their scheme assumes the existence of a symmetric key encryption scheme
E operating on blocks of plaintext in CBC mode, a cryptographic hash function
H and the systematic RS IDA, as in Section 2.5. They assume the digest of the
hash function is of equal length to the key k use in E . They do not define what
security properties E must have. They also use a canary, which is a known, fixed
value concatenated with the plaintext. When a message is recovered, the user
can compare the recovered value with the known canary to verify correctness.

We observe that E requires ind-1 security and must be probabilistic, but
need not operate in CBC mode. We allow flexibility of the IDA, as long as it
is equivalent to a (0, t;n)−linear ramp scheme (which the systematic RS IDA
is). We remove the concept of the canary from the definition, noting that if an
incorrect message were recovered, a canary would not help recover the correct
M . Preventing M from being incorrectly recovered is discussed in Section 4.

Let Π denote our generalised AONT-RS scheme, with algorithms defined in
Figure 4. From now on, AONT-RS will refer to algorithms in Figure 4.

Procedure ShareAONT (M)

1. k
$←− KeyGen({0, 1}λ)

C
$←− Enck(M)

2. h = H(C); cd = h⊕ k
3. V ← ShareIDA(C||cd)
4. Return V

Procedure RecoverAONT (M)

1. V ← RecoverIDA(V [0], . . . ,V [n− 1])
2. C||cd ← V
3. h = H(C); k = h⊕ cd
4. M ← Deck(C)
5. Return M

Fig. 4: The dispersal and recovery algorithms defining the AONT-RS scheme.

On input M ∈ M, ShareAONT generates a key k of length λ, encrypts M
under k, then computes the hash of the ciphertext h = H(C). The digest h is
then XORed with k to give a value cd, which we call the difference value. The
difference value and C are concatenated and dispersed via an IDA.

To recover M , at least t players must pool their shares into a vector V . Using
the algorithm RecoverIDA, C||cd is recovered. The digest h = H(C) is calculated
and XORed with cd to recover k, which is used to decrypt C and return M .



If E were not probabilistic, an adversary may recognise shares of known
ciphertexts and be able to predict C which, if cd is known, could leak information
about k. The scheme also requires ind-1 security; general indistinguishability is
not required as each time a new M is shared, a new encryption key k is generated.
So each key is only used to encrypt one message.

3.2 Information Leakage

Resch and Plank claim their system is secure because t−1 players are unable to
recover all of V , due to the security of the IDA. Without all of V , players are
unable to learn both C (required to compute h = H(C)) and cd and so learn
nothing about k and M . Learning either C or cd in isolation does not help the
adversary. In order to recover M , knowledge of both C and cd are needed.

It is necessary that an unauthorised set learn at most: some or all of cd and
some (but not all) of C, or none of cd and all of C. We show that, when C is a
short ciphertext (in relation to the security parameter λ and the threshold value
t), the adversary may be able to learn enough to leak information about k.

Learning C completely and cd partially. Consider the following example.
Let C, k ∈ {0, 1}128. Let there be n = 5 players P1, . . . , P5 and let t = 4. The
string C||cd would be parsed into four words to make the t−vector M , where
each fragment is 64 bits. Let c0 and c1 be the two elements that comprise C
and let cd,0 and cd,1 be the two halves of cd, each 64 bits. The vector M is then
multiplied on the left by the generator matrix G ∈ {0, 1}(5×4), which gives

G ·M ==


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

G4,0 G4,1 G4,2 G4,3



C0

C1

cd,0
cd,1

 =


C0

C1

cd,0
cd,1
x

,

where Gi,0
$←− {0, 1}, for i = {0, . . . , 3} are chosen such that any 4 rows of G are

linearly independent and x = G4,0 · C0 +G4,1 · C1 +G4,2 · cd,0 +G4,3 · cd,1.
Players P1, P2 and P3 are an unauthorised set, yet they could learn all of C

and cd,0. They could then compute H(C) = h and XOR the first half of h with
cd,0 to recover the first half of k. This reduces the security from 128 to 64 bits.

This attack can be prevented if cd is contained entirely in one share. So if
cd ∈ {0, 1}λ, then C should be such that C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

Learning C partially and cd completely. An alternative version of this
attack utilises the fact that the hash function H is deterministic.

Consider the following example. Assume an attacker knows all of cd and
all but one bit of C. They can construct two possibilities for C (C0 when the
unknown bit is 0, and C1 when it is 1) and compute the corresponding hashes,



Procedure Initialise G0, G1, G2

k
$←− {0, 1}λ; b

$←− {0, 1}; k′ = k

Procedure Deal(x0, x1) G0, G1, G4, G5

C ← Enck(xb); H(C) = h;
h⊕ k′ = cd
V ← ShareIDA(C||cd)
For i← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

Procedure Corrupt(i) G0, G5

X[i]← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Procedure Finalise(b′) G0 −G5

Return (b′ = b)

Procedure Initialise G3, G4, G5

k, k′
$←− {0, 1}λ; b

$←− {0, 1}

Procedure Deal(x0, x1) G2, G3

C ← Enck(xb); C ← ShareIDA(C||0)
For i← 1 to n do

(H[i],R[i])
$←− Ct(C[i])

S[i]← ShareECC(H[i])
H(C) = h; h⊕ k′ = cd
V ← ShareIDA(C||cd)

Procedure Corrupt(i) G1, G2, G3, G4

R[i]
$←− DCt(H[i],V [i])

X[i]← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Fig. 5: Games G0 and G5 are used to prove Theorem 1, the privacy of AONT-RS.
All games G0−G5 are used to prove Theorem 2, the privacy of the RAONT-RS.

h0 = H(C0) and h1 = H(C1). They can then compute two key candidates
k0 = cd ⊕ h0 and k1 = cd ⊕ h1 and decrypt the ciphertexts C0 and C1 with
the corresponding candidate keys to reveal two plaintext messages M0 and M1.
From these, the adversary can guess which plaintext message is likely to be the
true message and has thus learnt k. In general, if the adversary knows cd and all
but j bits of C, if j < λ this attack is quicker than brute force. We must ensure
an adversary is unable to learn at least λ bits of C if cd is known. This is true
if each M [i] ∈ {0, 1}λ, meaning that C ∈ {0, 1}ω, ω ≥ (t− 1)λ.

So both attacks can be prevented if k ∈ {0, 1}λ and C ∈ {0, 1}ω, where
ω ≥ (t − 1)λ. If C is too small, C should be padded with some random string.
This condition on the size of C is a necessary, but not sufficient, condition for
the AONT-RS scheme to be secure. To guarantee the security, we must make
additional assumptions on H, CS and E , as discussed next.

3.3 Proving the Privacy of AONT-RS

We now prove the AONT-RS achieves computational privacy in the RO model.

Theorem 1 (Privacy of the non-robust AONT-RS).
Let A be a privacy adversary against the AONT-RS scheme Π (as in Fig-

ure 4) and let the internal hash function H be indistinguishable from a RO.
Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t − 1)λ. Then there is an ind-1
adversary B attacking the indistinguishability of E such that

AdvPrivΠ (A) ≤ AdvIndE (B), (7)



where B makes only one query during the deal procedure of Game Ind and the
running time of B is that of A plus one execution of ShareAONT .

Proof. The proof relies on games G0 and G5, as in Figure 5. The figure shows
multiple procedures, indicating next to each in which games it is included. For
example G0 is defined by the procedures on the left hand side of the figure. The
advantage of the AONT-RS privacy adversary A can be defined as

AdvPrivΠ (A) = 2 · Pr[GA0 ]− 1. (8)

GameG5 differs fromG0 only because the key k used to encryptM is different
to the value k′ used to compute cd = h⊕k′. We claim that Pr[GA0 ] = Pr[GA5 ], as
the hash function H is indistinguishable from a RO. Due to the IDA used and
the restriction that C = {0, 1}ω, where ω ≥ λ(t − 1), the adversary is always
missing either at least λ bits of C or all of cd. Thus the adversary can learn
either h or cd. If A learns h, h = c′d ⊕ k′. If A learns cd, then cd = h′ ⊕ k′, for
some c′d 6= cd and h′ 6= h. Thus Pr[GA0 ] = Pr[GA5 ] holds true.

We construct an adversary B attacking the privacy of E such that

2 · Pr[GA5 ]− 1 ≤ AdvIndE (B). (9)

Adversary B picks k′
$←− {0, 1}λ and runs A. A submits Deal(x0, x1) to B, who

queries x0, x1 to its challenger and receives C
$←− Enck(xb), where k is the key

generated by the challenger. Now B executes the rest of the Deal procedure of
G5 using k′; so B computes H(C) = h, h⊕ k′ = cd and V ← ShareIDA(C||cd).
When A submits Corrupt(i), B responds with V [i]. When A outputs a bit b′,
B passes this onto their challenger. The advantage of B is 2 · Pr[b′ = b]− 1.

By combining (8), (9) and Pr[GA0 ] = Pr[GA5 ], we see that, as required,

AdvPrivΠ (A) ≤ AdvIndE (B).

ut

4 Extending AONT-RS to be Robust

In [16], Bellare and Rogaway extend Krawczyk’s SSMS [9] to be robust by using
commitment schemes. Their technique can be applied to the AONT-RS to make
it robust. We will call the resulting scheme the RAONT-RS.

Let E be an ind-1 secure encryption scheme. Assume the existence of a
(t, n)−ECC, an IDA equivalent to a (0, t;n)−linear ramp scheme, an ε(·)−hiding
commitment scheme CS and a hash function H that is indistinguishable from
a RO. Let ΠR denote the RAONT-RS scheme, with algorithms as in Figure 6.
Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

Intuitively, the scheme is the same as the AONT-RS. However, in addition to
being given the share V [i], each player is given a decommittal R[i] computed on
V [i] and fragments of committals H[i] computed on all shares V [i] distributed



Procedure ShareRAONT(M)

1. k
$←− {0, 1}λ; C

$←− Enck(M)
2. h = H(C); cd = h⊕ k
3. V ← ShareIDA(C||cd)
4. For i← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

5. For i← 1 to n do
X[i]← R[i]V [i]S1[i] . . .Sn[i]

6. Return X

Procedure RecoverRAONT(V )

1. For i← 0 to n− 1 do
R[i]V [i]S1[i] . . .Sn[i]←X[i]

2. For i← 0 to n− 1 do
H[i]← RecoverECC(Si, j)

3. For i← 0 to n− 1 do
If X[i] 6= ♦ and
V f(H[i],V [i],R[i]) = 0
then V [i]← ♦

4. C||cd ← RecoverIDA(V )
5. h = H(C); k = h⊕ cd
6. M ← Deck(C)
7. Return M

Fig. 6: Algorithms defining robust AONT-RS (RAONT-RS).

via a (t, n)−ECC. Let the n-vector Si be the output after the committal H[i]
is dispersed via a (t, n)−ECC . Let Si[j] be the jth element of Si. These values
are used to verify each player’s share. Let ♦ denote an empty share.

Unlike a canary, commitment schemes allow recovery of M even if false shares
are submitted. Furthermore, the commitment scheme highlights which servers
are corrupted and thus take any necessary action. However, it is noted that
commitment schemes requires more computation than the use of a canary. In
practise, both techniques could be combined; the canary could first be verified
and, only if the canary is incorrect, will the shares be individually verified.

4.1 Proof of Privacy

The RAONT-RS scheme ΠR can be proven to achieve computational privacy by
adapting the proof of privacy for the HK2 scheme by Bellare and Rogaway [16].

Theorem 2 (Privacy of RAONT-RS).
Let A be a privacy adversary against RAONT-RS ΠR and let H be indis-

tinguishable from a RO. Let the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t − 1)λ.
Assume Ct is ε(·)−hiding (as in Section 2.3), then there is an ind-1 adversary
B attacking the indistinguishability of E such that

AdvPrivΠR
(A) ≤ AdvIndE (B) · 4ε(n), (10)

where B makes only one query during the deal procedure of Game Ind and the
running time of B is that of A plus one execution of ShareRAONT .

Proof. The proof relies on games G0−G5, as in Figure 5. The procedure Corrupt
of games G1 −G4 refers to a probabilistic algorithm DCt that works as follows.
On input message M and committal H, it lets Ω(M,H) denote the set of all coins
ω such that Ct, on input M and coins ω, returns a pair whose first component
is H. If Ω(M,H) = ∅, then DCt returns ⊥. Else it picks ω at random from



Ω(M,H), runs Ct on input M and coins ω to get a pair (H,R) and returns R.
This algorithm is not necessarily efficiently implementable.

The advantage of the RAONT-RS privacy adversary A can be defined as

AdvPrivΠR
(A) = 2 · Pr[GA0 ]− 1. (11)

Game G1 differs from G0 only in the Corrupt procedure, which resamples
R[i] using DCt. Clearly,

Pr[GA0 ] = Pr[GA1 ] = Pr[GA2 ] + (Pr[GA1 ]− Pr[GA2 ]). (12)

We construct an adversary D1 attacking the hiding property of CS such that

Pr[GA1 ]− Pr[GA2 ] = AdvHideCS (D1). (13)

Adversary D1 acts as the challenger to A and wishes to use A’s advantage
to gain an advantage against the hiding property of CS. Adversary D1 picks

b
$←− {0, 1} and runs A. When A submits x0, x1 to D1, D1 generates k

$←− {0, 1}λ

and calculates C
$←− Enck(xb). D1 then computes H(C) = h and h ⊕ k = cd,

then calculates both V ← ShareIDA(C||cd) and C ← ShareIDA(C||0). For i,
1 ≤ i ≤ n, D1 queries C[i],V [i] (for V [i] 6= C[i]) to its challenger. Let H[i]
denote the commitment value returned. Let Si ← ShareECC(H[i]). When A
makes a Corrupt(i) query to D1, D1 computes its reply according to the case
of the Corrupt procedure of games G1, G2; that is, D1 generates a decommittal
value R[i] for V [i] and the given H[i] and passes X[i]← R[i]V [i]S1[i] . . .Sn[i]
to A. When A halts the corruption procedure and finalises with output b′, if
b′ = b, adversary D1 passes 1 to its challenger, guessing the commitment value
H[i] was computed on V [i], rather than C[i]. Otherwise, D1 submits 0.

Next, we have that

Pr[GA2 ] = Pr[GA3 ] +
(
Pr[GA2 ]− Pr[GA3 ]

)
, (14)

where G3 differs from G2 only in the initialise procedure which XORs the digest
h not with the encryption key k, but with a string k′. We claim that Pr[GA2 ] =
Pr[GA3 ]. because the hash function is indistinguishable from a RO. After A has
corrupted at most t shares, they learn at most either

– no information about cd and all of C, and so can learn h = H(C). In which
case h = k ⊕ cd = k′ ⊕ c′d, where c′d 6= cd is some unknown string. Or

– all of cd, but missing at least λ bits of C. Then cd = k′ ⊕ h′ where h′ 6= h is
unknown to A.

In either case, the adversary learns either h or cd and no information about
k. Thus the known value is the XOR of two unknown strings: changing one of
these strings does not affect the chances of A winning, thus Pr[GA2 ] = Pr[GA3 ].

Next, we have

Pr[GA3 ] = Pr[GA4 ] +
(
Pr[GA3 ]− Pr[GA4 ]

)
. (15)



Procedure Deal(x)

`
$←− [1, n]; k

$←− {0, 1}λ; C
$←− Enck(x)

H(c) = h; h⊕ k = cd; V ← ShareIDA(C||cd)
For i← 1 to n do

If i = `, then (H[`],R[`])
$←− Commit(V [i])

Else (H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

For i← 1 to n do
X[i]← R[i]V [i]Si[i] . . .Sn[i]

Procedure Corrupt(i)
Return X[i]

Procedure Finalise(x′, j)
For i← 1 to n do

R′[i]V ′[i]S′
1[i] . . .S′

n[i]←X ′[i]
Return (V ′[`],R′[`])

Fig. 7: Procedures used by adversary B to respond to A for Theorem 3.

Construct adversary D2, also attacking the hiding property of CS, such that

Pr[GA3 ]− Pr[GA4 ] = AdvHideCS (D2). (16)

The construction of D2 is similar to D1, but D2 generates k, k′
$←− {0, 1}λ,

encrypts xb under k as before and now calculates cd = h⊕ k′.
Game G5 and G4 differ only during Corrupt. Clearly Pr[GA4 ] = Pr[GA5 ].
Let B be an ind-1 adversary attacking E , as in the proof of Theorem 1. The

advantage of B is as in (9).
Now, let D be the hiding-adversary that flips a fair coin and, if it lands head,

runs D1, otherwise D2. Clearly,

AdvHideCS (D) =
1

2

(
AdvHideCS (D1) + AdvHideCS (D2)

)
. (17)

Since Ct is assumed to be ε(·)−hiding and D makes at most n queries, we
have that AdvHideCS (D) ≤ ε(n). Combining this and (13), (16), (17) gives us(

Pr[GA1 ]− Pr[GA2 ]
)

+
(
Pr[GA3 ]− Pr[GA4 ]

)
≤ 2ε(n).

By using Pr[GA2 ] = Pr[GA3 ] and Pr[GA4 ] = Pr[GA5 ] and substituting in the
advantages of adversaries A and B, we can simplify and rearrange to give

AdvPrivΠR
(A) ≤ AdvIndE (B) · 4ε(n),

thus completing the proof. ut

4.2 Proof of Robustness

The RAONT-RS scheme can be proven to be robust by adapting the proof by
Bellare and Rogaway [16].

Theorem 3 (Robustness of RAONT-RS). Let A be a recoverability adver-
sary against the RAONT-RS scheme ΠR. Then there is an adversary B attacking
the binding property of the commitment scheme CS such that

AdvRecΠR
(A) ≤ n ·AdvBindCS (B), (18)



where the running time of B is that of A plus overhead consisting of an execution
of the ShareRAONT and RecoverRAONT algorithms of ΠR.

Proof. Let A be a recoverability adversary against ΠR. During Deal, A submits

x to B. Let k,C, h, cd,V ,H,S1, . . . ,Sn,X
$←− denote the quantities chosen by

ShareRAONT (x). Let A corrupt at most t−1 shares. Let (XT ) denote the output
of A. Let k′, C ′, h′, c′d,V

′,H ′,S′1, . . . ,S
′
n,X

′ denote the quantities recovered
from RecoverRAONT with input X ′T ∪X ′

T
. Consider the following events:

E1: ∃` ∈ [n] such that H[`] 6= H ′[`]

E2: ∃` ∈ T such that V [i] ∈ {♦,V [i]}
E3: cd 6= c′d
E4: C 6= C ′

If C ′ = C and c′d = cd, then the recovered secret x′ equals x. This is because
h′ = H(C ′) = H(C) = h and so c′d ⊕ h′ = cd ⊕ h = k. Therefore

AdvRecΠR
(A) ≤ Pr[E3 ∪ E4] (19)

≤ Pr[E1 ∪ E2 ∪ E3 ∪ E4] (20)

= Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4]. (21)

We bound each addend in turn. Let E1,` be the event that H ′[`] = H[`]. Let
T be the set of indexes of the shares corrupted by A. If i /∈ T , then the submission
of X ′[i] and the other uncorrupted shares returns X[i]. Hence S′`[i] = S`[i]. Note
that S` is an output of ShareECC(H[`]). Lemma 10 in [16] discusses perfect
recoverability and, when applied to ECCs, RecoverECC(S`) = H[`], meaning
that H ′[`] = H[`]. So Pr[E1,`] = 0. By the union bound

Pr[E1] ≤
n∑
t=1

Pr[E1,`] = 0. (22)

Now we construct adversary B such that

Pr[E1 ∪ E2] ≤ n ·AdvBindCS (B). (23)

Adversary B runs A, responding to its Deal and Corrupt calls via the procedures
in Figure 7, where Ct is the committal algorithm of CS run by B and Commit
is a procedure of the Bind game that B plays with its challenger. When A halts
with output (X), B runs the finalise procedure.

Next, we claim both Pr[E2∩E3] = 0 and Pr[E2∩E4] = 0. As, if V ′[i] = V [i]
for all i, then C = C ′ and c′d = cd. So now

AdvRecΠR
(A) = Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4] (24)

≤ n ·AdvBindCS (B), (25)

thus completing the proof. ut



5 Comparing RAONT-RS and HK2

We briefly introduce Krawczyk’s SSMS scheme [9] and a robust extension, called
HK2 [16]. We then compare AONT-RS with SSMS. This comparison can also
be applied to the AONT-RS and HK2.

5.1 The SSMS and HK2 Scheme

Krawczyk’s SSMS is a CSS [9]. It assumes an ind-1 secure encryption system, an
IDA and a (t, n)−PSS. Intuitively, SSMS takes as input a message M , generates

a key k and calculates C
$←− Enck(M). The ciphertext C is then shared amongst

the n participants via an IDA whilst k is shared via a (t, n)−PSS. A player’s
share is one element of C and one of k. Krawczyk then extended his scheme to
be robust in the RO model by using hash functions [9], which was proven to be
secure in the RO model in [16].

HK2 is a robust extension of SSMS [16] using commitment schemes. HK2 re-
lies on the same assumptions as SSMS, but additionally assumes a (t, n)−ECC

and an ε()̇−hiding commitment scheme CS. Our extension of AONT-RS to
RAONT-RS used similar techniques as in the extension of SSMS to HK2; the
commitment scheme is added to SSMS and each player stores their share, along
with a a decommittal and multiple fragments of committals. For a more detailed
description, the reader is directed to [16].

We chose to use commitment schemes to extend AONT-RS to be robust (as
was done in HK2) to achieve recoverability under standard assumptions. Instead,
hash functions could be used, as in [9], to achieve recoverability in the RO model.

5.2 Comparison

In [14], Resch and Plank only briefly compare AONT-RS to Krawczyk’s SSMS
[9]. They then conduct a performance comparison of the AONT-RS with Ra-
bin’s IDA [12] and Shamir’s PSS [17]. However, Rabin’s IDA has no security
requirements, and would not be used to distribute data if there were any privacy
concerns, and Shamir’s PSS achieves perfect security, which would not be used to
share large data due to the bounds on the share sizes. Krawczyk’s SSMS achieves
computational security, which is a similar to AONT-RS. Thus we compare SSMS
with AONT-RS. Similarly, RAONT-RS can be compared with HK2.

We compare the security, share size and efficiency of AONT-RS with SSMS.
We exclude the contribution to the complexity made by E , as this is equal in both
schemes. The comparison is applicable to RAONT-RS and HK2, if we exclude
the contribution to the share size and efficiency from CS (which is equal in both).

For the comparison, we will assume both AONT-RS and SSMS use the sys-
tematic RS IDA and that SSMS uses an ideal PSS. Such PSSs include Shamir’s
PSS [17], or Chen et al. [6]. Let k ∈ {0, 1}λ.

Assume M is to be distributed and E is length preserving, so |C| = |M |. Let
C ∈ {0, 1}ω, and fix ω such that ω ≥ λ(t−1). This is assumed to prevent attacks



described in Section 3.2 against the AONT-RS, and to ensure all schemes are
distributing a message of equal length, thereby allowing for a fair comparison.
It is noted that if ω < λ(t − 1), the AONT-RS will need to pad the message
to lengthen C, whereas SSMS can distribute C as is. However, as mentioned
previously, CSS schemes are often used when M is large, thus it is reasonable
to assume that ω ≥ λ(t − 1). To illustrate, we highlight an example presented
in [14]: they distribute a 4KB block of data using a 128 bit key amongst 16
servers such that any 10 can recover the data. So n = 16, t = 10, λ = 128 and
C ∈ {0, 1}32000 with ω = 32000 >> λ(t− 1) = 1152.

Security. AONT-RS achieves computational privacy, assuming E is ind-1 se-
cure,H is indistinguishable from a RO and the IDA is equivalent to a (0, t;n)−linear
ramp scheme. SSMS also assumes E is ind-1 secure and requires a (t, n)−PSS
and an IDA (with no privacy requirements).

As SSMS is secure under standard assumptions, whereas AONT-RS is only
secure in the RO model, SSMS is considered to be more secure.

Share Size. The share given to each player from the AONT-RS is
⌈
ω+λ
t

⌉
bits.

For SSMS, each share is
⌈
ω
t

⌉
+ λ bits.

The AONT-RS achieves smaller share sizes than SSMS when t ≥ 2 (which
is true in general). The ratio between the share sizes is larger when t is bigger.
The main contribution to the share size is from C, meaning the ratio between
the share sizes will be small if ω is large and large if ω is small (meaning ω is
close to λ(t− 1)).

Efficiency of Share. ShareAONT requires one hash computation and O(λ(n+
1) + nω) bitwise XORs (if multiplication is implemented via a look-up table).

In SSMS distribution of k via either [17] or [6] requires O(tnλ) bitwise XORs.
The distribution of C via the IDA requires O(nω) XORs. Thus distribution of
SSMS requires O(λ(tn) + nω) bitwise XORs.

AONT-RS requires fewer XORs than SSMS. For larger values of t, SSMS
requires more XORs, whereas the complexity of AONT-RS is independent of t.

Efficiency of Recover. Assume t players pool their shares. RecoverAONT

requires one hash function computation and O(t(ω + λ) + λ) bitwise XORs.
SSMS requires t(t− 1)

⌈
ω
t

⌉
bitwise XORs to recover C and either O(tnλ) (if

[6] is the chosen PSS), or O(t log2 tλ) (for Shamir’s PSS [17]) XORs to recover
k. The total efficiency is the sum of the recovery of C and k.

Generally, the AONT-RS requires fewer bitwise XORs and is dependent only
on t. Recovery of M using SSMS is dependent on the efficiency of the PSS used.

6 Conclusion

We generalised the AONT-RS and showed information is leaked when ciphertexts
are shorter than λ(t− 1). We proved the AONT-RS scheme has computational



privacy in the RO model. We extended the scheme to be robust and proved
it achieves computational privacy in the RO model and recoverability under
standard assumptions. Finally, we compared AONT-RS with SSMS, which is a
comparison that can be used to compare RAONT-RS with HK2. We showed the
(R)AONT-RS schemes achieve weaker security than SSMS/HK2 because their
proofs are in the RO model, whereas SSMS/HK2 are provable under standard
assumptions. However, by compromising security, (R)AONT-RS achieves smaller
shares and more efficient dispersal and recovery.
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