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Abstract

We present a novel multimodal deep learning structure that automatically extracts features from 

textual-acoustic data for sentence-level speech classification. Textual and acoustic features were 

first extracted using two independent convolutional neural network structures, then combined into 

a joint representation, and finally fed into a decision softmax layer. We tested the proposed model 

in an actual medical setting, using speech recording and its transcribed log. Our model achieved 

83.10% average accuracy in detecting 6 different intentions. We also found that our model using 

automatically extracted features for intention classification outperformed existing models that use 

manufactured features.
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1 Introduction

Human-computer interaction (HCI) is becoming more prevalent in daily living, appearing in 

applications ranging from navigation systems to intelligent voice assistants. There has been 

significant research focused on understanding speech, an essential vehicle for human 

communication. However, machines have faced difficulty extracting the intention of human 

speech, in part because words may carry different meanings in different contexts. For 

example, “it is snowing” could either be a comment, reply, or question depending on the 

inflection and punctuation. To understand the actual meaning and detect the speaker’s 

intention, machines must be able to make these distinctions.

The definition of speech intention in this paper is different from the general action-based 

intention recognition [1]. The goal in this paper is to identify the actual purpose of a 

speaker’s verbal communication in the trauma scenario (e.g. “Directive” for commands/

instructions to the medical team or patient). Trauma-related language contains rich 

information regarding medical operations, cooperation, and team performance that can be 

used for the detection of medical processes and operation workflows. To identify the actual 

status of a surgical activity (e.g. the activity is started or finished), it is essential to precisely 

estimate the intention from human speech. Hence, this intention classifier may be used in a 

larger system for recognizing clinical activities or verbal procedures.
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One approach to estimating speech intention, used by many current systems such as 

Microsoft LUIS, is to analyze only the sentence syntax. However, this approach ignores 

valuable acoustic information such as pitch contour, stress pattern, and rhythm. In many 

applications, such as the emergency medical field, speech tends to be short and unstructured, 

with its meaning hidden in the vocal delivery. For example, the utterance “pain in belly” 

may either be a report to another care provider or a question to the patient, which is 

impossible to tell given the text alone. Without much syntactical structure, an intention 

classifier cannot afford to disregard the speech’s acoustic features.

To address these intention detection challenges, we propose a multimodal deep learning 

structure for sentence-level intention classification using both text and audio data. The 

model uses manually transcribed speech text and its synchronized speech audio as input. We 

first preprocess the text data with word embedding [2] and extract mel-frequency spectral 

coefficients (MFSC) [3] from the audio. These inputs are fed to two independent 

convolutional neural networks (ConvNets) for feature extraction [3, 4]. The extracted 

features are then fused and used for the intention classification decision.

To demonstrate the model, we collected text and audio data from an actual trauma room 

during 35 trauma resuscitations, which are full of short, stressed sentences. The dataset 

contains 6424 transcribed sentences with their corresponding audio clips. The 6 intentions 

we used were: Directive, Report, Question, Clarification, Acknowledgement, and Response/

Reply. With an 80–20 training-testing split, the model achieved 83.10% average accuracy, 

outperforming the text-only and audio-only models, and other similar models from other 

research. Our experiments also showed that ConvNets provide better-performing features 

than manufactured features such as fundamental frequency, pitch/energy related features, 

zero crossing rate (ZCR), jitter, shimmer, and mel-frequency cepstral coefficients (MFCC).

The contributions of our work are:

• A deep learning multimodal structure capable of automatically learning and 

using textual and acoustic features for intention classification.

• Detailed analysis and comparison of different modality and features that is 

commonly used for similar topic.

• A case study with actual medical application scenario, which indicated both the 

efficiency and drawbacks of the proposed system, this can be used as our future 

implementation reference as well as other similar applications.

The paper is organized as follows: Sect. 2 introduces related work, Sect. 3 describes our 

dataset, Sect. 4 details the model architecture, Sect. 5 presents the experimental results, Sect. 

6 discusses model limitations, potential extensions, and concludes the paper.

2 Related Work

Previous research defined “intent” as understanding spoken language by converting 

sentences into representations of meaning [5]. Recently proposed methods in this field have 

used semantic analysis [6] and language understanding [7]. However, these methods only 
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considered textual features, and ignored the acoustic information. Because the same words 

may carry different intentions depending on the manner of speech, these acoustic features 

are critical to understanding the underlying meaning. Several different approaches were 

introduced using various features to help identify the meaning of human speech. Sentiment 

analysis tried to distinguish positive and negative attitudes [8]. This approach showed strong 

performance on document-level sentiment classification, but its binary (positive or negative 

sentiment) categories made it unhelpful in speech understanding. As an improvement, 

acoustic-based speech emotion recognition (SER) has been proposed [9, 10]. Different 

emotions reflect the speaker’s attitude, but are too abstract for many scenarios and unhelpful 

to intention recognition. Therefore, we borrowed strategies from sentiment analysis and 

emotion recognition, and identified the intentions in our problem domain.

To combine the various feature types for understanding the underlying meaning, multimodal 

structures were introduced in related research fields. Early research demonstrated that the 

joint use of audio and text features achieved better performance in speech emotion 

recognition [11]. 2100 sentences with text and audio were collected from broadcast dramas. 

33 original acoustic features and some specific emotional words were manually defined for 

predicting 7 emotions. However, the manufactured acoustic features and the specific 

keywords impeded their generalizability. A multimodal structure consisting of audio, visual, 

and textual modules was introduced to identify emotions [12]; manufactured features were 

selected from each module and the system was evaluated on three different emotion datasets 

(Youtube dataset, SenticNet, and EmoSenticNet). The results showed that using the visual 

features improved performance, but the system was still based on manually selected 

features. Recently, more complex multi-modal systems using ConvNet-based visual and 

textual features were shown to out-perform manufactured ones in emotion recognition [13, 

14]. A ConvNet structure was used as a trainable textual feature extractor [13, 14], and 

another ConvNet structure extracted the visual features [14]. These systems were tested on 

the Multimodal emotion recognition dataset (USC IEMOCAP), multimodal opinion 

utterances dataset (MOUD), and Youtube dataset. Both systems demonstrated the power of 

ConvNet feature extraction. However, they still partially relied on manufactured acoustic 

features reduced by principal component analysis. The previous work also indicated that 

their system, although multimodal, relied heavily on text input [14]. We assume that the 

problem arose because they used manufactured acoustic features instead of automatic ones 

extracted by a ConvNet. To overcome this shortcoming, our proposed model uses ConvNet 

feature extractors for both the text and audio. Considering the limitations in the trauma 

scenario, it is not possible for us to capture the visual information from the human faces, so 

our multimodal system uses only text and audio. To demonstrate its robustness, we also 

tested it with inaccurately transcribed text input from a speech recognition engine.

3 Dataset

3.1 Data Collection

Our dataset was collected during 30 resuscitations at a level-1 trauma center in the north-

eastern US. In medical settings, data collection devices must preserve privacy and not 

interfere with medical tasks. Therefore, instead of using wearable Bluetooth microphones, 
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we used a hands-free SONY ICD PX333 Digital Voice Recorder. It was placed on the Mayo 

equipment stand roughly 2.5 feet away from the trauma team leadership group of three 

clinicians, who mostly remained stationary during the resuscitation. We recorded on a mono 

channel with 16000 Hz sampling rate.

3.2 Transcribing and Labeling the Raw Data

We manually segmented the recorded audio data into sentence-level clips. To keep the audio 

quality, clips with overlapping speech or strong background noise (e.g. patient crying, 

electronic equipment noise) were removed. The final dataset contained 6424 audio clips. 

Each audio clip was then manually transcribed (unpunctuated) and labeled with an intention 

(Table 1). The “intention” represents the speaker’s original purpose of saying the utterance. 

Six different intentions were defined based our dataset. For example, “Q” represents the 

speaker intends to inquire for information, “DIR” means the speaker plans to give an 

instruction or command to someone, “RS” indicates the speaker is responding to an inquiry. 

Table 2 shows example sentences with their intentions.

4 The System Structure

Our system structure is composed of four modules (Fig. 1). The data preprocessor formats 

the input text and audio into word vectors and Mel-frequency spectral coefficients (MFSC) 

maps for feature extraction. The feature extractor uses two ConvNets to learn and extract 

textual and acoustic features independently. The feature fusion layer balances and merges 

the extracted features through a fully-connected (FC) structure.

The decision maker uses softmax (multinomial regression) to perform the multiclass 

classification.

4.1 Data Preprocessor

To generate the input layer for feature extraction, we used different initialization strategies 

for text input and audio input. We preprocessed the text into word vectors [2, 15, 16] and the 

audio into MFSC maps [3]. Word vectors are low-dimensional mappings describing 

semantic relationships between words [2]. A sentence is then a matrix with the word vector 

sequence as its rows [2]. Two different strategies exist for the initialization of the word 

vectors [2, 16]. We selected Mikolov’s method [2] for its good performance on the semantic 

and syntactic learning for words. The word2vec embedding dictionary, trained on 100 

million words from Google news [2], is the most commonly used word embedding tool. 

Since our sentences have varying lengths (between 1 and 26 words), we zero-padded all 

sentences to the longest length as suggested by others [4]. Each word was embedded into a 

300-dimensional word vector using the word2vec dictionary, and unknown words were 

initialized randomly. Sentences were, therefore, 26 × 300 matrices (sentence length by word-

vector length).

In human speech, different energy intensities and the variance of energy in different 

frequencies may reflect speaking manners. We represented the audio with time-frequency 

energy maps. Instead of the Mel-frequency cepstral coefficients (MFCCs) commonly used in 

speech recognition, we used Mel-frequency spectral coefficients (MFSC) to avoid the 
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locality-compromising discrete cosine transform (DCR) [3]. We extracted the static, delta, 

and double delta MFSC for each audio for use as individual input channels. We empirically 

divided the 0–8000 Hz into 64 frequency bands. Each input frame contained 1 s of data 

(sampled at 40 ms with 50% overlap, following previous work [3, 17]), generating 64 × n 
MFSC maps for an n-second clip. All MFSC maps were rescaled to 64 × 256 with bicubic 

interpolation. The initialized word vectors and MSFC maps were used as the input layers for 

the text branch and audio branch, respectively. As mentioned, the dimensions of the inputs 

data were 26 × 300 for the text branch and 64 × 256 × 3 for the audio branch.

4.2 Feature Extractor

We used two ConvNets for feature extraction. One-dimensional filters were implemented for 

textual feature extraction (Fig. 2), following prior work [4]. As suggested in [4, 15], we 

applied multiple convolutional filters with different widths (1, 2, and 3) to capture phrases of 

varying length (Fig. 2). We chose these rather short filter widths because in our problem 

domain (trauma resuscitation) most of the speech is not in the form of full and 

grammatically correct sentences, but is instead in the form of short phrases. We empirically 

found that one convolutional and one max-pooling layer is sufficient for our application, 

similar to [4]. From each of the three filter sizes, 300 feature maps were then max-pooled, 

producing a 900-dimensional textual feature vector (comparable in size to the 1024-

dimensional acoustic feature vector).

An eight-layer ConvNet structure was implemented to extract acoustic features from MFSC 

maps (Fig. 3). As suggested for VGG Nets [3, 17], we used 3 × 3 convolutional and 2 × 2 

max-pooling filters with zero padding and chose 3 × 3 × 32, 3 × 3 × 64, 3 × 3 × 128, and 3 × 

3 × 128 as the kernel sizes and the number of feature maps are determined empirically. 

Although deeper networks tend to perform better, we stopped at eight layers due to the 

hardware constraints.

4.3 Feature Fusion Layer

Two independent fully-connected layers concatenate the features from CNNT and CNNA 

(Fig. 1). To balance the two modalities, they were represented with 900 and 1024-

dimensional vectors respectively. A fully-connected (FC) layer fuses the text and audio 

features into a joint feature representation ready for the final decision (Fig. 1). There are two 

main reasons for us to select feature-level fusion instead of decision-level fusion. First, 

because we used ConvNet structure to extract both the acoustic features and textual features, 

we do not need to apply the implementation method designed to deal with the heterogeneous 

data in feature-level fusion (such as the SPF-GMKL in [14]), which makes the feature-level 

fusion reasonable and convenient. Second, feature-level fusion outperformed decision-level 

fusion in previous research [14]. We decided to follow those successful implementations in 

similar applications.

4.4 Decision Making

Predicting intention is multiclass classification, so we used a softmax decision-making layer 

to predict the intention class based on the 1924-dimensional feature vectors from the feature 

fusion layer (last layer in Fig. 1). Our experiments showed that having a deep neural network 
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just before the softmax only slightly improved the performance. Considering the hardware 

costs, we used only a softmax layer in our decision-making module.

4.5 Implementation

We used Keras, a high-level TensorFlow-based neural network library [18], for model 

training and testing. As suggested previously [3, 17], we used the rectified linear unit 

activation function for all convolutional layers. We initialized the learning rate at 0.01 and 

used Adam optimizer to minimize the loss value [17]. Dropout function and 5-cross 

validation was applied during training to avoid overfitting.

5 Evaluation Results

We first compared the multimodal performance (CNNTA) with that of text-only (CNNT), and 

audio-only (CNNA) models (Table 3). In our unimodal experiments, we used the same input 

data as during the multimodal training. As expected, the CNNTA outperformed the other two 

because it exploited the strengths of both. The accuracy of the CNNTA was 83.1% which is 

much higher than the CNNT with 57.36 and CNNA with 59.64. Our analysis of the 

confusion matrices (Fig. 4) found the following:

• The CNNT differentiated well between classes with distinct contents (e.g. Q, 

CL). Both Q and CL have interrogative phrases such as “what is,” “how about,” 

and “do you” that appear very infrequently in the remaining classes.

• The CNNA distinguished well between classes with different speaking manners 

(e.g. Q, DIR, RS, RP). Using the acoustic features improved the accuracy rate of 

Q and DIR. This was expected, as their acoustic features are different despite 

similar phrases and vocabulary. The performance for RS and RP was also strong, 

despite the text-level content variation, due to their relatively fixed speaking 

manners.

• The CNNTA significantly outperformed the unimodal models, indicating that text 

or audio alone is insufficient for intention classification. Both datatypes 

compensate the weaknesses of each other, making their joint feature 

representation more useful for understanding the underlying meaning and 

intentions in speech.

• The accuracy on RP was comparatively low. This might have been because RP 

sentences vary widely in content, and are acoustically similar to other classes. 

After further analysis of the data, we found that the speakers often increased the 

pitch at the end of each sub-report during a summary report at the end of each 

process phase, in order to emphasize certain point. This made RP sound like a Q 

or CL. When ground truth coding for RPs, humans usually exploit contextual 

information (i.e. nearby sentences), indicating that context may improve 

intention classification.

Considering the infeasibility of manual transcription in speech applications, we also tested 

the CNNTA model with text generated from automatic speech recognition (CNNSA). 

Specifically, we used the text generated by the Microsoft Bing Speech API along with the 

Gu et al. Page 6

Adv Artif Intell. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



original audio clip as the input to our system. The Bing API could not achieve human 

accuracy for our medical dataset due to the noise, and had a 26.3% word error rate. 

However, our results showed that despite the transcription inaccuracies, CNNSA predictions 

were only 6% less accurate than those of CNNTA (Table 3). This indicates that word-level 

accurate text is not as essential to intention classification as loose sentence structure and 

keywords, which is a significant finding. Using text-only model to detect activity or motion 

of trauma team members is very hard because high ambient noise made speech recognition 

difficult. Our experiment showed that including the acoustic features improved the accuracy 

of the intention recognition and the multimodal system is not very sensitive to the textual 

features. Hence, our model could be used for capturing speech intention in noisy 

environments such as trauma room.

We also compared the accuracies of individual or combined modalities using ConvNet-

learned versus manufactured features. A model with human-selected feature extraction 

(HSF) using the same data split and softmax configuration was trained on several widely 

used manufactured features including fundamental frequency [19], pitch related features 

[20], energy related features [21], zero crossing rate (ZCR) [21, 22], jitter [21], shimmer 

[21], and Mel-frequency cepstral coefficients (MFCC) [22–24]. As suggested in [19, 20], we 

applied the statistical functions including Maximum, Minimum, Range, Mean, Slope, Offset, 

Stddev, Skewness, Kurtosis, Variance, and Median for these features. We normalized all the 

manufactured acoustic features using z-score normalization [22] and fed them into a softmax 

layer. The results showed that the features extracted by our multimodal structure’s led to 

significantly better performance than the manufactured features (Table 3). In fact, even 

CNNA alone outperformed HSF, further demonstrating the effectiveness of ConvNet-based 

feature selection. Although one could fine-tune the manually-selected features [21, 22], 

doing so would be highly laborious compared to automated ConvNet learning.

Finally, we compared our work with some similar research [12–14] (Table 4). We compared 

our model with several similar models in different application scenarios. This comparison 

showed that our model is competitive with some [13, 14], and outperformed others [12]. The 

previous model achieving the best performance [14] had a much simpler application than 

ours: it only classified 447 instances into two categories (positive/negative sentiment). 

Although MKL [13] achieved 96.55% accuracy in binary sentiment analysis (positive or 

negative), it relied heavily on visual features. Its accuracy dropped to a comparable 84.12% 

given only text and audio. In addition, their binary classification problem is much simpler 

than our six-class classification application. In fact, our six-class system even outperforms 

MLK’s four-class emotion detection implementation.

6 Discussion and Conclusion

Although applicable and competitive, our proposed model can be improved in two aspects. 

Using wearable microphones would improve audio quality, which would increase the 

automatic speech recognition accuracy and lead to better predictions in the automated 

transcription. Using an LSTM to learn contextual features would also better discover 

features in text data [16, 25].
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There are also inherent limitations to our current model. Our model performed well in 

scenarios such as trauma resuscitation, where there are few unessential words in relatively 

short sentences. However, it is difficult to detect the intention from fully-formed sentences, 

since the speaker may use multiple speaking manners in one sentence. This shortcoming 

may be solved with contextual intention recognition, which will be part of our future 

research. Lack of speaker-independency is another limitation. Even though there were work 

shifts in trauma room, our dataset only had voices from a limited set of persons and we did 

not consider speaker independency during training the model. Evaluating the model 

performance on the unknown voices should be further researched. Another limitation is the 

necessary removal of overlapping speech, which occurs very frequently. Around 28% of 

trauma speech has heavy overlapping speech. Then, to further improve speech intention 

recognition in the trauma environment, we must also consider solutions to the cocktail party 

problem.

To conclude, we restate this paper’s contributions to the field:

• A framework that learns textual and acoustic features for intention classification.

• A comparison and analysis of our system performance on intention classification 

using multimodal, unimodal, and human-selected features.

• A system application in an actual medical setting that can be used as a reference 

for future study.
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Fig. 1. 
The structure of our intention recognition model. FC = fully connected. The numbers in 

parentheses represent the number of neurons in each network layer.
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Fig. 2. 
Textual feature extraction ConvNet (CNNT)

Gu et al. Page 11

Adv Artif Intell. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Acoustic feature extraction ConvNet (CNNA)
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Fig. 4. 
The confusion matrix for different model structure (number is in percentage).
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Table 1.

Speech intention classes in the trauma resuscitation

Class Intentions Frequency

DIR Directives (task assignment/instruction/command) 1172

RS Response to an inquiry or request for information   934

Q Inquiry/request for information 1256

RP Report (report on patient status or results of an activity) 1045

CL Clarification (request for retransmission of information) 1044

ACK Acknowledgement  973
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Table 2.

Examples of speech intention from trauma resuscitation

Class Sentence

DIR Get her fluids going

RS I don’t know she’s got three IVs on left side

Q What’s the IV access

RP Bilateral TMs are clear

CL You mean on the left

ACK Yes alright I will
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Table 3.

Comparison of model accuracies

Model Input data Accuracy (%)

CNNT Manually generated script 57.36

CNNA MFSC map 59.64

CNNTA Manually generated script and MFSC map 83.1

CNNSA Machine generated script and MFSC map 77.21

HSF Manufactured features 48.73
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Table 4.

Comparison of our intention recognition model to similar research

Model Input data Classes Accuracy (%)

Multimodal sentiment [12] Manually selected video, audio, text features 3 classes 78.2

Convolutional MKL [13] Text, manually selected acoustic features, video 2 classes 84.12

4 classes 76.85

Deep CNN[14] Text, manually selected acoustic features, video 2 classes 88.6

CNNTA Manually generated script, MFSC map 6 classes 83.1

CNNSA Machine generated script, MFSC map 77.21
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