Volatility Adaptive Classifier System

Ruolin Jia, Yun Sing Koh, and Gillian Dobbie

The University of Auckland, New Zealand
rjia4770@aucklanduni.ac.nz,{ykoh,gill}@cs.auckland.ac.nz

Abstract. A data stream’s concept may evolve over time, which is
known as the concept drift. Concept drifts affect the prediction accu-
racy of the learning model and are required to be handled to maintain
the model quality. In most cases, there is a trade-off between maintain-
ing prediction quality and learning efficiency. We present a novel frame-
work known as the Volatility-Adaptive Classifier System (VACS) to bal-
ance the trade-off. The system contains an adaptive classifier and a non-
adaptive classifier. The former can maintain a higher prediction quality
but requires additional computational overhead, and the latter requires
less computational overhead but its prediction quality may be suscepti-
ble to concept drifts. VACS automatically applies the adaptive classifier
when the concept drifts are frequent, and switches to the non-adaptive
classifier when drifts are infrequent. As a result, VACS can maintain a
relatively low computational cost while still maintaining a high enough
overall prediction quality. To the best of our knowledge, this is the first
data stream mining framework that applies different learners to reduce
the learning overheads.

Keywords: Data Stream, Concept Drift, Stream Volatility

1 Introduction

Data streams are sequences of unbounded data arriving in real time. For example,
electricity usage records produced by a power station, online tweets generated
in a region, transactions recorded in a stock market can all be presented as
data streams. Such real-world data are generated in order and are considered
to be infinite. The task of data stream mining is to find valuable information
from these unbounded streams of data. Data stream’s properties raise various
requirements when designing data stream algorithms. Instances in a stream can
arrive very fast, allowing only limited time and memory for the algorithm to
learn its underlying concepts. Moreover, a data stream may evolve over time such
that the underlying concepts in a stream may change. Consequently, the learning
model loses prediction accuracy over time. This is known as concept drifts. To
maintain the quality of a learning model, stream learning algorithms are expected
to detect changes and update their models to overcome these concept drifts. The
frequency of concept drifts is known as stream volatility [6]. High volatility means
a high frequency of concept drifts.

Some data stream learners can overcome a concept drift by adjusting their
models to generalise the new concept and maintain a high prediction quality
during the drift. These learning models can be classified as adaptive learners.
Other data stream learners that cannot adjust their models are known as non-
adaptive learners. Model adaptations come with a large computational cost.
Thus, there is a trade-off between the model quality and the learning efficiency.
It is also known that stream volatility may change in a stream over time [6].
For example, in stock market transactions, an anomalous event can result in an
increasing number of concept drifts over a short period. One way to balance the
trade-off between model quality and efficiency is to apply the model adaptation
only when the stream volatility is high to maintain a stable prediction quality.
When the volatility becomes low, we disable the model adaptation to save cost.
We are addressing this problem by creating a new learning framework containing
both adaptive and non-adaptive learners.

We designed a framework called Volatility Adaptive Classifier System (VACS).
VACS has lower computational cost than the state-of-art adaptive learner while
maintaining a similar prediction quality in a stream with volatility changes.
VACS is composed of both adaptive and non-adaptive classifiers. VACS uses
stream volatility [6] as the criterion to switch between classifiers. In particular,
when the volatility is high, VACS applies the adaptive learner to maintain a
better prediction quality. When volatility is low, it is deemed to be unnecessary
to spend large overheads to handle infrequent concept drifts, so it switches to the
non-adaptive classifier. As a result, VACS will maintain a sufficiently high pre-
diction accuracy with relatively low overheads. Our contributions are as follows:
(1) We proposed a Volatility Adaptive Classifier System (VACS), which is able
to choose between the adaptive classifier and the non-adaptive classifier given
different levels of stream volatility. (2) We show that the accuracy of VACS is
comparable to state-of-the-art techniques, while maintaining low computational
cost. To the best of our knowledge, this is the first data stream learning tech-
nique that uses stream volatility to adjust model adaptation behaviour to reduce
computational cost while maintaining high model quality.

In the next section, we discuss the related work in the area. In Section 3, we
illustrate how VACS works. In Section 4, we discuss the experimental results.
Lastly, we conclude our paper in Section 5.

2 Related Work

There are various methods, derived from traditional learning methods, for mining
data series including ensemble based methods [10] and neural network based
methods [8]. In our research, we focus on tree based models: VFDT [4] and
HAT-ADWIN [2] which have different expected properties.

VFDT is a decision tree classifier that is specifically designed for learning
data streams. Because a data stream is infinite, VFDT splits an inner node
using confident enough instances from a stream rather than seeing all instances.
CVFDT [7] is a variant of VFDT. CVFDT maintains a sliding window storing

recent instances learned, and it adjusts its tree model to be consistent with the
instances in the window.

Hoeffding Adaptive Tree using ADWIN (HAT-ADWIN) was proposed by
Bifet et al [2]. This algorithm installs the drift detector ADWIN [1] on each node
of the VFDT decision tree. The ADWIN drift detector monitors the attribute-
class statistics on its host node. If a change in the attribute-class statistics at that
node is detected, it starts to grow an alternative tree rooted at that node. When
the alternative sub-tree has a better prediction accuracy, the current sub-tree is
replaced by the alternative one.

We can categorise those two tree algorithms into two classes: adaptive learner
and non-adaptive learner. VFDT is considered to be a non-adaptive learner. It
does not have the ability to adjust its tree model to new concepts in an evolving
data stream. Instead, VFDT with drift detector ADWIN (VFDT-ADWIN) can
rebuild its tree model when a concept drift is detected. However, a severe pre-
diction accuracy drop can be experienced during model rebuilding. In contrast,
HAT-ADWIN and CVFDT are adaptive learners. Adaptive learners are able to
partially update their models to fit the new concept in an evolving stream such
that they can maintain a stable accuracy when encountering concept drifts.
However, adaptive learners such as HAT-ADWIN have larger overhead than
non-adaptive learners in terms of training time and memory. This is because
adaptive algorithms need additional computation and storage to perform model
adaptation.

Recurring Concept Drift (RCD) framework [5] is similar to our proposed sys-
tem (VACS) in that they both use more than one learner to mine data streams.
However, RCD is designed for improving the prediction quality, while VACS is
designed to reduce learning overheads.

3 Volatility Adaptive Classifier Systems

We propose the Volatility Adaptive Classifier System (VACS). Intuitively, when
mining a stream, VACS automatically applies the adaptive classifier in high
volatility periods, and it switches to the non-adaptive classifier in low volatility
periods. It aims to reduce learning overheads while maintaining high prediction
quality. VACS is composed of several modules: Volatility Measurement Window,
Double Reservoirs Classifier Selector, a drift detector and two component learn-
ers. Figure 1 presents an overview of VACS. In particular, we use VFDT with
ADWIN (VFDT-ADWIN) in low volatility periods and we use HAT-ADWIN in
high volatility periods. We use ADWIN as the drift detector.

3.1 Volatility Measurement Window

One task of VACS is to measure the volatility level of a stream such that it can
switch classifiers based on different volatility levels. Huang et al. [6] calculate a
stream’s current volatility by calculating time intervals between each drift point
in a buffer. In other words, their method measures the time differences among a

‘ Double Reservoir Classifier Selector ‘

Suggest

Drift Classifier

Detect Drift

Detector Tow Vol

Sample

Volatility
Measurement
Window

Measure Volatility

Fig.1: VACS Overview

fixed number of drifts. Small time differences denote high volatility while large
differences denote low. Their method is appropriate to calculate relative volatility
shift in a stream. However, it introduces a volatility measurement delay because
it needs to wait for the next drift in order to calculate the new volatility level.
The delay problem can be severe if the volatility drops from high to low. This is
because the time difference between the next drift and the recent drift increases,
and it needs to wait a longer period for the next drift to appear in order to
update the measurement.

We develop a new method to measure the level of volatility using a sliding
window with fixed size T'. It contains indices of the most recent 7' instances
learned from the stream. When a new instance’s index is inserted into the win-
dow, the oldest instance’s index is removed. The window maintains a value =,
which is the number of concept drifts detected in the most recent T' instances.
Then v can represent the level of the current volatility. In the case when the
level of volatility decreases, it does not need to wait until the next drift occurs.
Instead, the window constantly updates v over time. This new method mitigates
the delay problem.

3.2 Double Reservoirs Classifier Selector

Double Reservoirs Classifier Selector (DRCS) is another module in VACS. DRCS
uses the reservoir sampling technique [9] to sample and approximate both high
and low levels of volatility of a stream while learning. We do not want to lose
information about high volatility periods of a stream when sampling at low
volatility. Similarly, we do not want to lose information about low volatility pe-
riods when sampling at high volatility. A single reservoir will not satisfy this
requirement because reservoir sampling removes a random element when insert-
ing a new element. DRCS separately samples the volatility levels from low and
high volatility periods in a stream using two independent reservoirs.

In particular, DRCS has two functions: sampling and suggesting. The “sam-
pling” function is called by VACS constantly when learning a stream. The sam-
pling function of DRCS maintains two reservoirs named High Reservoir and Low
Reservoir. Those two reservoirs sample each input v value (volatility level) from
the volatility measurement window using the reservoir sampling method [9]. The
first v is inserted into the low reservoir for initialisation. After initiation, when

a new measured stream volatility v arrives, it compares v with the mean of the
elements in the two reservoirs. If the value is lower than the mean, it stores this
value into the Low Reservoir. If the value is greater than the mean, it stores the
value into the High Reservoir. We specify a means’ difference threshold A. If the
difference between two reservoirs’ means is greater than A, the DRCS is set to be
active. VACS can only switch a classifier when DRCS is active. This setting can
prevent two undesirable behaviours. Firstly, it prevents VACS from switching
classifiers when there are rare volatility changes in the stream. Secondly, if there
are volatility changes in the stream but these changes only appear in a later
period, it prevents VACS from switching classifiers at the early stage in which a
changing volatility has not been measured yet. Intuitively, A is used to indicate
the size of the volatility change that matters to the user. If there are volatility
differences greater than this threshold in a stream, we can treat the stream as a
volatility-changing stream and activate our system, otherwise, we use the single
learner to handle the stream. X is also related to the volatility measurement
window size T'. A larger T value can result in larger measured numbers of drifts
in the window. Thus, larger v (volatility level) can be obtained and inserted into
reservoirs. So A should increase with T'. However, if A is overly large, VACS may
never be activated.

The second function of DRCS is a “suggesting” function. This is used when
VACS queries DRCS. When VACS queries DRCS, it compares the most recent
input v with the mean of all other values in two reservoirs. If the recent
v is greater than the reservoirs’ mean, it returns the high volatility classifier
suggestion (adaptive learner). Otherwise, it returns the low volatility classifier
suggestion (non-adaptive learner).

3.3 Pseudocode

In this section, we compose each module discussed in the previous sections into
the complete Volatility Adaptive Classifier System (VACS). The pseudocode can
be seen in Algorithm 1. The algorithm firstly initiates the Double Reservoirs
Classifier Selector (DRCS) and a drift detector. By default, we use ADWIN for
the drift detector. It also initiates the volatility measurement window count-
ing concept drifts detected in the recent T instances. We provide two classifiers
for VACS. One classifier is considered to be suitable in high volatility periods
(adaptive learner) while the other is deemed to be appropriate in low volatility
periods (non-adaptive learner). In our implementation, we use HAT-ADWIN as
the adaptive learner and VFDT-ADWIN as the non-adaptive learner. In VACS,
only one classifier is active at any time to perform the learning task. The user
decides which classifier should be active at the start when no volatility level has
been detected. When the algorithm starts, it takes each arriving instance from
the stream and classifies it with the active classifier. If the classifier correctly
classifies the instance, we input 0 into the drift detector. Otherwise, we input 1
into the drift detector. The drift detector is modified such that it signals a drift
only if the prediction error is increasing. Next, it updates the volatility measure-
ment window and ~ (volatility level), which is the number of drifts detected in

Algorithm 1: VACS: Volatility Adaptive Classifier System

input : S: Stream of examples
7: Interval length between each volatility level measurement.
T': Size of sliding window for measuring current volatility level.
HighVolClassifier: The classifier used in high volatility period.
LowVolClassifier: The classifier used in low volatility period.
StartingClassifier: The classifier chosen at the start.
DT': Drift Detector.

1 begin
2 Initiate drift detector DT}
3 Initiate Double Reservoir Classifier Selector DRC'S);
4 Initiate Volatility measurement window W
5 Let ActiveClassifier = StartingClassifier;
6 Let v = Number of drifts detected when classifying the most T instances;
7 foreach example(z,yr) € S do
8 ActiveClassifier classifies (x,yx);
9 if ActiveClassifier correctly classified (x,yr) then
10 | Let e = 0;
11 else
12 ‘ Let e = 1;
13 Input e into DT}
14 Update W and ~;
15 Let 4 = number of instances that has been classified;
16 if %7 = 0 then
17 Input v in DRC'S (Call DRCS Sampling);
18 Query DRC'S for the suggestion (Call DRCS Suggesting);
19 Let SuggestedClassifier = Suggested Classifier of DRC'S;
20 if SuggestedClassifier is not null AND is not CurrentClassifier
then
21 if SuggestedClassifier is HighV olClassifier then
22 ‘ Set ActiveClassifier = HighVolClassifier;
23 else
24 ‘ Set ActiveClassifier = LowVolClassifier;
25 Re-initiate ActiveClassifier;
26 Train ActiveClassifier with (z, yx);
27 end for
28 end

the recent T" examples. If the number of classified instances since the last volatil-
ity level measurement reaches a user-specified count 7, the algorithm measures
and inputs v into DRCS and then queries DRCS. The reason for adding an
interval 7 between two consecutive 7 measurements is because it is not likely
to measure a change on + if two measurements are close. Next, DRCS returns
one classifier option from the two that are suggested to be used, best suited to
the current level of volatility. If the suggested classifier is not consistent with
the one active in VACS, it switches the current active classifier to the suggested

one. It then re-initiates the new classifier. In the case of a decision tree, it resets
the decision tree to a one-node tree without learning examples. When the user
wants to make a classification with an instance with the unknown class, VACS
will use the currently active classifier to make the prediction.

4 Results and Evaluation

We implemented VACS in the Massive Online Analysis (MOA) Framework [3]. In
our experiments, we measure the performance of HAT-ADWIN, VFDT-ADWIN
and VACS by evaluating total training time (Time), mean memory usage (Mem),
maximal memory usage (Max Mem), the mean prediction accuracy (Acc) and
the mean prediction accuracy when concept drifts occur (dAcc) on each algo-
rithm. We compare the measurement results of those algorithms and contrast
the differences among them.

Beyond those measurements, we also explore whether VACS switches between
classifiers as expected. We introduce a new measurement called Percentage of In-
stances Classified by the Expected Classifier (PICEC). It denotes whether VACS
applies the correct classifier accurately given a volatility level. Our synthetic
datasets’ volatility fluctuates between low and high volatility periods. VACS has
two classifier options: high volatility classifier (adaptive) and low volatility clas-
sifier (non-adaptive). We obtain PICEC using the following calculation: we count
the number of instances from the high volatility period in a stream classified by
the high volatility classifier, and the number of instances from the low volatility
period in a stream classified by the low volatility classifier. We divide the sum
of these two numbers by the total number of instances in the streaming dataset.

Here we specify all parameters for VACS.

Each reservoir in DRCS has size 200, volatility measurement window size (T')
is 300000, means’ difference threshold (\) is 15, the interval length between each
volatility level measurement (7) is 10000, the drift detector of VACS is ADWIN,
the high volatility classifier is HAT-ADWIN, and the low volatility classifier is
VFDT with ADWIN as the external drift detector (VFDT-ADWIN). The default
starting classifier is VFDT-ADWIN. ADWIN uses the Hoeffding Bound whereby
the ¢ value [1] is set to 0.002.

4.1 Experiments on Mutating Random Tree Generator Datasets

We show the evaluation results run on data generated by the mutating random
tree generator. We intend to evaluate whether VACS has a reduction of com-
putational cost compared with the adaptive learner (HAT-ADWIN). We also
inspect if VACS switches classifiers as expected.

We developed the mutating random tree generator based on the random tree
generator presented in [4]. Our generator randomly chooses a branch of the tree
and rebuilds it when we want to add a concept drift in the synthetic stream.

The synthetic data has 10 attributes and 2 classes. The maximal depth of
the random tree is 5. We add 5% noise to the data. The synthetic data stream is

made up of 28 blocks. Each block has 1 million instances. We have two types of
blocks: high volatility blocks containing 50 concept drifts, and low volatility block
containing 5 concept drifts. We interleave high volatility blocks and low volatility
blocks such that the stream fluctuates between high volatility and low volatility
over time. We generated three types of datasets. (1) balanced volatility periods
streams: they contain equal numbers of of high and low volatility blocks (2)
majority of low volatility periods streams: they contain 8 high volatility blocks
and 20 low volatility blocks (3) majority of high volatility periods stream: they
contain 20 high volatility blocks and 8 low volatility blocks. For each pattern, we
generate 20 stream samples with different random seeds, and we run experiments
on each of them.

Table 1: Performance on Mutating Random Tree Generator Datasets

Dataset Balanced Majority Low Vol Majority High Vol
Mean Std Dev. Mean Std Dev. Mean Std Dev.
VACS
Acc % 84.86 0.28 86.71 0.456 83.43 0.38
dAcc % 81.2 0.41 81.85 0.49 80.9 0.55
Mem (B) 413178.93 30237.52| 515455.88 48911.55| 338391.59 22452.62
Max Mem (B) 2200813.6 540997.42 2372156 430484.32 2108248 480220.7
Time (s) 230.31 5.83 190.78 2.75 256.93 6.11
VFDT-ADWIN
Acc % 83.5 0.24 85.62 0.5 81.78 0.4
dAcc % 78.85 0.37 79.45 0.6 78.85 0.37
Mem (B) 275669.66 29343.87| 392995.25 55100| 194866.07 24074.3
Max Mem (B) 2068718.4 519383.28 2274702 485691.92| 1987230.4 469304.53
Time (s) 123.72 2.04 126.31 2.62 116.47 2.34
HAT-ADWIN
Acc % 85.77 0.25 87.68 0.41 84.06 0.29
dAcc % 81.8 0.41 82.35 0.49 81.3 0.47
Mem (B) 775754.48 86571.52|1115474.7 158771.26|520137.73 77229.29
Max Mem (B) 5139417.6 1143583.34| 5754436 1218915.82(4763293.2 959179.97
Time (se) 364.69 6.55 392.04 11.84 333.41 8.87

Experimental results of 20 sample streams are shown in Table 1. The bold
font denotes the worst performance mean among the three algorithms. Generally,
all experiments show that the prediction accuracy of VACS is close to the predic-
tion accuracy of HAT-ADWIN in drifting periods. So it has similar stability to
HAT-ADWIN when drifts occur. However, compared with HAT-ADWIN, VACS
effectively saves on training time and memory usage. Results show that VACS
has a better average prediction accuracy than VFDT-ADWIN and a slightly
worse prediction accuracy than HAT-ADWIN. This is the expected result since
VACS'’s prediction accuracy is produced by the hybrid system composed of HAT-
ADWIN and VFDT-ADWIN.

4.2 Evaluation of the Classifier Switch Quality

The objective of these experiments is to evaluate whether VACS applies ap-
propriate learners as expected. We test VACS with the three different types
of datasets from the mutating tree generator. The results are shown in Table

2. Results show decent PICECs for all types of data. PICECs for all datasets’
experiments reach around 90%. The percentage of applying the low volatility
learner and the high volatility learner are also consistent with the type of data.
For example, in streams with a majority of low volatility periods, 72% of the
instances are classified by the low volatility classifier (VEDT-ADWIN) and 28%
of the instances are classified by the high volatility classifier (HAT-ADWIN).

Table 2: VACS behaviour on different streams

Dataset Balanced Majority Low Vol|Majority High Vol
Mean Std Dev.[Mean Std Dev. [Mean Std Dev.
PICEC % 89 1.8 94 1.5 88 2.4
Low vol learner usage % 52 2.1 72 1.3 37 1.9
High vol learner usage % 48 2.1 28 1.3 63 1.9

4.3 Experiments on Different Volatility Measurement Window Size

The objective of these experiments is to inspect the influences of different Volatil-
ity Measurement Window Size T on the learner selection quality of VACS. In
previous experiments, we use 300,000 as the default value for 7. In this exper-
iment, we vary T' by both increasing and decreasing from its default value. We
run VACS on 20 samples of the balanced volatility stream. The experimental
results are shown in Table 3.

We can summarise that classifier selection quality of VACS is influenced by
the volatility measurement window size T. Setting the value T to either too
small or too large may cause low PICEC, which means a poor classifier selection
quality. From our experiments, we found that 7" should be large enough such
that the measurement is not strongly influenced by the volatility fluctuation of
randomness. Also, T should not be too large such that VACS can always measure
one volatility level at a time in a stream with volatility changing between differ-
ent levels. One suggestion for selecting 7" is to run a test on the stream before
starting VACS. A user can start from a small 7" value and gradually increase T
meanwhile evaluating whether measurements are susceptible to volatility fluc-
tuations caused by noise. When VACS performs as expected, stop increasing T
and use this value. We assume that the 7" value obtained in the pre-experiment
period from a continuous stream is also appropriate in the upcoming period in
that stream. This assumption holds true in all of our experiments.

Table 3: VACS with different volatility measurement window size

T PICEC % (Mean) PICEC % (Std Dev.)
30000 50 0
100000 88 1.6
300000 89 1.8
3000000 29 4.3

4.4 Experiments on SEA Generator Datasets

We use SEA Generator as our second data generator from MOA. The SEA gener-
ator has 3 attributes and 2 classes by default. We generate the same three types of
volatility-changing data streams as the previous experiments. The experimental
results can be viewed in Table 4. The bold font denotes the worst performance
metrics among three algorithms. Results show a similar conclusion for VACS
reducing training time. VACS uses less training time than HAT-ADWIN. More-
over, in streams composed of a majority of low volatility periods, VACS has the
most effective reduction in time compared with HAT-ADWIN.

Table 4: Performance on SEA generator datasets

Dataset Balanced Majority of Low Vol |Majority of High Vol]
Mean Std Dev. Mean Std Dev. Mean Std Dev.
VACS
Acc % 92.14 0.08 92.62 0.07 91.69 0.19
dAcc % 90.85 0.37 90.9 0.31 90.75 0.44
Mem (B) 173849.41 3951.98| 172856.88 2138.16/163834.01 2091.83
Max Mem (B) 572069.6 56281.64| 576905.2 58845.55| 532899.6 57047.26
Time (s) 127.33 4.33 105.41 2.39 143.82 3.3
VFDT-ADWIN
Acc % 92.09 0.08 92.52 0.07 91.67 0.16
dAcc % 90.85 0.37 90.8 0.41 90.65 0.49
Mem (B) 56843.41 1871.21 63692.83 1191.53 41673.5 1123.55
Max Mem (B) 186323.2 15153.59| 177403.6 9168.92 175032 5283.07
Time (s) 64.33 1.64 65.06 1.04 62.41 1.26
HAT-ADWIN
Acc % 92.2 0.08 92.66 0.07 91.71 0.19
dAcc % 90.85 0.37 90.9 0.31 90.75 0.44
Mem (B) 161413.3 4963.52|201208.75 3811.19| 112874.55 4215.42
Max Mem (B) 666700 71667.62| 688492.4 88055.91| 637625.2 67176.21
Time (s) 188.22 3.38 209.84 3.4 171.86 2.82

We also evaluate VACS’s classifier switch quality in these datasets. We show
the results in Table 5. VACS in all three types of datasets return around 90%
values, which is similar to earlier experiments in mutating random tree datasets.
This tells us the classifier switch quality of VACS is also decent on SEA generated
datasets.

Table 5: VACS behaviour on different streams (SEA)
Balanced Majority of Low Vol|Majority of High Vol
Mean Std Dev.[Mean Std Dev. Mean Std Dev.
PICEC % 90 2.6 94 1.6 91 2.7
Low vol learner usage % 49 2.9 71 1.4 33 1.8
High vol learner usage % 51 2.9 29 1.4 67 1.8

5 Experiments on Real-World Data

The aim of this set of experiments is to evaluate whether VACS can achieve the
cost reduction compared with the adaptive learner on real-world datasets. We
chose Poker Hand, Forest Cover Type, and Airlines real world datasets available
on MOA, which contain volatility changes. After testing, we chose volatility
measurement window size T = 20,000 and we set A to 3 for VACS. Table 6
shows the experiment’s results. We also plot the measured volatility level v and
the mean of double reservoirs in Figure 2 to demonstrate the classifier switching
behaviour of VACS. When + is greater than the reservoirs’ mean, VACS applies
the high volatility classifier (HAT-ADWIN). When ~ is lower than the mean,
VACS uses the low volatility classifier (VFDT-ADWIN).

In all experiments, VACS achieves a training time reduction compared with
HAT-ADWIN. In experiments with Poker Hand and Forest Cover Type, VACS
has the highest prediction accuracy.

Table 6: Performance with Real-World datasets

Dataset Poker Hand|Forest Cover Type Airline
VACS

Acc % 72.0 82.14 64.98
Mem (B) 124684.11 176295.35| 2642422.83
Max Mem (B) 163392 357528 10468520
Time (s) 4.29 11.62 10.14
VFDT-ADWIN

Acc % 69.68 81.77 65.28
Mem (bytes) 28676.98 67016.01| 1832277.51
Max Mem (B) 40192 131256 7855680
Time (s) 2.36 5.94 9.05
HAT-ADWIN

Acc % 66.42 81.42 63.37
Mem (B) 23741.62 98633.23|7024953.36
Max Mem (B) 83600 304024 13914984
Time (s) 5.12 14.37 15.82

6 Conclusions and Future Work

We developed a system, called VACS, that can automatically choose the most
suitable classifier between adaptive and non-adaptive algorithms in real time
when mining a stream with changing volatility. The system applies the adaptive
learner when the volatility is high and the non-adaptive learner when the volatil-
ity is low. It aims to reduce the learning costs while maintaining high enough
prediction accuracy. We tested VACS on both synthetic and real-world data with
changing volatility. In all of our experiments, VACS reduces the training time
compared with the state-of-art adaptive learner, and VACS’s prediction accuracy
is also close or better than the adaptive learner. Through the experiments, we
have shown that VACS is an effective approach to balance the trade-off between
model prediction quality and efficiency.

Volatility Level
0 10 20 30 40 50

Poker Hand Forest Cover Type Airline

S 3
— s o |
] g 3 B
3 i J o 4
T 2 2
= 9 4 = o o
. & ™ Kl
s S < A
A o o~ -
1
E o o -
T T T T T T T T T T T T T T T T T
0 200000 600000 0 100000 300000 500000 0 100000 300000 500000
Instance Instance Instance
—— Measured Volatility Level y + + The mean of double reservoirs

Fig. 2: Volatility measurements in the real world datasets

One possible improvement is to enable VACS to adjust its volatility mea-
surement window size T' automatically when mining. The window is expected to
shrink its size when the volatility changes notably and enlarge its size when the
volatility is stable. When the volatility changes notably, it can remove the out-
dated elements by shrinking the window size such that it can react quickly to the
changed volatility level. It can improve the accuracy of volatility measurement.

References

1.

2.

10.

Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: SDM. vol. 7, p. 2007. SIAM (2007)

Bifet, A., Gavalda, R.: Adaptive learning from evolving data streams. In: Interna-
tional Symposium on Intelligent Data Analysis. pp. 249-260. Springer (2009)
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis.
Journal of Machine Learning Research 11(May), 1601-1604 (2010)

Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 71-80. ACM (2000)

Gongalves Jr, P.M., De Barros, R.S.M.: RCD: A recurring concept drift framework.
Pattern Recognition Letters 34(9), 1018-1025 (2013)

Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data
streams. In: 2014 IEEE International Conference on Data Mining. pp. 863—868.
IEEE (2014)

Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the seventh ACM SIGKDD International Vonference on Knowledge
Discovery and Data Mining. pp. 97-106. ACM (2001)

Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a
usability case study for text categorization. In: ACM SIGIR Forum. vol. 31, pp.
67-73. ACM (1997)

Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software (TOMS) 11(1), 37-57 (1985)

Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams us-
ing ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 226-235. ACM (2003)

