
Deep Network Regularization via Bayesian
Inference of Synaptic Connectivity

Harris Partaourides and Sotirios P. Chatzis

Department of Electrical Eng., Computer Eng., and Informatics
Cyprus University of Technology

c.partaourides@cut.ac.cy; sotirios.chatzis@cut.ac.cy

Abstract. Deep neural networks (DNNs) often require good regular-
izers to generalize well. Currently, state-of-the-art DNN regularization
techniques consist in randomly dropping units and/or connections on
each iteration of the training algorithm. Dropout and DropConnect are
characteristic examples of such regularizers, that are widely popular
among practitioners. However, a drawback of such approaches consists
in the fact that their postulated probability of random unit/connection
omission is a constant that must be heuristically selected based on the
obtained performance in some validation set. To alleviate this burden, in
this paper we regard the DNN regularization problem from a Bayesian
inference perspective: We impose a sparsity-inducing prior over the net-
work synaptic weights, where the sparsity is induced by a set of Bernoulli-
distributed binary variables with Beta (hyper-)priors over their prior
parameters. This way, we eventually allow for marginalizing over the
DNN synaptic connectivity for output generation, thus giving rise to
an effective, heuristics-free, network regularization scheme. We perform
Bayesian inference for the resulting hierarchical model by means of an
efficient Black-Box Variational inference scheme. We exhibit the advan-
tages of our method over existing approaches by conducting an extensive
experimental evaluation using benchmark datasets.

1 Introduction

In the last few years, the field of machine learning has experienced a new wave of
innovation; this is due to the rise of a family of modeling techniques commonly
referred to as deep neural networks (DNNs) [10]. DNNs constitute large-scale
neural networks, that have successfully shown their great learning capacity in
the context of diverse application areas. Since DNNs comprise a huge number
of trainable parameters, it is key that appropriate techniques be employed to
prevent them from overfitting. Indeed, it is now widely understood that one of
the reasons behind the explosive success and popularity of DNNs consists in the
availability of simple, effective, and efficient regularization techniques, developed
in the last few years [10].

Dropout is a popular regularization technique for (dense-layer) DNNs [13].
In essence, it consists in randomly dropping different units of the network on

ar
X

iv
:1

80
3.

01
34

9v
1

 [
cs

.L
G

]
 4

 M
ar

 2
01

8

2 Harris Partaourides and Sotirios P. Chatzis

each iteration of the training algorithm. This way, only the parameters related
to a subset of the network units are trained on each iteration; this ameliorates
the associated network overfitting tendency, and it does so in a way that ensures
that all network parameters are effectively trained. In a different vein, [14] pro-
posed randomly dropping DNN synaptic connections, instead of network units
(and all the associated parameters); they dub this approach DropConnect. As
showed therein, such a regularization scheme yields better results than Dropout
in several benchmark datasets, while offering provable bounds of computational
complexity.

Despite these merits, one drawback of these regularization schemes can be
traced to their very foundation and rationale: The postulated probability of ran-
dom unit/connection omission (e.g., dropout rate) is a constant that must be
heuristically selected; this is effected by evaluating the network’s predictive per-
formance under different selections of this probability, in some validation set,
and retaining the best performing value. This drawback has recently motivated
research on the theoretical properties of these techniques. Indeed, recent theoret-
ical work at the intersection of deep learning and Bayesian statistics has shown
that Dropout can be viewed as a simplified approximate Bayesian inference al-
gorithm, and enjoys links with Gaussian process models under certain simplistic
assumptions (e.g., [1,5]).

These recent results form the main motivation behind this paper. Specifically,
the main question this work aims to address is the following: Can we devise an
effective DNN regularization scheme, that marginalizes over all possible configu-
rations of network synaptic connectivity (i.e., active synaptic connections), with
the posterior over them being inferred from the data? To address this problem,
in this paper, for the first time in the literature, we regard the DNN regular-
ization problem from the following Bayesian inference perspective: We impose
a sparsity-inducing prior over the network synaptic weights, where the sparsity
is induced by a set of Bernoulli-distributed binary variables. Further, the pa-
rameters of the postulated Bernoulli-distributed binary variables are imposed
appropriate Beta (hyper-)priors, which give rise to a full hierarchical Bayesian
treatment for the proposed model.

Under this hierarchical Bayesian construction, we can derive appropriate pos-
teriors over the postulated binary variables, which essentially function as indica-
tors of whether some (possible) synaptic connection is retained or dropped from
the network. Once these posteriors are obtained using some available training
data, prediction can be performed by averaging (under a Bayesian inference
sense) over multiple (posterior) samples of the network configuration. This in-
ferential setup constitutes the main point of differentiation between our ap-
proach and DropConnect. For simplicity, and to facilitate reference, we dub our
approach DropConnect++. We derive an efficient inference algorithm for our
model by resorting to the Black-Box Variational Inference (BBVI) scheme [12].

The remainder of this paper is organized as follows: In Section 2, we provide a
brief overview of the theoretical background of our approach. Specifically, we first
briefly review DropConnect, which is the existing work closest related to our ap-

Deep Net Regularization via Bayesian Inference of Synaptic Connectivity 3

proach; subsequently, we review the inferential framework that will be used in the
context of the proposed approach, namely BBVI. In Section 3, we introduce our
approach, and derive its inference and prediction generation algorithms. Next,
we perform an extensive experimental evaluation of our approach, and compare
to popular (dense-layer) DNN regularization approaches, including Dropout and
DropConnect. To this end, we consider a number of well-established benchmarks
in the related literature. Finally, in the concluding section, we summarize our
contribution and discuss our results.

2 Theoretical Background

2.1 DropConnect

As discussed in the Introduction, DropConnect is a generalization of Dropout
under which each connection, rather than each unit, may be dropped with some
heuristically selected probability. Hence, the rationale of DropConnect is similar
to that of Dropout, since both introduce dynamic sparsity within the model.
Their core difference consists in the fact that Dropout imposes sparsity on the
output vectors of a (dense) layer, while DropConnect imposes sparsity on the
synaptic weights W .

Note that this is not equivalent to setting W to be a fixed sparse matrix
during training. Indeed, for a DropConnect layer, the output is given as [14]:

r = a((Z ◦W)v) (1)

where ◦ is the elementwise product, a(·) is the adopted activation function, W
is the matrix of synaptic weights, v is the layer input vector, and r is the layer
output vector. Further, Z is a matrix of binary variables (indicators) encoding
the connection information, with

[Z]i,j ∼ Bernoulli(p) (2)

where p is a heuristically selected probability. Hence, DropConnect is a general-
ization of Dropout to the full connection structure of a layer [14].

Training of a DropConnect layer begins by selecting an example v, and draw-
ing a mask matrix Z from a Bernoulli(p) distribution to mask out elements of
both the weight matrix and the biases in the DropConnect layer. The parameters
throughout the model can be updated via stochastic gradient descent (SGD), or
some modern variant of it, by backpropagating gradients of the postulated loss
function with respect to the parameters. To update the weight matrix W in a
DropConnect layer, the mask is applied to the gradient to update only those ele-
ments that were active in the forward pass. Additionally, when passing gradients
down, the masked weight matrix Z ◦W is used.

2.2 BBVI

In general, Bayesian inference for a statistical model can be performed either
exactly, by means of Markov Chain Monte Carlo (MCMC), or via approximate

4 Harris Partaourides and Sotirios P. Chatzis

techniques. Variational inference is the most widely used approximate technique;
it approximates the posterior with a simpler distribution, and fits that distribu-
tion so as to have minimum Kullback-Leibler (KL) divergence from the exact
posterior [8]. This way, variational inference effectively converts the problem of
approximating the posterior into an optimization problem.

One of the significant drawbacks of traditional variational inference consists
in the fact that its objective entails posterior expectations which are tractable
only in the case of conjugate postulated models. Hence, recent innovations in
variational inference have attempted to allow for rendering it feasible even in
cases of more complex, non-conjugate model formulations. Indeed, recently pro-
posed solutions to this problem consist in using stochastic optimization, by form-
ing noisy gradients with Monte Carlo (MC) approximation. In this context, a
number of different techniques have been proposed so as to successfully reduce
the unacceptably high variance of conventional MC estimators. BBVI [12] is one
of these recently proposed alternatives, amenable to non-conjugate probabilistic
models that entail both discrete and continuous latent variables.

Let us consider a probabilistic model p(x, z) with observations x and latent
variables z, as well as a sought variational family q(z;φ). BBVI optimizes an
evidence lower bound (ELBO), with expression

log p(x) ≥ L(φ) = Eq(z;φ)[log p(x, z)− log q(z;φ)] (3)

This is performed by relying on the “log-derivative trick” [7,15] to obtain MC
estimates of the gradient. Specifically, by application of the identities

∇φq(z;φ) = q(z;φ)∇φlog q(z;φ) (4)

Eq(z;φ)[∇φlog q(z;φ)] = 0 (5)

the gradient of the ELBO (3) reads

∇φL(φ) = Eq(z;φ)[f(z)] (6)

where
f(z) = ∇φlog q(z;φ) [log p(x, z)− log q(z;φ)] (7)

The so-obtained MC estimator, based on computing the posterior expecta-
tions Eq(z;φ)[·] via sampling from q(z;φ), only requires evaluating the log-joint
distribution log p(x, z), the log-variational distribution log q(z;φ), and the score
function ∇φlog q(z;φ), which is easy for a large class of models. However, the
resulting estimator may have high variance, especially if the variational approxi-
mation q(z;φ) is a poor fit to the actual posterior. In order to reduce the variance
of the estimator, one common strategy in BBVI consists in the use of control
variates.

A control variate is a random variable that is included in the estimator,
preserving its expectation but reducing its variance. The most usual choice for
control variates, which we adopt in this work, is the so-called weighted score
function: Under this selection, the ELBO gradient becomes

∇φL(φ) = Eq(z;φ)[f(z)−$h(z)] (8)

Deep Net Regularization via Bayesian Inference of Synaptic Connectivity 5

where the score function reads

h(z) = ∇φlog q(z;φ) (9)

while the weights $ yield the (optimized) expression [12]

$ =
Cov (f(z), h(z))

Var (h(z))
(10)

On this basis, derivation of the sought variational posteriors is performed by
utilizing the gradient expression (8) in the context of popular, off-the-shelf op-
timization algorithms, e.g. AdaM [9] and Adagrad [4].

3 Proposed Approach

The output expression of a DropConnect++ layer is fundamentally similar to
conventional DropConnect, and is given by (1). However, DropConnect++ in-
troduces an additional hierarchical set of assumptions regarding the matrix of
binary (mask) variables Z = [zij]i,j , which indicate whether a synaptic connec-
tion is inferred to be on or off.

Specifically, as usual in hierarchical graphical models, we assume that the
random matrix Z is drawn from an appropriate prior; we postulate

p(Z|Π) =
∏
i,j

p(zij |πij) =
∏
i,j

Bernoulli(zij |πij) (11)

Subsequently, to facilitate further regularization for DropConnect++ layers un-
der a Bayesian inferential perspective, the prior parameters πij , p(zij = 1) are
imposed their own (hyper-)prior. Specifically, we elect to impose a Beta hyper-
prior, yielding

p(πij |α, β) = Beta(πij |α, β), ∀i, j (12)

Under this definition, to train a postulated DNN incorporating DropConnect++
layers, we need to resort to some sort of Bayesian inference technique. In this
paper, we resort to BBVI, as we explain next.

3.1 Training DNNs with DropConnect++ layers

Let us consider a DNN the observed training data of which constitute the set
D = {dn}Nn=1. In case of a generative modeling scheme, each example dn is
a single observation, say xn, from the distribution we wish to model. On the
other hand, in case of a discriminative modeling task, each example dn is an
input/output pair, for instance dn = (xn,yn). In both cases, conventional DNN
training consists in optimizing a negative loss function, measuring the fit of the
model to the training dataset D. Such measures can be equivalently expressed
in terms of a log-likelihood function log p(D); under this regard, DNN training
effectively boils down to maximum-likelihood estimation [3,6].

6 Harris Partaourides and Sotirios P. Chatzis

The deviation of a DNN comprising DropConnect++ layers from this simple
training scheme stems from obtaining appropriate posterior distributions over
the latent variables of DropConnect++, namely the binary indicator matrices of
synaptic connectivity, Z, as well as the associated parameters with hyper-priors
imposed over them, namely the matrices of (prior) parameters Π. To this end,
DropConnect++ postulates separate posteriors over each entry of the random
matrices Z, that correspond to each individual synapse, (i, j):

q(Z) =
∏
i,j

q(zij |π̃ij), with : q(zij |π̃ij) = Bernoulli(zij |π̃ij) (13)

Further, we consider that the matrices of prior parameters, Π, yield a factorized
(hyper-)posterior with Beta-distributed factors of the form

q(πij) = Beta(πij |α̃ij , β̃ij) (14)

Our construction entails a conditional log-likelihood term, log p(D|Z). This
is similar to a conventional DNN, with the weight matrices W at each layer mul-
tiplied with the corresponding latent indicator (mask) matrices, Z (in analogy to
DropConnect). The corresponding posterior expectation term, Eq(Z)[log p(D|Z)],
constitutes part of the ELBO expression of our model. Unfortunately, this term
is analytically intractable due to the entailed nonlinear dependencies on the
indicator matrix Z, which stem from the nonlinear activation function a(·).
Following the previous discussion, we ameliorate this issue by resorting to an ef-
ficient approximation obtained by drawing MC samples. The so-obtained ELBO
functional expression eventually becomes:

L(D) ≈−
∑
i,j

KL
[
q(zij |π̃ij)||p(zij |πij)

]
−
∑
i,j

KL
[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]
+

1

L

L,N∑
l,n=1

log p(dn|Z(l))

(15)

where L is the number of samples, Z(l) = [z
(l)
ij]i,j and z

(l)
ij ∼ Bernoulli(zij |π̃ij).

This concludes the formulation of the proposed inferential setup for a DNN
that contains DropConnect++ layers. On this basis, inference is performed
by resorting to BBVI, which proceeds as described previously. Denoting π̃ =
(π̃ij)i,j , α̃ = (α̃ij)i,j , β̃ = (β̃ij)i,j , the used ELBO gradient reads

∇π̃,α̃,β̃,WL(D) ≈ 1

L

L,N∑
l,n=1

∇W log p(dn|Z(l))−
∑
i,j

∇π̃,α̃,β̃KL
[
q(zij |π̃ij)||p(zij |πij)

]
−
∑
i,j

∇α̃,β̃KL
[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]
−$

∑
i,j

∇π̃,α̃,β̃[log q(zij |π̃ij) + q(πij |α̃ij , β̃ij)]

(16)

Deep Net Regularization via Bayesian Inference of Synaptic Connectivity 7

where $ is defined in (10). As one can note, we do not perform Bayesian infer-
ence for the synaptic weight parameters W . Instead, we obtain point-estimates,
similar to conventional DropConnect.

3.2 Feedforward computation in DNNs with DropConnect++
layers

Computation of the output of a trained DNN with DropConnect++ layers, given
some network input x∗, requires that we come up with an appropriate solution
to the problem of computing the posterior expectation of the DropConnect++
layers output, say r∗.

Let us consider a DropConnect++ layer with input v∗ (corresponding to a
DNN input observation x∗); we have

r∗ = Eq(Z)[a((Z ◦W)v∗)] (17)

This computation essentially consists in marginalizing out the layer synaptic
connectivity structure, by appropriately utilizing the variational posterior dis-
tribution q(Z), learned by means of BBVI, as discussed in the previous Section.
Unfortunately, this posterior expectation cannot be computed analytically, due
to the nonlinear activation function a(·).

This problem can be solved by approximating (17) via simple MC sampling:

r∗ ≈
1

L

L∑
l=1

a((Z(l) ◦W)v∗) (18)

where the Z(l) are drawn from q(Z). However, an issue such an approach suffers

from is the need to retain in memory large sample matrices {Z(l)}Ll=1, that may
comprise millions of entries, in cases of large-scale DNNs. To completely allevi-
ate such computational efficiency issues, in this work we opt for an alternative
approximation that reads

r∗ ≈ a((Π̃ ◦W)v∗) (19)

where the matrix Π̃ = [π̃ij]i,j is obtained from the model training algorithm,
described previously. Note that such an approximation is similar to the solution
adopted by Dropout [13], which undoubtedly constitutes the most popular DNN
regularization technique to date. We shall examine how this solution compares
to MC sampling in the experimental section of this work.

4 Experimental Evaluation

To empirically evaluate the performance of our approach, we consider a number
of supervised learning experiments, using the CIFAR-10, CIFAR-100, SVHN,
and NORB benchmarks. In all our experiments, the used datasets are normalized

8 Harris Partaourides and Sotirios P. Chatzis

Table 1: Predictive accuracy (%) of the evaluated methods.
Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 74.47 41.96 90.53 90.55

Dropout 75.70 46.65 92.14 92.07

DropConnect 76.06 46.12 91.41 91.88

DropConnect++ 76.54 47.01 91.99 93.75

Table 2: Computational complexity per iteration at training time (L = 1).
#Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 9s 10s 15s 5s

Dropout 9s 10s 15s 5s

DropConnect 9s 10s 15s 5s

DropConnect++ 10s 13s 19s 6s

with local zero mean and unit variance; no other pre-processing is implemented in
this work1. To obtain some comparative results, apart from our method we also
evaluate in our experiments DNNs with similar architecture but: (i) application
of no regularization technique; (ii) regularized via Dropout; and (iii) regularized
via DropConnect.

In all cases, we use Adagrad with minibatch size equal to 128. Adagrad’s
global stepsize is chosen from the set {0.005, 0.01, 0.05}, based on the network
performance on the training set in the first few iterations2. The units of all the
postulated DNNs comprise ReLU nonlinearities [11]. Initialization of the network
parameters is performed via Glorot-style uniform initialization [6]. To account
for the effects of random initialization on the observed performances, we repeat
our experiments 50 times; we report the resulting mean accuracies, and run the
Student’s-t statistical significance test to examine the statistical significance of
the reported performance differences.

Prediction generation using our method is performed by employing the effi-
cient approximation (19). The alternative approach of relying on MC sampling
to perform feedforward computation [Eq. (18)] is evaluated in Section 4.2. In
all cases, we set the prior hyperparameters of DropConnect++ to α = β = 1;
this is a convenient selection which reflects that we have no preferred values for
the priors πij . The Dropout and DropConnect rates are selected on the grounds
of performance maximization, following the selection procedures reported in the
related literature. Our source codes have been developed in Python, using the

1 Hence, our experimental setup is not completely identical to that of related works,
e.g. [14]; these employ more complex pre-processing for some datasets.

2 We have found that Adagrad allows for the best possible network regularization by
drawing just one sample per minibatch; that is, we use L = 1 at training time. This
alleviates the training costs of both DropConnect and DropConnect++. We train
all networks for 100 epochs; we do not apply L2 weight decay.

Deep Net Regularization via Bayesian Inference of Synaptic Connectivity 9

Theano3 [2] and Lasagne4 libraries. We run our experiments on an Intel Xeon
2.5GHz Quad-Core server with 64GB RAM and an NVIDIA Tesla K40 GPU.

CIFAR-10 The CIFAR-10 dataset consists of color images of size 32×32, that
belong to 10 categories (airplanes, automobiles, birds, cats, deers, dogs, frogs,
horses, ships, trucks). We perform our experiments using the available 50,000
training samples and 10,000 test samples. All the evaluated methods comprise a
convolutional architecture with three layers, 32 feature maps in the first layer, 32
feature maps in the second layer, 64 feature maps in the third layer, a 5×5 filter
size, and a max-pooling sublayer with a pool size of 3×3. These three layers are
followed by a dense layer with 64 hidden units, regularized via Dropout, Drop-
Connect, or DropConnect++. The resulting performance statistics (predictive
accuracy) of the evaluated methods are depicted in the first column of Table 1.
As we observe, our approach outperforms all the considered competitors.

CIFAR-100 The CIFAR-100 dataset consists of 50,000 training and 10,000
testing color images of size 32×32, that belong to 100 categories. We retain
this split of the data into a training set and a test set in the context of our
experiments. The trained DNN comprises three convolutional layers of same ar-
chitecture as the ones adopted in the CIFAR-10 experiment, that are followed by
a dense layer comprising 512 hidden units. As we show in Table 1, our approach
outperforms all its competitors, yielding the best predictive performance. Note
also that the DropConnect method, which is closely related to our approach,
yields in this experiment worse results than Dropout.

SVHN The Street View House Numbers (SVHN) dataset consists of 73,257
training and 26,032 test color images of size 32x32; these depict house numbers
collected by Google Street View. We retain this split of the data into a training
set and a test set in the context of our experiments, and adopt exactly the same
DNN architecture as in the CIFAR-100 experiment. As we show in Table 1, our
method improves over the related DropConnect method.

NORB The NORB (small) dataset comprises a collection of stereo images of
3D models that belong to 6 classes (animal, human, plane, truck, car, blank). We
downsample the images from 96×96 to 32×32, and perform training and testing
using the provided dataset split. We train DNNs with architecture similar to the
one adopted in the context of the SVHN and CIFAR-100 datasets. As we show
in Table 1, our method outperforms all the considered competitors.

4.1 Computational complexity

Another significant aspect that affects the efficacy of a regularization technique
is its final computational costs, and how they compare to the competition. To

3 http://deeplearning.net/software/theano/
4 https://github.com/Lasagne/Lasagne.

http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne

10 Harris Partaourides and Sotirios P. Chatzis

Table 3: Variation of the predictive accuracy (%) of the MC-driven approach
(18) with the number of MC samples.

#Samples, L CIFAR-10 CIFAR-100 SVHN NORB

1 74.57 43.28 91.32 90.04

30 75.95 46.33 91.70 90.78

50 76.01 46.33 91.72 91.04

100 76.01 46.54 91.78 91.41

500 76.36 46.94 91.78 91.58

allow for investigating this aspect, in Table 2 we illustrate the time needed to
complete one iteration of the training algorithms of the evaluated networks in our
implementation. As we observe, the training algorithm of our approach imposes
an 11%-30% increase in the computational time per iteration, depending on the
sizes of the network and the dataset. Note though that DNN training is an
offline procedure; hence, a relatively small increase in the required training time
is reasonable, given the observed predictive performance gains.

On the other hand, when it comes to using a trained DNN for prediction gen-
eration (test time), we emphasize that the computational costs of our approach
are exactly the same as in the case of Dropout. This is, indeed, the case due to
our utilization of the approximation (19), which results in similar feedforward
computations for DropConnect++ as in the case of Dropout.

4.2 Further investigation

A first issue that requires deeper investigation concerns the statistical signif-
icance of the observed performance differences. Application of the Student’s-t
test on the obtained sets of performances of each method (after 50 experiment
repetitions from different random starts) has shown that these differences are sta-
tistically significant among all relevant pairs of methods (i.e. DropConnect++
vs. DropConnect, DropConnect++ vs. DropOut, and DropConnect++ vs. no
regularization); only exception is the SVHN dataset, where DropConnect++
and DropOut are shown to be of statistically comparable performance.

Further, in Table 3 we show how the predictive performance of DropCon-
nect++ changes if we perform feedforward computation via MC sampling, as
described in Eq. (18). As we observe, using only one MC sample results in
rather poor performance; this changes fast as we increase the number of sam-
ples. However, it appears that even with a high number of drawn samples, the
MC-driven approach (18) does not yield any performance improvement over the
approximation (19), despite imposing considerable computational overheads.

Further, in Fig. 1(a) we illustrate predictive accuracy convergence; for demon-
stration purposes, we consider the experimental case of the CIFAR-10 bench-
mark. Our exhibition concerns both application of the approximate feedforward
computation rule (19), as well as resorting to MC sampling. We observe a clear
and consistent convergence pattern in both cases.

Deep Net Regularization via Bayesian Inference of Synaptic Connectivity 11

Finally, it is interesting to get a feeling of the values that take the inferred
posterior probabilities, π̃, of synaptic connectivity. In Fig. 1(b), we illustrate the
inferred values of π̃ for all the network synapses, in the case of the CIFAR-10
experiment. As we observe, out of the almost 300K synapses, around 50K take
values less than 0.35, another 50K take values greater than 0.6, while the rest
200K take values approximately in the interval [0.4, 0.6]. This implies that, out
of the total 300K postulated synapses, almost half of them are most likely to be
omitted during inference. Most significantly, this figure depicts that our approach
infers (in a data-driven fashion) which specific synapses are most useful to the
network (thus yielding relatively high values of π̃ij), and which should rather
be omitted. This is in contrast to existing approaches, which merely apply a
homogeneous, random omission/retention rate on each layer.

(a) (b)

Fig. 1: (a) Accuracy convergence. (b) Inferred posterior probabilities, π̃.

5 Conclusions

In this paper, we examined whether there is a feasible way of performing DNN
regularization by marginalizing over network synaptic connectivity in a Bayesian
manner. Specifically, we sought to derive an appropriate posterior distribution
over the network synaptic connectivity, inferred from the data. To this end, we
imposed a sparsity-inducing prior over the network synaptic weights, where the
sparsity is induced by a set of Bernoulli-distributed binary variables. Further,
we imposed appropriate Beta (hyper-)priors over the parameters of the postu-
lated Bernoulli-distributed binary variables. Under this hierarchical Bayesian
construction, we obtained appropriate posteriors over the postulated binary
variables, which indicate which synaptic connections are retained and which or
dropped during inference. This was effected in an efficient and elegant fashion,
by resorting to BBVI. We performed an extensive experimental evaluation, using
several benchmark datasets. In most cases, our approach yielded a statistically
significant performance improvement, for competitive computational costs.

Acknowledgment We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of one Tesla K40 GPU used for this research.

12 Harris Partaourides and Sotirios P. Chatzis

Appendix

KL[q(zij |π̃ij)||p(zij |πij)
]

= π̃ij logπ̃ij + (1− π̃ij)log(1− π̃ij)
− π̃ijEq(πij)[logπij]− (1− π̃ij)Eq(πij)[log(1− πij)]

(20)

KL
[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]
= logΓ (α̃ij + β̃ij)− logΓ (α̃ij)− logΓ (β̃ij)

+(α̃ij − α)Eq(πij)[logπij] + (β̃ij − β)Eq(πij)[log(1− πij)]
(21)

where:
Eq(πij)[logπij] = ψ(α̃ij)− ψ(α̃ij + β̃ij) (22)

Eq(πij)[log(1− πij)] = ψ(β̃ij)− ψ(α̃ij + β̃ij) (23)

Γ (·) is the Gamma function, and ψ(·) is the Digamma function.

References

1. Baldi, P., Sadowski, P.: Understanding dropout. In: Proc. NIPS (2013)
2. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,

Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

3. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising autoencoders as
generative models. In: Proc. NIPS. pp. 899– 907 (2013)

4. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Machine Learning Research 12, 2121– 2159 (2010)

5. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Insights and ap-
plications. In: Deep Learning Workshop, ICML (2015)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proc. AISTATS (2010)

7. Glynn, P.W.: Likelihood ratio gradient estimation for stochastic systems. Commu-
nications of the ACM 33(10), 75–84 (1990)

8. Jaakkola, T., Jordan, M.: Bayesian parameter estimation via variational methods.
Statistics and Computing 10, 25–37 (2000)

9. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: Proc. ICLR
(2015)

10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 512, 436–444 (2015)
11. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines.

In: Proc. ICML (2010)
12. Ranganath, R., Gerrish, S., Blei, D.M.: Black box variational inference. In: Proc.

AISTATS (2014)
13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:

Dropout: A simple way to prevent neural networks from overfitting. J. Machine
Learning Research 15(6), 1929–1958 (June 2014)

14. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using DropConnect. In: Proc. ICML (2013)

15. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8(3-4), 229–256 (1992)

	Lecture Notes in Computer Science

