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Abstract. We consider the problem of learning reject option classifiers.
The goodness of a reject option classifier is quantified using 0−d−1 loss
function wherein a loss d ∈ (0, .5) is assigned for rejection. In this paper,
we propose double ramp loss function which gives a continuous upper
bound for (0 − d − 1) loss. Our approach is based on minimizing regu-
larized risk under the double ramp loss using difference of convex (DC)
programming. We show the effectiveness of our approach through exper-
iments on synthetic and benchmark datasets. Our approach performs
better than the state of the art reject option classification approaches.

1 Introduction

The primary focus of classification problems has been on algorithms that return
a prediction on every example. However, in many real life situations, it may be
prudent to reject an example rather than run the risk of a costly potential mis-
classification. Consider, for instance, a physician who has to return a diagnosis
for a patient based on the observed symptoms and a preliminary examination. If
the symptoms are either ambiguous, or rare enough to be unexplainable without
further investigation, then the physician might choose not to risk misdiagnosing
the patient (which might lead to further complications). He might instead ask
for further medical tests to be performed, or refer the case to an appropriate
specialist. Similarly, a banker, when faced with a loan application from a cus-
tomer, may choose not to decide on the basis of the available information, and
ask for a credit bureau score. While the follow-up actions might vary (asking
for more features to describe the example, or using a different classifier), the
principal response in these cases is to “reject” the example. This paper focuses
on the manner in which this principal response is decided, i.e., which examples
should a classifier reject, and why? From a geometric standpoint, we can view
the classifier as being possessed of a decision surface (which separates points of
different classes) as well as a rejection surface. The size of the rejection region
impacts the proportion of cases that are likely to be rejected by the classifier, as
well as the proportion of predicted cases that are likely to be correctly classified.
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A well-optimized classifier with a reject option is the one which minimizes the
rejection rate as well as the mis-classification rate on the predicted examples.

Let x ∈ R
p is the feature vector and y ∈ {−1,+1} is the class label. Let

D(x, y) be the joint distribution of x and y. A typical reject option classifier is
defined using a bandwidth parameter (ρ) and a separating surface (f(x) = 0).
ρ is the parameter which determines the rejection region. Then a reject option
classifier h(f(x), ρ) is formed as:

h(f(x), ρ) =











1 if f(x) > ρ

0 if |f(x)| ≤ ρ

−1 if f(x) < −ρ

(1)

The reject option classifier can be viewed as two parallel surfaces with the rejec-
tion area in between. The goal is to determine f(x) as well as ρ simultaneously.
The performance of this classifier is evaluated using L0−d−1 [13,9] which is

L0−d−1(f(x), y, ρ) =











1, if yf(x) < −ρ

d, if |f(x)| ≤ ρ

0, otherwise

(2)

In the above loss, d is the cost of rejection. If d = 0, then we will always reject.
When d > .5, then we will never reject (because expected loss of random labeling
is 0.5). Thus, we always take d ∈ (0, .5).

To learn a reject option classifier, the expectation of L0−d−1(., ., .) with re-
spect to D(x, y) (risk) is minimized. Since D(x, y) is fixed but unknown, the
empirical risk minimization principle is used. The risk under L0−d−1 is mini-
mized by generalized Bayes discriminant [9,4], which is as below:

f∗
d (x) =











−1, if P (y = 1|x) < d

0, if d ≤ P (y = 1|x) ≤ 1− d

1, if P (y = 1|x) > 1− d

(3)

h(f(x), ρ) (equation (1)) is shown to be infinite sample consistent with respect
to the generalized Bayes classifier f∗

d (x) described in equation (3) [15].

Loss Function Definition

Generalized Hinge LGH(f(x), y) =











1− 1−d
d

yf(x), if yf(x) < 0

1− yf(x), if 0 ≤ yf(x) < 1

0, otherwise

Double Hinge LDH(f(x), y) = max[−y(1− d)f(x) +H(d),−ydf(x) +H(d), 0]
where H(d) = −d log(d)− (1− d) log(1− d)
Table 1. Convex surrogates for L0−d−1.

Since minimizing the risk under L0−d−1 is computationally cumbersome,
convex surrogates for L0−d−1 have been proposed. Generalized hinge loss LGH
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Fig. 1. LGH and LDH for d = 0.2. (a) For ρ = 0.7, both the losses upper bound the
L0−d−1. For ρ = 2, both the losses fail to upper bound L0−d−1. LGH and LDH both
increase linearly even in the rejection region than being flat.

(see Table 1) is a convex surrogate for L0−d−1 [13,14,3]. It is shown that a
minimizer of risk under LGH is consistent to the generalized Bayes classifier [3].
Double hinge loss LDH (see Table 1) is another convex surrogate for L0−d−1 [7].
Minimizer of the risk under LDH is shown to be strongly universally consistent
to the generalized Bayes classifier [7].

We observe that these convex loss functions have some limitations. For ex-
ample, LGH is a convex upper bound to L0−d−1 provided ρ < 1 − d and LDH

forms an upper bound to L0−d−1 provided ρ ∈ (1−H(d)
1−d

, H(d)−d

d
) (see Fig. 1).

Also, both LGH and LDH increase linearly in the rejection region instead of re-
maining constant. These convex losses can become unbounded for misclassified
examples with the scaling of parameters of f . Moreover, limited experimental
results are shown to validate the practical significance of these losses [13,14,3,7].
A non-convex formulation for learning reject option classifier is proposed in [5].
However, theoretical guarantees for the approach proposed in [5] are not known.
While learning a reject option classifier, one has to deal with the overlapping
class regions as well as the presence of outliers. SVM and other convex loss based
approaches are less robust to label noise and outliers in the data [11]. It is shown
that ramp loss based risk minimization is more robust to noise [6].

Motivated from this, we propose double ramp loss (LDR) which incorporates a
different loss value for rejection. LDR forms a continuous nonconvex upper bound
for L0−d−1 and overcomes many of the issues of convex surrogates of L0−d−1.
To learn a reject option classifier, we minimize the regularized risk under LDR

which becomes an instance of difference of convex (DC) functions. To minimize
such a DC function, we use difference of convex programming approach [1],
which essentially solves a sequence of convex programs. The proposed method
has following advantages over the existing approaches: (1) the proposed loss
function LDR gives a tighter upper bound to the L0−d−1, (2) LDR requires no
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constraint on ρ unlike LGH and LDH, (3) our approach can be easily kernelized
for dealing with nonlinear problems.

The rest of the paper is organized as follows. In Section 2 we define the
double ramp loss function (LDR) and discuss its properties. Then we discussed
the proposed formulation based on risk minimization under LDR. In Section 3
we derive the algorithm for learning reject option classifier based on regularized
risk minimization under (LDR) using DC programming.We present experimental
results in Section 4. We conclude the paper with the discussion in Section 5.

2 Proposed Approach

Our approach for learning classifier with reject option is based on minimizing
regularized risk under LDR (double ramp loss).

2.1 Double Ramp Loss

We define double ramp loss function as a continuous upper bound for L0−d−1.
This loss function is defined as a sum of two ramp loss functions as follows:

LDR(f(x), y, ρ) =
d

µ

[

[

µ− yf(x) + ρ
]

+
−
[

− µ2 − yf(x) + ρ
]

+

]

+
(1− d)

µ

[

[

µ− yf(x)− ρ
]

+
−
[

− µ2 − yf(x)− ρ
]

+

]

(4)
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Fig. 2. LDR and L0−d−1 : ∀µ ≥ 0, ρ ≥ 0, LDR is an upper bound for L0−d−1.

where [a]+ = max(0, a). µ ∈ (0, 1] defines the slope of ramps in the loss
function. d ∈ (0, .5) is the cost of rejection and ρ ≥ 0 is the parameter which
defines the size of the rejection region around the classification boundary f(x) =
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0.4 As in L0−d−1, LDR also considers the region [−ρ, ρ] as rejection region. Fig. 2
shows LDR for d = 0.2, ρ = 2 with different values of µ.

Theorem 1. (1) LDR ≥ L0−d−1, ∀µ > 0, ρ ≥ 0. (2) limµ→0 LDR(f(x), ρ, y) =
L0−d−1(f(x), ρ, y). (3) In the rejection region yf(x) ∈ (ρ − µ2,−ρ + µ), the
loss remains constant, that is LDR(f(x), y, ρ) = d(1+µ). (4) For µ > 0, LDR ≤
(1+µ), ∀ρ ≥ 0, ∀d ≥ 0. (5) When ρ = 0, LDR is same as µ-ramp loss ([12])used
for classification problems without rejection option. (6) LDR is a non-convex
function of (yf(x), ρ).

The proof of Theorem 1 is provided in Appendix A. We see that LDR does not
put any restriction on ρ for it to be an upper bound of L0−d−1. Thus, LDR is a
general ramp loss function which also allows rejection option.

2.2 Risk Formulation Using LDR

Let S = {(xn, yn), n = 1 . . .N} be the training dataset, where xn ∈ R
p, yn ∈

{−1,+1}, ∀n. As discussed, we minimize regularized risk under LDR to find a re-
ject option classifier. In this paper, we use l2 regularization. LetΘ = [wT b ρ]T .
Thus, for f(x) = (wTφ(x) + b), regularized risk under double ramp loss is

R(Θ) =
1

2
||w||2 + C

N
∑

n=1

LDR(yn,w
Tφ(xn) + b)

=
1

2
||w||2 +

C

µ

N
∑

n=1

{

d
[

µ− ynf(xn) + ρ
]

+
− d

[

− µ2 − ynf(xn) + ρ
]

+

+(1− d)
[

µ− ynf(xn)− ρ
]

+
− (1− d)

[

− µ2 − ynf(xn)− ρ
]

+

}

=
1

2
||w||2 +

C

µ

N
∑

n=1

{

d
[

µ− ynf(xn) + ρ
]

+
+ (1 − d)

[

µ− ynf(xn)− ρ
]

+

−d
[

− µ2 − ynf(xn) + ρ
]

+
− (1− d)

[

− µ2 − ynf(xn)− ρ
]

+

}

where C is regularization parameter. While minimizing R(Θ), no non-negativity
condition on ρ is required due to the following lemma.

Lemma 1. At the minimum of R(Θ), ρ must be non-negative.

Prood of the above lemma is provided in Appendix B.

4 While LDR is parametrized by µ and d as well, we omit them for the sake of notational
consistency.
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3 Solution methodology

R(Θ) (equation (5)) is a nonconvex function of Θ. However, R(Θ) can be written
as R(Θ) = R1(Θ)−R2(Θ), where R1(Θ) and R2(Θ) are convex functions of Θ.

R1(Θ) =
1

2
||w||2 +

C

µ

N
∑

n=1

[

d
[

µ− ynf(xn) + ρ
]

+
+ (1− d)

[

µ− ynf(xn)− ρ
]

+

]

R2(Θ) =
C

µ

N
∑

n=1

[

d
[

− µ2 − ynf(xn) + ρ
]

+
+ (1− d)

[

− µ2 − ynf(xn)− ρ
]

+

]

In this case, DC programming guarantees to find a local optima of R(Θ) [1].
In the simplified DC algorithm [1], an upper bound of R(Θ) is found using the
convexity property of R2(Θ) as follows.

R(Θ) ≤ R1(Θ) −R2(Θ
(l))− (Θ −Θ(l))T∇R2(Θ

(l)) =: ub(Θ,Θ(l)) (5)

where Θ(l) is the parameter vector after (l)th iteration, ∇R2(Θ
(l)) is a sub-

gradient ofR2 atΘ
(l).Θ(l+1) is found by minimizing ub(Θ,Θ(l)). Thus,R(Θ(l+1)) ≤

ub(Θ(l+1), Θ(l)) ≤ ub(Θ(l), Θ(l)) = R(Θ(l)). Which means, in every iteration, the
DC program reduces the value of R(Θ).

3.1 Learning Reject Option Classifier Using DC Programming

In this section, we will derive a DC algorithm for minimizing R(Θ). We initialize
with Θ = Θ(0). For any l ≥ 0, we find ub(Θ,Θ(l)) as an upper bound for R(Θ)
(see equation (5)) as follows:

ub(Θ,Θ(l)) = R1(Θ)−R2(Θ
(l))− (Θ −Θ(l))T∇R2(Θ

(l))

Given Θ(l), we find Θ(l+1) by minimizing the upper bound ub(Θ,Θ(l)). Thus,

Θ(l+1) ∈ argmin
Θ

ub(Θ,Θ(l)) = argmin
Θ

R1(Θ)−ΘT∇R2(Θ
(l)) (6)

where ∇R2(Θ
(l)) is the subgradient of R2(Θ) at Θ(l). We choose ∇R2(Θ

(l)) as:

∇R2(Θ
(l)) =

N
∑

n=1

β′(l)
n [−ynφ(xn)

T − yn 1]T +

N
∑

n=1

β′′(l)
n [−ynφ(xn)

T − yn − 1]T

where

{

β
′(l)
n = Cd

µ
I{yn(φ(xn)Tw(l)+b(l))−ρ(l)<−µ2}

β
′′(l)
n = C(1−d)

µ
I{yn(φ(xn)Tw(l)+b(l))+ρ(l)<−µ2}

(7)
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For f(x) = (wTφ(x) + b, we rewrite the upper bound minimization problem
described in equation (6) as follows,

P (l+1) = minΘ R1(Θ)−ΘT∇R2(Θ
(l))

= min
w,b,ρ

1

2
||w||2 +

C

µ

N
∑

n=1

[

d
[

µ− ynf(xn) + ρ
]

+
+ (1− d)

[

µ− ynf(xn)− ρ
]

+

]

+

N
∑

n=1

β′(l)
n [ynf(xn)− ρ] +

N
∑

n=1

β′′(l)
n [ynf(xn) + ρ]

Note that P (l+1) is a convex optimization problem where the optimization vari-
ables are (w, b, ρ). We rewrite P (l+1) as

P (l+1) = min
w,b,ξ′

,ξ′′

,ρ

1

2
||w||2 +

C

µ

N
∑

n=1

[

dξ′n + (1− d)ξ′′n
]

+

N
∑

n=1

β′(l)
n [yn(w

Tφ(xn) + b)− ρ]

+

N
∑

n=1

β′′(l)
n [yn(w

Tφ(xn) + b) + ρ]

s.t. yn(w
Tφ(xn) + b) ≥ ρ+ µ− ξ′n, ξ′n ≥ 0, n = 1 . . .N

yn(w
Tφ(xn) + b) ≥ −ρ+ µ− ξ′′n, ξ′′n ≥ 0 n = 1 . . .N

where ξ′ = [ξ′1 ξ′2 . . . ξ
′
N ]T and ξ′′ = [ξ′′1 ξ′′2 . . . ξ′′N ]T . The dual optimization

problem D(l+1) of P (l+1) is as follows.

D(l+1) = min
γ ′,γ′′

1

2

N
∑

n=1

N
∑

m=1

ynym(γ′
n + γ′′

n)(γ
′
m + γ′′

m)k(xn,xm)− µ

N
∑

n=1

(γ′
n + γ′′

n)

s.t.











−β
′(l)
n ≤ γ′

n ≤ Cd
µ

− β
′(l)
n n = 1 . . .N

−β
′′(l)
n ≤ γ′′

n ≤ C(1−d)
µ

− β
′′(l)
n n = 1 . . .N

∑N

n=1 yn(γ
′
n + γ′′

n) = 0
∑N

n=1(γ
′
n − γ′′

n) = 0

where γ′ = [γ′
1 γ′

2 . . . . . . γ
′
n]

T and γ′′ = [γ′′
1 γ′′

2 . . . . . . γ′′
n]

T are dual variables.
The derivation of dual D(l+1) can be seen in Appendix C. At the optimality of
P (l+1), w can be found as w =

∑N

n=1 yn(γ
′
n + γ′′

n)φ(xn).
Since P (l+1) has quadratic objective and linear constraints, it holds strong

duality with D(l+1). Solving D(l+1) is more useful as it can be easily kernelized
for non-linear problems. Behavior of γ′

n and γ′′
n under different cases is as follows.































yn(w
Tφ(xn) + b)− µ > ρ ⇒ γ′

n = −β
′(l)
n ; γ′′

n = −β
′′(l)
n

yn(w
Tφ(xn) + b)− µ = ρ ⇒ γ′

n ∈
(

− β
′(l)
n , Cd

µ
− β

′(l)
n

)

; γ′′
n = −β

′′(l)
n

yn(w
Tφ(xn) + b)− µ ∈ (−ρ, ρ) ⇒ γ′

n = Cd
µ

− β
′(l)
n ; γ′′

n = −β
′′(l)
n

yn(w
Tφ(xn) + b)− µ = −ρ ⇒ γ′

n = Cd
µ

− β
′(l)
n ; γ′′

n ∈
(

− β
′′(l)
n , C(1−d)

µ
− β

′′(l)
n

)

yn(w
Tφ(xn) + b)− µ < −ρ ⇒ γ′

n = Cd
µ

− β
′(l)
n ; γ′′

n = C(1−d)
µ

− β
′′(l)
n
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3.2 Finding b(l+1) and ρ(l+1)

The dual optimization problem above gives dual variables γ′(l+1) and γ′′(l+1) us-

ing which the normal vector is found asw(l+1) =
∑N

n=1(γ
′(l+1)
n +γ

′′(l+1)
n )ynφ(xn).

To find b(l+1) and ρ(l+1), we consider xn ∈ SV′(l+1) ∪ SV′′(l+1), where

SV′(l+1) = {xn | yn(φ(xn)
Tw(l+1) + b(l+1)) = ρ(l+1) + µ}

SV′′(l+1) = {xn | yn(φ(xn)
Tw(l+1) + b(l+1)) = −ρ(l+1) + µ}

We already saw that

1. If xn ∈ SV′(l+1), then γ
′(l+1)
n ∈

(

− β
′(l)
n , Cd

µ
− β′

n(l)
)

and γ
′′(l+1)
n = −β

′′(l)
n

2. If xn ∈ SV′′(l+1), then γ
′(l+1)
n = Cd

µ
− β

′(l)
n and γ

′′(l+1)
n ∈

(

− β
′′(l)
n , C(1−d)

µ
−

β
′′(l)
n

)

We solve the system of linear equations corresponding to sets SV′(l+1) and
SV′′(l+1) for identifying b(l+1) and ρ(l+1).

3.3 Summary of the Algorithm

We fix d ∈ [0, .5], µ ∈ (0, 1] and C and initialize the parameter vector Θ as

Θ(0). In any iteration (l), we find β
′(l)
n , β

′′(l)
n , n = 1 . . .N (see equation (7))using

Θ(l). We use β
′(l)
n , β

′′(l)
n , n = 1 . . .N and solve D(l+1) to find γ′(l+1),γ′′(l+1).

w(l+1) is found as w(l+1) =
∑N

n=1 yn(γ
′(l+1)
n + γ

′′(l+1)
n )φ(xn). We find b(l+1) and

ρ(l+1) as described in Section 3.2. Thus, we have found Θ(l+1). Using Θ(l+1),

we now find β
′(l+1)
n , β

′′(l+1)
n , n = 1 . . .N . We repeat the above two steps until

the parameter vector Θ changes significantly. More formal description of our
algorithm is provided in Algorithm 1.

3.4 γ′ and γ′′ at the Convergence of Algorithm 1

At the convergence of Algorithm 1, let γ′∗
n , γ′′∗

n , n = 1 . . .N become the values
of the dual variables. The behavior of γ′∗

n and γ′′∗
n is described in Table 2. For

any xn, only one of γ′∗
n and γ′′∗

n can be nonzero. We observe that parameters
w, b and ρ are determined by the points whose margin (yf(x)) is in the range
[ρ−µ2, ρ+µ]∪ [−ρ−µ2,−ρ+µ]. We call these points as support vectors. We also
see that xn for which ynf(xn) ∈ (ρ+ µ,∞)∪ (−ρ+ µ, ρ− µ2)∪ (−∞,−ρ− µ2),
both γ′∗

n , γ′′∗
n = 0. Thus, points which are correctly classified with margin at least

(ρ+µ), points falling close to the decision boundary with margin in the interval
(−ρ+ µ, ρ− µ2) and points misclassified with a high negative margin (less than
−ρ− µ2), are ignored in the final classifier. Thus, our approach not only rejects
points falling in the overlapping region of classes, it also ignores potential outliers.
We illustrate these insights through experiments on a synthetic dataset as shown
in Fig. 3. 400 points are uniformly sampled from the square region [0 1]× [0 1].
We consider the diagonal passing through the origin as the separating surface
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Algorithm 1 Learning Reject Option Classifier by Minimizing R(Θ)

Input : d ∈ [0, .5], µ ∈ (0, 1], C > 0, S
Output : w∗, b∗, ρ∗

Initialize w(0), b(0), ρ(0), l = 0
repeat

Compute β
′(l)
n = Cd

µ
I{yn(φ(xn)T w(l)+b(l))−ρ(l)<−µ2}

β
′′(l)
n = C(1−d)

µ
I{yn(φ(xn)T w(l)+b(l))+ρ(l)<−µ2}

Find γ
′(l+1),γ ′′(l+1) by solving D(l+1) described in equation (8)

Find w(l+1) =
∑N

n=1 yn(γ
′(l+1)
n + γ

′′(l+1)
n )φ(xn)

Find b(l+1) and ρ(l+1) by solving the system of linear equations corresponding to
sets SV

(l+1)
1 and SV

(l+1)
2 , where

SV′(l+1) = {xn | yn(φ(xn)
Tw(l+1) + b

(l+1)) = ρ
(l+1) + µ}

SV′′(l+1) = {xn | yn(φ(xn)
Tw(l+1) + b

(l+1)) = −ρ
(l+1) + µ}

until convergence of Θ(l)
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Fig. 3. Figure on left shows that label noise affects points near the true classification
boundary. Classes are represented using empty circles and triangles. Figure on right
shows reject option classifier learnt using the proposed LDR based approach (C = 100,
µ = 1, d = .2). Filled circles and triangles represent the support vectors.
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Condition γ′∗
n ∈ γ′′∗

n ∈

yn(w
Tφ(xn) + b) ∈ (ρ+ µ,∞) 0 0

yn(w
Tφ(xn) + b) = ρ+ µ (0, Cd

µ
) 0

yn(w
Tφ(xn) + b) ∈ [ρ− µ2, ρ+ µ) Cd

µ
0

yn(w
Tφ(xn) + b) ∈ (−ρ+ µ, ρ− µ2) 0 0

yn(w
Tφ(xn) + b) = −ρ+ µ 0 (0, C(1−d)

µ
)

yn(w
Tφ(xn) + b) ∈ [−ρ− µ2,−ρ+ µ) 0 C(1−d)

µ

yn(w
Tφ(xn) + b) ∈ (−∞,−ρ− µ2) 0 0

Table 2. Behavior of γ′∗ and γ
′′∗

and assign labels {−1,+1} to all the points using it. We changed the labels of
80 points inside the band (width=0.225) around the separating surface. Fig. 3
shows the reject option classifier learnt using the proposed method. We see that
the proposed approach learns the rejection region accurately. We also observe
that all of the support vectors are near the two parallel hyperplanes.

4 Experimental Results
We show the effectiveness of our approach by showing its performance on several
datasets. We also compare our approach with the approach proposed in [7].

4.1 Dataset Description

We report experimental results on 1 synthetic datasets and 2 datasets taken
from UCI ML repository [2].

1. Synthetic Dataset 1 : Let f1 and f2 be two mixture density functions in
R

2 defined as follows:

f1(x) = 0.45U([1, 0]× [1, 1]) + 0.5U([4, 3]× [0, 1]) + 0.05U([10, 0]× [5, 5])

f2(x) = 0.45U([0, 1]× [1, 1]) + 0.5U([9, 10]× [1, 0]) + 0.05U([0, 10]× [5, 5])

where U(A) denotes the uniform density function with support set A. We
sample 150 points independently each from f1 and f2. We label these points
using the hyperplane with w = [1 0]T and b = 0. We choose 10% of these
points uniformly at random and flip their labels.

2. Synthetic Dataset 2 [8] : mk1, k = 1, . . . , 10 were drawn fromN ((1, 0)T , I)
and labeled as class C1. Similarly, mk2, k = 1, . . . , 10 were drawn from
N ((0, 1)T , I) and labeled as class C2. For each class, 100 observations were
drawn from the following mixture distributions:

f(x|Ci) =

10
∑

k=1

1

10
N (mki, I/5), i = 1, 2

3. Ionosphere Dataset [2] : This dataset describes the problem of discrimi-
nating good versus bad radars based on whether they send some useful infor-
mation about the Ionosphere. There are 34 variables and 351 observations.
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4. Parkinsons Disease Dataset [2] : This dataset is used to discriminate
people with Parkinsons disease from the healthy people. There are 22 fea-
tures which are comprised of a range of biomedical voice measurements from
individuals. There are 195 such feature vectors.

4.2 Experimental Setup

In the proposed LDR based approach, for solving the dual D(l) at every iteration,
we have used the kernlab package [10] in R. We thank the authors of LDH based
method [7] for providing the codes for their approach. For nonlinear problems,
we use RBF kernel. In our approach, we set µ = 1. C and σ (width parameter
for RBF kernel) are chosen using 10-fold cross validation.

4.3 Simulation Results

For every dataset, we report results for values of d in the interval [0.05 .5] with
the step size of 0.05. For every value of d, we find the cross validation risk (under
L0−d−1), % accuracy on the non-rejected examples (Acc) and % rejection rate
(RR). The results provided are based on 10 repetitions of 10-fold cross validation
(CV). We show the average values and standard deviation (computed over the
10 repetitions).

We now discuss the experimental results. Fig. 4(a) shows the Synthetic
dataset and the true classification boundary. This dataset has some mislabeled
points creating noise around the classification surface. Fig. 4(b) and (c) show the
classifiers learnt using LDR and LDH based approaches respectively for d = 0.2.
We see that LDR based approach accurately finds the true classification bound-
ary as oppose to LDH based approach. Also, the reject region found by LDR

based approach is covers the most ambiguous region unlike LDH based approach
which rejects almost all the points.
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Fig. 4. (a) Synthetic Dataset and the true classification boundary. Reject option clas-
sifiers learnt using (b) proposed LDR based approach for d = 0.2, (c) LDH based
approach for d = 0.2.
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d LDR (C = 2) LDH (C = 32)

Risk RR Acc on un-
rejected

Risk RR Acc on un-
rejected

0.05 0.068±0.015 90.87±5.79 75.87±7.95 0.05 100 NA
0.1 0.138±0.023 70.35±12.18 79.05±6.87 0.105±0.002 95.53±1.69 77.20±6.06
0.15 0.135±0.003 65.41±5.06 89.66±0.90 0.136 72.77±0.23 90.56±0.66
0.2 0.155±0.006 43.18±4.31 88.56±0.75 0.17 72.67 90.36±1.44
0.25 0.164±0.014 32.13±8.43 87.97±1.42 0.204±0.003 66.5±1.7 91±0.74
0.3 0.148±0.012 13.23±7.52 87.67±0.69 0.197 46.73±0.14 89.37±0.32
0.35 0.134±0.005 4.57±1.80 87.68±0.23 0.21±0.002 43.33±0.65 90.02±0.38
0.4 0.131±0.003 1.51±0.56 87.29±0.30 0.21±0.006 31.17±1.26 87.41±0.55
0.45 0.128±0.002 0.86±0.45 87.45±0.25 0.265±0.008 9.13±1.1 75.58±0.98
0.5 0.136±0.01 0 86.41±0.99 0.297±0.004 0 70.27±0.44

Table 3. Comparison results on Synthetic Dataset 1 (linear classifiers for both the
approaches).

Table 3-6 show the experimental results on all the datasets. We observe the
following:

1. We see that the proposed LDR based method outperforms LDH based ap-
proach in terms of the risk (expectation of L0−d−1). For Synthetic dataset
1, except for d = 0.05 and 0.1, LDR based method has lower CV risk. For
Synthetic dataset 2, both the approaches perform comparable to each other.
For Ionosphere dataset, except for d = 0.2, 0.25 and 0.3, LDR based method
has lower CV risk. For Parkinsons dataset, LDR based method has lower CV
risk except for d = 0.35.

2. We also observe that LDR based method outputs classifiers with significantly
lesser rejection rate for all the datasets and for all values of d.

Thus, for most of the cases, the proposed LDR based approach outputs classifiers
with lesser risk. Moreover, the learnt classifier has always lesser rejection rate
compared to the LDH based approach.

5 Conclusion and Future Work

In this paper, we have proposed a new loss function LDR (double ramp loss) for
learning the reject option classifier. LDR gives tighter upper bound for L0−d−1

compared to convex losses LDH and LGH. Our approach learns the classifier
by minimizing the regularized risk under the double ramp loss function which
becomes an instance of DC optimization problem. Our approach can also learn
nonlinear classifiers by using appropriate kernel function. Experimentally we
have shown that our approach works superior to LDH based approach for learning
reject option classifier.
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d LDR (C = 64, γ = 0.25) LDH (C = 64, γ = 0.25)

Risk RR Acc on un-
rejected

Risk RR Acc on un-
rejected

0.05 0.046±0.006 79.5±1.47 97.56±2.92 0.046±0.004 86.5±0.82 97.26±3.8
0.1 0.096±0.006 75.45±1.12 92.80±2.35 0.1±0.005 76.35±1.13 91.65±2.0
0.15 0.15±0.012 64.3±2.32 86.40±2.35 0.139±0.01 52.3±2.02 87.6±2.4
0.2 0.182±0.01 51.2±1.90 84.79±1.99 0.162±0.007 40.35±1.68 86.75±1.22
0.25 0.193±0.008 30.3±1.01 83.56±1.33 0.18±0.008 31.25±1.65 85.74±1.47
0.3 0.190±0.005 16.4±1.74 83.47±0.75 0.183±0.013 18.35±2.85 84.4±1.2
0.35 0.178±0.006 6.85±1.43 83.49±0.69 0.178±0.008 10.65±1.42 84.21±0.80
0.4 0.171±0.012 2.6±1.26 83.51±1.2 0.177±0.006 5.75±0.68 83.75±0.76
0.45 0.168±0.011 0.65±0.41 83.42±1.06 0.182±0.008 2.95±0.9 82.61±0.87
0.5 0.178±0.014 0 82.2±1.36 0.184±0.009 0 81.65±0.88

Table 4. Comparison Results on Synthetic Dataset 2 (nonlinear classifiers using RBF
kernel for both the approaches).

d LDR (C = 2, γ = 0.125) LDH (C = 16, γ = 0.125)

Risk RR Acc on un-
rejected

Risk RR Acc on un-
rejected

0.05 0.025±0.002 34.84±0.92 98.94±0.31 0.029 52.61±0.73 99.47±0.06
0.1 0.027±0.003 8.81±0.32 97.99±0.33 0.047±0.002 43.44±0.85 99.46±0.17
0.15 0.039±0.003 5.78±0.57 96.81±0.29 0.042±0.003 24.02±1.62 99.3±0.37
0.2 0.044±0.001 3.46±0.51 96.18±0.15 0.04±0.002 17.43±0.59 99.42±0.25
0.25 0.047±0.002 1.76±0.41 95.68±0.23 0.046±0.001 14.47±0.79 98.9±0.16
0.3 0.052±0.003 0.92±0.46 95.08±0.35 0.051±0.003 12.57±0.75 98.56±0.31
0.35 0.051±0.003 0.03±0.09 94.88±0.29 0.054±0.002 9.33±0.59 97.72±0.21
0.4 0.051±0.002 0 94.95±0.24 0.054±0.003 6.72±0.86 97.09±0.35
0.45 0.054±0.002 0 94.64±0.21 0.055±0.003 3.53±0.41 95.97±0.36
0.5 0.054±0.001 0 94.62±0.13 0.055±0.005 0 94.55±0.47

Table 5. Comparison results on Ionosphere dataset (nonlinear classifiers using RBF
kernel for both the approaches).
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A Proof of Theorem 1

LDR(f(x), ρ, y) =
d

µ

[

[

µ− yf(x) + ρ
]

+
−
[

− µ2 − yf(x) + ρ
]

+

]

+
(1− d)

µ

[

[

µ− yf(x)− ρ
]

+
−
[

− µ2 − yf(x)− ρ
]

+

]
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Interval LDR L0−d−1

yf(x) ∈ [ρ+ µ,∞) 0 0

yf(x) ∈ (ρ, ρ+ µ) ∈ (0, d) 0

yf(x) ∈ (ρ− µ2, ρ] ∈ [d, (1 + µ)d) d

yf(x) ∈ [−ρ+ µ, ρ− µ2] (1 + µ)d d

yf(x) ∈ [−ρ,−ρ+ µ) ∈ ((1 + µ)d, (1 + µ)d+ (1− d)] d

yf(x) ∈ (−ρ− µ2,−ρ) ∈ ((1 + µ)d+ (1− d), (1 + µ)) 1

yf(x) ∈ (−∞,−ρ− µ2] 1 + µ 1

Table 7. Proof for Theorem 1.(1).

1. Table 7 shows that LDR ≥ L0−d−1, ∀µ > 0, ρ ≥ 0.

2. We need to show that limµ→0 LDR(f(x), ρ, y) = L0−d−1(f(x), ρ, y). We first
see the values that LDR take for different values of yf(x). Table 8 shows how
LDR changes as a function of yf(x).

Interval LDR

yf(x) ∈ (ρ+ µ,∞) 0

yf(x) ∈ [ρ− µ2, ρ+ µ] d
µ
(µ− yf(x) + ρ)

yf(x) ∈ (−ρ+ µ, ρ− µ2) (1 + µ)d

yf(x) ∈ [−ρ− µ2,−ρ+ µ] (1 + µ)d+ (1−d)
µ

(µ− yf(x)− ρ)

yf(x) ∈ (−∞,−ρ− µ2) 1 + µ

Table 8. LDR in different intervals (Proof for Theorem 1.(iii))

Now we take the limit µ → 0, which is shown in Table 9. We see that
limµ→0 LDR = L0−d−1.

Interval limµ→0 LDR L0−d−1

yf(x) ∈ (ρ,∞) 0 0

yf(x) = ρ d d

yf(x) ∈ (−ρ, ρ) d d

yf(x) = −ρ 1 1

yf(x) ∈ (−∞,−ρ) 1 1

Table 9. limµ→0 LDR in different intervals (Proof for Theorem 1.(iii))

3. In the rejection region yf(x) ∈ (ρ− µ2,−ρ+ µ), the loss remains constant,
that is LDR(f(x), ρ, y) = d(1 + µ). This can be seen in Table 8.

4. For µ > 0, LDR ≤ (1 + µ), ∀ρ ≥ 0, ∀d ≥ 0. This can be seen in Table 8.
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5. When ρ = 0, LDR becomes

LDR(f(x), 0, y) =
d

µ

[

[

µ− yf(x)
]

+
−
[

− µ2 − yf(x)
]

+

]

+
(1− d)

µ

[

[

µ− yf(x)−
]

+

−
[

− µ2 − yf(x)
]

+

]

=
1

µ

[

[

µ− yf(x)
]

+
−
[

− µ2 − yf(x)
]

+

]

which is same as the µ-ramp loss function used for classification problems
without rejection option.

6. We have to show that LDR is non-convex function of (yf(x), ρ). From (iv),
we know that LDR ≤ (1 + µ). That is, LDR is bounded above. We show
non-convexity of LDR by contradiction.
Let LDR be convex function of (yf(x), ρ). Let z = (yf(x), ρ). We also rewrite
LDR(f(x), ρ, y) as LDR(z). We choose two points z1, z2 such that LDR(z1) >
LDR(z2). Thus, from the definition of convexity, we have

LDR(z1) ≤ λLDR(
z1 − (1 − λ)z2

λ
) + (1− λ)LDR(z2) ∀λ ∈ (0, 1)

Hence,
LDR(z1)− (1− λ)LDR(z2)

λ
≤ LDR(

z1 − (1− λ)z2
λ

)

Now, since LDR(z1) > LDR(z2),

LDR(z1)− (1− λ)LDR(z2)

λ
=

LDR(z1)− LDR(z2)

λ
+LDR(z2) → ∞ as λ → 0+

Thus limλ→0+ LDR(
z1−(1−λ)z2

λ
) = ∞. But LDR is upper bounded by (1+µ)d.

This contradicts that LDR is convex.

B Proof of Lemma 1

Let Θ′ = (w′, b′, ρ′) minimizes R(Θ), where ρ′ < 0. Thus −ρ′ > 0. Consider
Θ′′ = (w′, b′,−ρ′) as another point.

R(Θ′)−R(Θ′′) =
C(1 − 2d)

µ

N
∑

n=1

{

−
[

µ− ynf(xn) + ρ′
]

+
+
[

− µ2 − ynf(xn) + ρ′
]

+

+
[

µ− ynf(xn)− ρ′
]

+
−
[

− µ2 − ynf(xn)− ρ′
]

+

}

= C(1 − 2d)

N
∑

n=1

{

Lramp(ynf(xn) + ρ′)− Lramp(ynf(xn)− ρ′)
}

where Lramp(t) = 1
µ
([µ − t]+ − [−µ2 − t]+) is a monotonically non-increasing

function of t [12]. Since ρ′ < 0, thus, ynf(xn) + ρ′ < ynf(xn) − ρ′, ∀n. This
implies Lramp(ynf(xn)+ρ′) ≥ Lramp(ynf(xn)−ρ′), ∀n. Also (1−2d) ≥ 0, since
0 ≤ d ≤ 0.5. Thus R(Θ′) − R(Θ′′) ≥ 0, which contradicts that Θ′ minimizes
R(Θ). Thus, at the minimum of R(Θ), ρ must be non-negative.
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C Derivation of Dual Optimization Problem D
(l+1)

P(l+1) : min
w,b,ξ

′

,ξ
′′

,ρ

1

2
||w||2 +

C

µ

N
∑

n=1

[

dξ′n + (1 − d)ξ′′n
]

+
N
∑

n=1

β′(l)
n [yn(w

Tφ(xn) + b)− ρ]

+

N
∑

n=1

β′′(l)
n [yn(w

Tφ(xn) + b) + ρ]

s.t. yn(w
Tφ(xn) + b) ≥ ρ+ µ− ξ′n, ξ′n ≥ 0, n = 1 . . .N

yn(w
Tφ(xn) + b) ≥ −ρ+ µ− ξ′′n, ξ′′n ≥ 0 n = 1 . . .N

The Lagrangian for above problem will be:

L =
1

2
||w||2 +

C

µ

N
∑

n=1

[

dξ′n + (1− d)ξ′′n
]

+

N
∑

n=1

β′(l)
n [yn(w

Tφ(xn) + b)− ρ] +

N
∑

n=1

β′′(l)
n [yn(w

Tφ(xn) + b) + ρ] +

N
∑

n=1

α′
n[ρ+ µ− ξ′n − yn(w

Tφ(xn) + b)]−
N
∑

n=1

η′nξ
′
n

+

N
∑

n=1

α′′
n[−ρ+ µ− ξ′′n − yn(w

Tφ(xn) + b)]−
N
∑

n=1

η′′nξ
′′
n

where α′
n is dual variable corresponding to constraint yn(w

Tφ(xn) + b) ≥ ρ +
µ − ξ′n, α

′′
n is dual variable corresponding to yn(w

Tφ(xn) + b) ≥ −ρ + µ − ξ′n,
η′n is dual variable corresponding to ξ′n ≥ 0, η′′n is dual variable corresponding to
ξ′′n ≥ 0. We take the gradient of Lagrangian with respect to the primal variables.
By equating the gradient to zero, we get the KKT conditions of optimality for
this optimization problem.







































































w =
∑N

n=1 yn[α
′
n + α′′

n − β
′(l)
n − β′′

n(l)]φ(xn)
∑N

n=1 yn[α
′
n + α′′

n − β
′(l)
n − β′′

n(l)]

η′n + α′
n = Cd

µ
n = 1 . . .N

η′′n + α′′
n = C(1−d)

µ
n = 1 . . .N

∑N

n=1[α
′
n − α′′

n − β
′(l)
n + β′′

n(l)] = 0

η′nξ
′
n = 0, η′n ≥ 0 n = 1 . . .N

η′′nξ
′′
n = 0, η′′n ≥ 0 n = 1 . . .N

α′
n[µ− ξ′n − yn(w

Tφ(xn) + b) + ρ] = 0, α′
n ≥ 0 n = 1 . . .N

α′′
n[µ− ξ′′n − yn(w

Tφ(xn) + b)− ρ] = 0, α′′
n ≥ 0 n = 1 . . .N

We make the dual optimization problem simpler by changing the variables in
following way:

{

γ′
n = α′

n − β
′(l)
n , n = 1 . . .N

γ′′
n = α′′

n − β
′′(l)
n , n = 1 . . .N
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By changing these variables, the new KKT conditions in terms of γ′ and γ′′ are







































































w =
∑N

n=1 yn(γ
′
n + γ′′

n)φ(xn)
∑N

n=1 yn(γ
′
n + γ′′

n) = 0

η′n + γ′
n + β

′(l)
n = Cd

µ
n = 1 . . .N

η′′n + γ′′
n + β

′′(l)
n = C(1−d)

µ
n = 1 . . .N

∑N

n=1(γ
′
n − γ′′

n) = 0

η′nξ
′
n = 0, η′n ≥ 0 n = 1 . . .N

η′′nξ
′′
n = 0, η′′n ≥ 0 n = 1 . . .N

(γ′
n + β

′(l)
n )[µ− ξ′n − yn(w

Tφ(xn) + b) + ρ] = 0, γ′
n + β

′(l)
n ≥ 0 n = 1 . . .N

(γ′′
n + β

′′(l)
n )[µ− ξ′′n − yn(w

Tφ(xn) + b) + ρ] = 0, γ′′
n + β

′′(l)
n ≥ 0 n = 1 . . .N

Using the KKT conditions in the Langarangian, we replace the primal variables
(w, b, ρ, ξ′, ξ′′) in terms of the dual variables (γ ′,γ′′). The dual optimization
problem D(l+1) will become:

D(l+1) = min
γ′,γ′′

1

2

N
∑

n=1

N
∑

m=1

ynym(γ′
n + γ′′

n)(γ
′
m + γ′′

m)k(xn,xm)− µ

N
∑

n=1

(γ′
n + γ′′

n)

s.t.























−β
′(l)
n ≤ γ′

n ≤ Cd
µ

− β
′(l)
n n = 1 . . . N

−β
′′(l)
n ≤ γ′′

n ≤ C(1−d)
µ

− β
′′(l)
n n = 1 . . . N

∑N

n=1 yn(γ
′
n + γ′′

n) = 0
∑N

n=1(γ
′
n − γ′′

n) = 0

where γ′ = [γ′
1 γ′

2 . . . . . . γ
′
n]

T and γ′′ = [γ′′
1 γ′′

2 . . . . . . γ′′
n]

T .
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