
 

Instructions for use

Title A Deep Neural Network for Pairwise Classification : Enabling Feature Conjunctions and Ensuring Symmetry

Author(s) Atarashi, Kyohei; Oyama, Satoshi; Kurihara, Masahito; Furudo, Kazune

Citation

Lecture Notes in Computer Science, 10234, 83-95
https://doi.org/10.1007/978-3-319-57454-7_7
Advances in Knowledge Discovery and Data Mining :
21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part I, ISBN: 978-
3319574530

Issue Date 2017

Doc URL http://hdl.handle.net/2115/65169

Rights The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-57454-7_7

Type article (author version)

File Information pairwisednn_pakdd (2).pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


A Deep Neural Network for Pairwise
Classification: Enabling Feature Conjunctions

and Ensuring Symmetry

Kyohei Atarashi1, Satoshi Oyama1, Masahito Kurihara1, and Kazune Furudo2

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Hokkaido, Japan

{atarashi k, oyama, kurihara}@complex.ist.hokudai.ac.jp,
2 NEC Solution Innovators, Ltd., Tokyo, Japan

f.kazune08031991@gmail.com

Abstract. Pairwise classification is a computational problem to deter-
mine whether a given ordered pair of objects satisfies a binary relation
R which is specified implicitly by a set of training data used for ’learn-
ing’ R. It is an important component for entity resolution, network link
prediction, protein-protein interaction prediction, and so on. Although
deep neural networks (DNNs) outperform other methods in many tasks
and have thus attracted the attention of machine learning researchers,
there have been few studies of applying a DNN to pairwise classification.
Important properties of pairwise classification include using feature con-
junctions across examples. Also, it is known that making the classifier
invariant to the data order is an important property in applications with
a symmetric relation R, including those applications mentioned above.
We first show that a simple DNN with fully connected layers cannot sat-
isfy these properties and then present a pairwise DNN satisfying these
properties. As an example of pairwise classification, we use the author
matching problem, which is the problem of determining whether two
author names in different bibliographic data sources refer to the same
person. We show that the method using our model outperforms methods
using a support vector machine and simple DNNs.

1 Introduction

Pairwise classification is a computational problem to determine whether a given
ordered pair of objects satisfies a binary relation R which is specified implicitly
by a set of training data used for ’learning’ R. It is an important component
for entity resolution, network link prediction, and so on. The method commonly
used for identifying two objects includes defining a manually tuned similarity.
However, defining suitable similarities is difficult. Therefore, machine learning
techniques for learning from labeled data have been used.

When typical machine learning methods are applied to pairwise classifica-
tion using the “Learn a classifier directly” approach, the design of the feature
vector representing the pair of two objects is essential and important. Bilenko



2 K. Atarashi et al.

and Moony [3] represented a pair of objects by using a feature vector based on
common features between the two objects and a support vector machine (SVM).
This method is effective for a problem like citation matching, where two objects
belonging to the same class have many common features. However, if the two
objects have few common features, this method is not effective. An example
problem is the “author matching problem” in which the task is to determine
whether two author names in different bibliographic data sources refer to the
same person. Oyama and Manning [14] proposed applying a kernel method to
this problem that uses the conjunctions of not only the common features but
also those of different features across the two objects and using an SVM. Their
method outperforms Bilenko and Moony’s method in the author matching prob-
lem.

Deep neural networks (DNNs) have begun attracting attention in the field of
machine learning as they have better performance than existing methods (e.g.,
SVM) in image classification [13], speech recognition [10], and many other tasks.
While there have been many studies of applying a DNN to datum-wise classifi-
cation, there have been few studies of applying a DNN to pairwise classification.
Tran, Huynh, and Do [17] used a DNN as a classifier for the author matching
problem. Since they represented feature vectors representing pairs of objects by
concatenating fixed similarities and distance metrics, their approach does not
take advantage of a DNN’s ability to obtain feature representations automati-
cally. A method using a DNN should be able to outperform existing methods
even in pairwise classification by using feature vectors that enable a DNN to
effectively learn feature representations.

A straightforward way of creating a feature vector representing a pair of
objects is to concatenate the feature vectors of the two objects. The resulting
vector can be used as input to a simple DNN with fully connected layers. The
fully connected layers should enable even a simple DNN to use feature conjunc-
tions across the two objects. In many applications such as entity resolution, the
classifier results for training and prediction should be invariant with respect to
the order of the pair values (the symmetry property).

In this paper, we first show that determining whether two objects satisfy re-
lation R while satisfying symmetry is difficult for a simple DNN with fully con-
nected layers. Next, we present a DNN-based model, i.e., a pairwise deep neural
network (pairwise DNN), that ensures symmetry and enables feature conjunc-
tions across examples. Then we present experimental results demonstrating that
the method using our model outperforms other methods in the author matching
problem.

2 Pairwise Classification

2.1 Problem Formulation

Pairwise classification is the computational problem to determine whether a
pair of objects, xα and xβ , satisfies relation R. Therefore, our goal is to obtain



A Deep Neural Network for Pairwise Classification 3

classifier f :

f(xα,xβ) =

{
1 (if xαand xβsatisfy R)
−1 (otherwise).

It is difficult to obtain accurate classifiers by using manually tuned similarities
and thresholds. Therefore, machine learning methods in which learning is done
from labeled data have been used. Many methods sample pair objects from the
data, and then a person labels them in accordance with whether they satisfy
relation R or not. Then these training examples are fed into classifier learning
algorithms.

2.2 Symmetry

In many applications such as entity resolution, the classifier output should be
invariant with respect to the order of the pair. Therefore, the classifier should
satisfy symmetry; that is, f(xα,xβ) = f(xβ ,xα). Furthermore, the learning
result should be invariant with respect to the order of the training data pairs.

3 Related Work

Machine learning approaches for determining the identity of two objects can be
roughly grouped into three categories:

1. Learning a classifier directly.
2. Learning a similarity between two objects and deciding they are the same if

the similarity exceeds a threshold.
3. Learning a distance between two objects and deciding they are the same if

the distance is less than a threshold.

Then, toward lower approach, problem is more general and difficult. If the dis-
tance is obtained, the similarity can be obtained by reversing its sign. To learn
the distance, it is necessary to satisfy the distance axiom. In many applications,
there are cases in which only a classifier or a similarity suffice. In such cases,
learning a classifier or a similarity is suitable according to Vapnik’s principle [18]:
“When solving a given problem, try to avoid solving a more general problem as
an intermediate step”. Furthermore, when learning a classifier directly, it is not
necessary to set a threshold manually.

Bilenko and Moony [3] proposed a method for learning a classifier directly
for the citation matching problem, in which a determination is made as to
whether two citations in different bibliographic data sources refer to the same
paper. They represent the original object as a bag-of-words feature vector xα =
(xα1 , x

α
2 , . . . , x

α
n)T and a pair object consisting of xα = (xα1 , x

α
2 , . . . , x

α
n)T and

xβ = (xβ1 , x
β
2 , . . . , x

β
n)T as feature vector xHadamard:

x̂Hadamard = (xα1x
β
1 , x

α
2x

β
2 , . . . , x

α
nx

β
n)T. (1)



4 K. Atarashi et al.

A. Gupta, V. Harinarayan, D. Quass: Aggregate-Query Processing in Data Warehousing Environments. VLDB 1995: 358-369

A. Gupta, I. S. Mumick, V. S. Subrahmanian: Maintaining Views Incrementally. SIGMOD Conference 1993: 157-166 

A. Gupta, M. Tambe: Suitability of Message Passing Computers for Implementing Production Systems. AAAI 1998: 687-692

Fig. 1. Matching authors

This feature vector is a Hadamard product of xα and xβ . They labeled it y and
used an SVM. The classifier satisfies the symmetry because the feature vectors
representing the pair objects satisfy symmetry.

Bilenko and Mooney’s method is effective for a problem like citation match-
ing, in which two objects from the same class have many common features, but
it is not effective if the two objects from the same class have few common fea-
tures because it cannot distinguish between positive pairs and negative pairs.
An example of this is the author matching problem, in which a determination
is made as to whether two author names in different bibliographic data sources
refer to the same person. In the illustrative example in Figure 1, where A. Gupta
is the abbreviated form of Ashish Gupta and Anoop Gupta, the first two records
have no common words even though A. Gupta is the same person in both cases.
One approach to such problems includes using not only common features but
also conjunctions of different features across examples. Oyama and Manning [14]
proposed using x̂Cartesian,

x̂Cartesian = (xα1x
β
1 , . . . , x

α
1x

β
n, x

α
2x

β
1 , . . . , x

α
2x

β
n, . . . , x

α
nx

β
1 , . . . , x

α
nx

β
n)T. (2)

as a feature vector representing a pair of objects. This is the Cartesian product
between xα and xβ . However, the dimension of this feature vector is n2, so doing
this straightforwardly is computationally intensive. They thus represented a pair
object by using feature vector x̂concat,

x̂concat =

(
xα

xβ

)
= (xα1 , . . . , x

α
n, x

β
1 , . . . x

β
n)T, (3)

which concatenates original objects, and proposed using the following kernel:

K(x̂concat, ẑconcat) = 〈x̂Cartesian, ẑCartesian〉. (4)

Using the SVM with this kernel enables classification on the Cartesian prod-
uct space between two objects without high computational cost. Although this
feature vector is not symmetrical, they showed that including a pair that is
reversed with respect to the concatenation order or symmetrizing the kernel
ensures classifier symmetry. A similar method has been used to predict protein-
protein interactions [1].

As mentioned in the Introduction, DNNs are attracting attention in the field
of machine learning as methods using them have better performance than ex-
isting methods in many tasks. Since DNNs can automatically obtain feature



A Deep Neural Network for Pairwise Classification 5

representations, a method using them should be able to outperform existing
methods even in pairwise classification.

Also as mentioned in the Introduction, while there have been many studies
of applying a DNN to datum-wise classification, there have been few studies of
applying a DNN to pairwise classification, and most of these studies used learning
of similarity or distance metric. Bromley et al. [5] proposed using a Siamese
network for handwritten signature pair determination. In a Siamese network, two
objects are input to a NN individually, and the similarity or distance between
the outputs of the NN is output. Also, there have been several proposed methods
based on a Siamese network for face verification [6] [16] [11]. Tran, Huynh, and
Do [17] applied a DNN as a classifier to the author matching problem. Since they
represented feature vectors representing pairs of objects by concatenating fixed
similarities or distance metrics, this approach cannot utilize a DNN’s ability to
obtain representations automatically. A method using a DNN should be able
to outperform existing methods even in pairwise classification by using feature
vectors to effectively learn feature representations.

4 Problem of DNN in Pairwise Classification

Because only one object can be input to a DNN, it is necessary to design a feature
vector representing a pair of objects. Given that a DNN can automatically obtain
feature representations, the feature vector should self-sufficiently represent the
information of the two objects. Hence, we first present a straightforward design
of a feature vector representing a pair of objects that concatenates the feature
vectors of the two objects, as given by Equation (3). Because the input and
hidden layers of a simple DNN are fully connected, the DNN should provide
feature representation considering feature conjunctions across examples.

Since the feature vector represented by Equation (3) does not satisfy symme-
try, a symmetric DNN should be used when this feature vector is input. Bishop [4]
classified the approaches to making a NN invariant into four approaches

1. The training set is augmented using replicas of the training patterns, trans-
formed in accordance with the desired invariance.

2. A regularization term is added to the error function that penalizes changes
in the model output when the input is transformed.

3. Invariance is built into the pre-processing by extracting features that are
invariant under the required transformations.

4. Invariance is built into the structure of the NN.

In pairwise classification, the NN should be invariant with respect to the order
of the data values in a pair; i.e., it should have symmetry. Approach 1, called
data augmentation, incurs extra computational costs. Approach 2 cannot be
used in pairwise classification because transformation that changes the data
order is not continuous. Approach 3 is problematic because designing suitable
features is difficult. Therefore, we took Approach 4. If the values of the hidden
layer connected with the input layer satisfy symmetry, the NN output satisfies



6 K. Atarashi et al.

Fig. 2. Symmetric DNN

symmetry. Namely, let W be the weight matrix between the input and the
hidden layer. If the following equation holds, the NN output satisfies symmetry.

W

(
xα

xβ

)
= W

(
xβ

xα

)
(5)

Let W 1 be the weight matrix between the partial input layer for the first
object and the entire hidden layer, W 2 be the weight matrix between remain-
ing input layer for the second object and the entire hidden layer. Since W =
(W 1,W 2), Equation (5) can be rewritten: W 1(xα − xβ) = W 2(xα − xβ) .
For arbitrary xα and xβ , this equation holds if W 1 = W 2. However, there is
actually a problem here. If this equation holds, the following equation holds.

Wxconcat = Ŵ (xα + xβ), (6)

where Ŵ is equal to W 1 and W 2. From Equation (6), it follows that the addition
of feature vectors of two objects is input to the DNN. However, the addition of
feature vectors of two objects is not suitable for pairwise classification because
the information about the features of the individual objects is lost. For example,
in the author matching problem, it cannot be determined which words appear
in which papers.

5 Proposed Method

5.1 Pairwise DNN

Our proposed pairwise DNN ensures symmetry without losing information about
the features of individual objects and enables feature conjunctions across exam-
ples. In a pairwise DNN, two objects, xα and xβ , are first mapped individually
to zα = Ŵxα and zβ = Ŵxβ , where Ŵ is a common m × n weight matrix.
Next, a Hadamard layer, which calculates the Hadamard product of zα and zβ ,
is introduced, and ẑ = (zα1 z

β
1 , z

α
2 z

β
2 , . . . , z

α
mzβm)T is calculated. Finally, ẑ is input

to a simple fully connected DNN. Ŵ is not a fixed parameter but a parameter
that is learned when a simple fully connected DNN is trained by stochastic gra-
dient descent (SGD) with backpropagation. Figure 3 provides an overview of a
pairwise DNN.



A Deep Neural Network for Pairwise Classification 7

Fig. 3. Pairwise DNN

5.2 Symmetry

Since a Hadamard product is commutative and Ŵ is common between two
objects, the output of a pairwise DNN satisfies symmetry. Let ŵi be the ith row
vector of Ŵ and wij be the jth element of ŵi. Then ẑi, the ith element of ẑ,
can be written as

ẑi =

n∑
k=1

n∑
l=1

ŵikŵilx
α
kx

β
l . (7)

In the elements of ẑ, only ẑi depends on ŵij . The partial differential of ẑi with
respect to wij is given by

∂ẑi
∂ŵij

=

n∑
k=1

(ŵik(xαj x
β
k + xαkx

β
j )). (8)

Since this satisfies symmetry, the learning result satisfies symmetry. Therefore,
a pairwise DNN satisfies symmetry.

A pairwise DNN can be considered to extract a feature ẑ. However, since this
feature extraction itself is also learned, invariance is built into the structure of
a pairwise DNN. This is Approach 4 described above, making the NN invariant
as classified by Bishop [4].

5.3 Feature Conjunctions across Examples

In Equation (7), which formulates ẑi, x
α
kx

β
l is the feature conjunction of the kth

feature of the first object and lth is the feature of the second object. There-
fore, each element of ẑi can be considered to be the weighted summation of
feature conjunctions across examples. Our approach is the same as Bilenko and
Moony’s with respect to using a vector expressed by a Hadamard product but
different with respect to enabling feature conjunctions across examples by using
the Hadamard product of a mapped vector. Like Oyama and Manning’s ap-
proach, our approach using feature conjunctions should be effective when two
objects belonging to the same class have few common features.



8 K. Atarashi et al.

Even though the mapping of each object is linear, like a general NN, it is
possible to use a non-linear activation function. However, if non-linear activation
function h(·) is used, the ith element of ẑ becomes ẑi = h(zαi )h(zβi ), so a pairwise
DNN does not always enable feature conjunctions across examples. For example,
let h(·) be a sigmoid function. Then ẑi becomes:

ẑi =
1

1 + exp(−zαi ) + exp(−zβi ) + exp(−zαi − zβi )
.

Since zαi =
∑n
j=1 ŵijx

α
j and zβi =

∑n
j=1 ŵijx

β
j , feature conjunctions do not

appear in ẑi.

6 Experiment

6.1 Dataset and Overview

We experimentally evaluated our proposed method using the author matching
problem on the DBLP dataset, which is a bibliography of computer science
papers. We extracted 3,384 papers for which there were 729 unique author names.
We only used papers for which the full name of author was given. Papers with
the same author name were assumed to have been written by the same person.
For the author matching problem, we abbreviated first names into initials and
removed middle names. We used all words appearing in their titles, coauthor
names and publication venues. Each original object was represented by a bag-
of-words feature vector and the dimension of all vectors was 9,264.

There are two methods for creating a training set and a test set: (1) First,
create a pair set from the original objects set. Next, split the pair set into a
training set and a test set. (2) First, split the original objects set into a training
objects set and a test objects set. Next, create a training set and a test set by
making pairs from each objects set. With the method (1), the problem is easy
because the objects constituting the test set are also in the training set. We thus
used the method (2). If the authors specified by the objects of the pair are the
same person, the pair was given a positive label, and if authors are not the same
person, the pair was given a negative label. We only used pairs constituted by
two papers with the same abbreviated author name.

Table 1. Size of dataset

Fold 1 Fold 2

No. of papers 1,692 1,692

No. of pair objects 22,264 22,416

If the training set and test set are made using method (2), the number of
negative pairs is much larger than that of positive pairs. We thus balanced the
two sets by sampling the negative pairs, as described elsewhere [3]. The sizes of



A Deep Neural Network for Pairwise Classification 9

the datasets are shown in Table 1. Because author matching problem is binary
classification problem, we evaluated accuracy, precision, and recall on the test
set. Since which precision or recall is more important depends on situation, we
evaluated the precision-recall curve and the area under the curve (AUC), as
discussed elsewhere [2].

6.2 Experiment 1: Comparison of Proposed Method with Other
Methods

In Experiment 1, we compared five methods:

Pairwise DNN Proposed method. The number of units in each layer was 1000,
and the number of hidden layers behind the Hadamard layer was 3. The
mapping of each objects was linear.

Concat DNN A simple fully connected DNN with feature vectors of pairs of
objects represented by Equation (3). The number of units in each layer was
1000, and the number of hidden layers was 4.

Concat DNN(aug) Same as Concat DNN except that feature vectors with
the concatenation order reversed were included in the training set. Also, at
the time of prediction, feature vectors with the concatenation order reversed
were predicted, and the mean of the two outputs was used as the final output.
In short, data augmentation was performed on the training and test sets.

Addition DNN A simple fully connected DNN with feature vectors of pairs of
objects represented by the addition of two objects. This model is equivalent
to a symmetric DNN, as illustrated in Figure 2. The number of units in each
layer was 1000, and the number of hidden layers was 4.

Pairwise SVM An SVM with the kernel proposed by Oyama and Manning [14].

In the DNN-based methods, the ReLU activation function [9] was used for
the hidden layers, a sigmoid function was used for the output layer, and a loss
function was used for cross entropy. Dropout [15] was used for all hidden layers
and the Hadamard layer. All weight were initialized using Glorot’s method [8],
which uses a uniform distribution with the interval adjusted in accordance with
the number of units.

We used SGD with a mini-batch of size 128 for 100 epochs. The Adam
optimizer [12] was effective for Pairwise DNN. The AdaGrad optimizer [7]
was effective for Concat DNN, Concat DNN(aug), and Addition DNN.
The default learning rate of Adam is 0.001, but we found that a learning rate
several times higher produced better results. We thus set the learning rate to
0.002. We set it to 0.005 for the methods using AdaGrad. For hyper-parameter
C of Pairwise SVM, we tested using 21 values, [2−10, 2−9, . . . , 210], and found
that ten test values produced comparably good results. We thus set C = 20 = 1.

As shown in Table 2, Pairwise DNN had the highest recall, accuracy, and
AUC. Although there is a trade-off relationship between precision and recall, the
precision of Pairwise DNN was kept high. As shown in Figure 4, Pairwise
DNN and Pairwise SVM, both of which enable feature conjunctions across



10 K. Atarashi et al.

Table 2. Precision (P), recall (R), AUC, and accuracy (Acc) for five methods.

Method P R AUC Acc

Pairwise DNN 0.938 0.717 0.924 0.835

Concat DNN 0.881 0.600 0.869 0.760

Concat DNN(aug) 0.908 0.564 0.869 0.754

Addition DNN 0.932 0.413 0.839 0.692

Pairwise SVM 0.968 0.540 0.918 0.761

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

on

Pairwise DNN
Concat DNN
Concat DNN (aug)
Addition DNN
Pairwise SVM

Fig. 4. Precision-recall curves for five methods.

examples, retained high precision at higher recall levels, especially Pairwise
DNN. The results of Concat DNN(aug) and Concat DNN indicated that
data augmentation was ineffective in this experiment.

6.3 Experiment 2: Evaluation of Proposed Method

In Experiment 2, we evaluated the proposed pairwise DNN. First, we changed the
number of hidden layers behind the Hadamard layer, [0, 1, 2, 3, 4, 5, 6]. The results
for Pairwise DNN in Experiment 1 (in which there were three hidden layers)
were used as a baseline. The number of parameters in each model was made
almost the same by adjusting the number of units. The other conditions were the
same as for Experiment 1. As shown in Table 3, as the number of hidden layers
was increased, recall and accuracy tended to increase while precision tended to
decrease.

Next, we compared four models whose mapping of each object was linear
(Linear) and non-linear (Sigmoid, Tanh, and ReLU). The other conditions
(e.g., the number of hidden layers) were the same as for Pairwise DNN in
Experiment 1. As shown in Table 4, the results with Sigmoid and ReLU were
significantly worse than with Linear except for precision. Clearly, a pairwise
DNN does not enable feature conjunctions across examples when mapping each
object with Sigmoid or ReLU. In contrast, the results with Tanh were nearly



A Deep Neural Network for Pairwise Classification 11

Table 3. Precision (P), recall (R), AUC, and accuracy (Acc) for seven models with
different numbers of hidden layers (n = number of hidden layers).

Models P R AUC Acc

Layer 0 0.966 0.599 0.905 0.789

Layer 1 0.971 0.624 0.926 0.803

Layer 2 0.936 0.693 0.921 0.823

Layer 3 0.938 0.717 0.924 0.835

Layer 4 0.922 0.755 0.925 0.845

Layer 5 0.921 0.734 0.905 0.836

Layer 6 0.920 0.757 0.925 0.846

Table 4. Precision (P), recall (R), AUC, and accuracy (Acc) for four models whose
mapping of each object was linear and non-linear.

Models P R AUC Acc

Linear 0.938 0.717 0.924 0.835

Sigmoid 0.913 0.453 0.799 0.705

Tanh 0.949 0.706 0.925 0.834

ReLU 0.964 0.569 0.898 0.774

the same as those with Linear. Clearly, Tanh is almost linear for low absolute
input values, and the weights are initialized using a uniform distribution with a
mean of 0.

7 Conclusion and Future Work

Pairwise classification is an important component in entity resolution, network
link prediction, protein-protein interaction prediction, and so on. We showed
that there is a problem regarding symmetry and object information when a sim-
ple DNN is learned directly as a classifier with feature vectors represented by
concatenating two objects. Our proposed DNN-based model, a pairwise DNN,
satisfies symmetry without losing the information of each object and enables fea-
ture conjunctions across examples. Experimental results for the author matching
problem showed that a pairwise DNN had higher recall, accuracy, and AUC. Ex-
periments on a pairwise DNN clarified several properties.

This work focused on the author matching problem. Future work includes
application of the pairwise DNN to other problems (e.g., face verification) and
extension of the pairwise DNN model to convolutional neural networks, recursive
neural networks, and so on.

References

1. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein–protein interac-
tions. Bioinformatics 21(suppl 1), i38–i46 (2005)



12 K. Atarashi et al.

2. Bilenko, M., Mooney, R.: On evaluation and training-set construction for duplicate
detection. In: Proceedings of the KDD-2003 Workshop on Data Cleaning, Record
Linkage, and Object Consolidation. pp. 7–12 (2003)

3. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proceedings of the 9th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. pp. 39–48 (2003)

4. Bishop, C.: Patern Recognition and Machine Learning, pp. 261–267. Springer
(2006)

5. Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger,
E., Shah, R.: Signature verification using a “siamese” time delay neural network.
In: Advances in Neural Information Processing Systems. pp. 737–744 (1993)

6. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. vol. 1, pp. 539–546 (2005)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12, 2121–2159
(2011)

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics 9, 249–256 (2010)

9. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics. vol. 15, p. 275 (2011)

10. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine 29(6), 82–97 (2012)

11. Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in
the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1875–1882 (2014)

12. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems. pp. 1097–1105 (2012)

14. Oyama, S., Manning, C.D.: Using feature conjunctions across examples for learning
pairwise classifiers. In: Proceedings of the 15th European Conference on Machine
Learning. pp. 322–333 (2004)

15. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014)

16. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1701–1708 (2014)

17. Tran, H.N., Huynh, T., Do, T.: Author name disambiguation by using deep neural
network. In: Asian Conference on Intelligent Information and Database Systems.
pp. 123–132. Springer (2014)

18. Vapnik, V.: The Nature of Statistical Learning Theory, p. 30. Springer (2000)


