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Abstract. We study the exact complexity of the Hamiltonian Cycle and
the q-Colouring problem in disk graphs. We show that the Hamiltonian
Cycle problem can be solved in 2O(

√
n) on n-vertex disk graphs where

the ratio of the largest and smallest disk radius is O(1). We also show
that this is optimal: assuming the Exponential Time Hypothesis, there
is no 2o(

√
n)-time algorithm for Hamiltonian Cycle, even on unit disk

graphs. We give analogous results for graph colouring: under the Expo-
nential Time Hypothesis, for any fixed q, q-Colouring does not admit a
2o(

√
n)-time algorithm, even when restricted to unit disk graphs, and it

is solvable in 2O(
√
n)-time on disk graphs.

1 Introduction

Exact algorithms for NP-hard problems have received considerable attention in
recent years. The goal of research in this area is to develop ‘moderately exponen-
tial’ algorithms and to prove matching lower bounds under complexity-theoretic
assumptions. Most work in this direction concerns fundamental graph problems.

The square-root phenomenon is a well-documented occurrence among algo-
rithms on planar graphs [13]. The term illustrates that many problems that have
2O(n) algorithms on general graphs can be solved in 2O(

√
n) in planar graphs.

Moreover, matching lower bounds can be found based on the Exponential Time
Hypothesis, i.e., for most of these problems, there are no algorithms with running
time 2o(n) resp. 2o(

√
n), unless the Exponential Time Hypothesis fails.

An important question about the square-root phenomenon is whether we
can generalize the results on planar graphs to larger graph classes. One possible
direction is to extend to disk graphs: the vertices are disks in R

2, and two vertices
are adjacent if their disks intersect. Note that disk graphs where the interiors
of the disks are disjoint are exactly the planar graphs [12]. Unit disk graphs are
disk graphs where all radii are one; bounded-ratio disk graphs are disk graphs
where the ratio of the largest and smallest radius is bounded by some constant.
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In this paper, we demonstrate the square-root phenomenon for the Hamil-
tonian Cycle problem in bounded-ratio disk graphs that are given by their geo-
metric representations. Note that in planar graphs, the problem has a 2O(

√
n)-

time algorithm [13], and a matching 2Ω(
√

n) lower bound conditional on the
Exponential Time Hypothesis. The main obstacles for Hamiltonian Cycle in
bounded-ratio disk graphs are the following.

– On the algorithmic side, the 2O(
√

n) running time often follows from the fact
that planar graphs have treewidth O(

√
n) (see e.g. [4,6,15]). In our setting,

bounded-ratio disk graphs are dense and may have unbounded treewidth.
– The lower bounds are based on reductions that planarize a graph by replacing

each crossing of edges with a crossover gadget. Since there may be quadrati-
cally many crossings in a general graph, these reductions blow up an n-vertex
graph to an n2-vertex one, which results in the 2Ω(

√
n) lower bound. In our

setting, the NP -hardness of Hamiltonian Cycle was previously only known
through its NP -hardness on grid graphs [8]. However, this reduction has a
cubic blowup, giving only a 2Ω( 3√n) lower bound and – to our knowledge – it
is an open problem whether this lower bound can be improved to match the
best known (2O(

√
n)) algorithm [6].

The cubic time blowup of the reduction in [8] showing the hardness of
Hamiltonian Cycle in grid graphs follows from two factors: the need to deal
with crossings (introducing one factor n) and the need to replace long edges
with some suitable ‘path structure’ (introducing another factor n). Compared
to grid graphs, creating a reduction for disk graphs we have one major advantage:
even though disk graphs have a structure somewhat similar to planar graphs,
they can be (locally) non-planar and the Hamiltonian cycle in a solution can
cross itself. Even so, our reduction still uses crossover gadgets and has to replace
edges with path structures.

A key technique of our reduction is that in replacing long edges with some
other structure, we need to ensure that all the vertices of this structure can be
visited even if the edge is not used in the Hamiltonian cycle. This can be achieved
with a 2 × n grid (a snake), which can either be traversed in a zigzag manner
(corresponding to using the edge in the cycle) or traversed going back and forth
(corresponding to not using the edge). Our snakes are almost identical to the
ones proposed by Itai et al. [8]. Unfortunately, it does not appear to be possible
to create a crossover gadget for two snakes. To overcome this, we modify the
reduction to ensure that some edges will certainly be included in the solution
(which we can thus replace with a simple path rather than a snake) and build our
reductions such that we only have crossings between simple paths and between
simple paths and snakes (for which we can build crossover gadgets).

To complement our results for Hamiltonian Cycle, we also show that the same
upper and lower bounds hold for q-colouring on disk graphs in the case where q
is a constant. The algorithm follows from the observation that q-colorable graphs
do not have large cliques, and a separator theorem due to Miller et al. [14]; the
lower bound uses an adaptation of a reduction due to Gräf et al. [7].

Some proofs are omitted from this extended abstract.
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2 Algorithm for Hamiltonian Cycle in Bounded-Ratio
Disk Graphs

In this section, we show that the Hamiltonian Cycle problem can be solved in
2O(

√
n) time on bounded-ratio disk graphs. Our algorithm uses techniques due

to Ito and Kadoshita [9], who show that Hamiltonian Cycle can be solved in
2O(α)nO(1) time on unit disk graphs, where α is the area of a bounding square
of the set of disks.

Theorem 1. There exists a 2O(
√

n)-time algorithm for Hamiltonian Cycle on
bounded-ratio disk graphs (where the graphs are given by their geometric repre-
sentation).

Lemma 1. Given a disk graph of ratio β = O(1) with its representation, there
are values γ = γ(β) and Δ = Δ(β) such that if we tessellate the plane using
squares of diameter γ, the vertices in each tile induce a clique and the vertices
in any given square have neighbours in at most Δ distinct other squares.

Proof. Ito and Kadoshita [9] prove this lemma for unit disk graphs, where γ = 1
and Δ = 18. The proof generalizes to bounded-ratio disk graphs. ��

Given a bounded-ratio disk graph G, the lemma gives a clique partition
Q1, . . . , Qr of G, that is, a partition of the vertices of G into cliques, such that
the vertices of each clique have neighbours in at most Δ = O(1) other cliques.

Given a graph G and sets A,B ⊆ V (G), we let E(A,B) denote the set of
edges between a vertex in A and a vertex in B. Using the notion of canonical
Hamiltonian cycle (which we do not need to consider), Ito and Kadoshita [9]
then prove the following lemma:

Lemma 2 (Ito and Kadoshita [9]). Let G have clique partition Q1, . . . , Qr

defined by a tessellation as in Lemma 1. Then for each i �= j, we can remove
all but O(Δ2) edges of E(Qi, Qj) to obtain G′, such that G′ has a Hamiltonian
cycle if and only if G has a Hamiltonian cycle.

If G′ is connected, removing the vertices from each clique of the clique par-
tition in G′ that do not have an edge to a vertex of some other clique in the
partition preserves the Hamiltonicity of G′. We thus obtain the reduced graph
G′′, which contains at most O(Δ3) vertices per tile.

Lemma 3. The reduced graph has treewidth O(
√

n). A tree decomposition of
treewidth O(

√
n) can be found in polynomial time.

Proof. Alber and Fiala [1] show that unit disk graphs have balanced separators
where the disks of the vertices in the separator cover an area of at most O(

√
n).

This also holds for bounded-ratio disk graphs, as we can consider the supergraph
obtained by making the radius of each disk equal to the largest radius. Since in
the reduced graph, each tile contains at most a constant number of points, this
gives a balanced separator of size O(

√
n) (in terms of vertices). These separators
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in turn imply that the reduced graph has treewidth O(
√

n). Using these sep-
arators we can also build a tree decomposition of width O(

√
n) in polynomial

time [16]. Note that the hidden constant depends on β. ��
Theorem 2 (Bodlaender et al. [2], Cygan et al. [5]). Given a graph with
a tree decomposition of width w, there exists an algorithm solving Hamiltonian
Cycle in 2O(w)nO(1) time.

Applying this algorithm to the reduced graph of Lemma3 finishes the proof
of Theorem 1. ��

The techniques described in this section can also be used to solve Longest
Path and Exact Path (which respectively are the problems of finding simple path
of maximum length and finding a path between two specified vertices (u, v) of
given length k):

Theorem 3. There exists a 2O(
√

n)-time algorithm for Longest Path and Exact
Path on bounded-ratio disk graphs.

Proof. Lemma 2 also holds for Longest Path and Exact Path. However, the sub-
sequent step of removing vertices from the cliques no longer works: the informa-
tion of how many vertices can be visited within each clique is essential. Instead,
from each clique of the partition, we remove every vertex that does not have an
edge to a vertex in some other clique of the partition. The removed vertices are
then replaced by a path of the same number of vertices, and every vertex of the
path is made adjacent to every (remaining) vertex of the clique. This preserves
the longest (or exact) path, while only increasing the treewidth by a constant
(compared to the reduced graph from Lemma3). Bodlaender et al. [2] and Cygan
et al. [5] also give algorithms for Longest Path and Exact Path parameterized
by treewidth, similar to those of Theorem2. Thus we obtain 2O(

√
n)-time algo-

rithms for Longest Path and Exact Path, by modifying the graph such that it
has treewidth O(

√
n) and then applying one of these algorithms. ��

3 Lower Bound for Hamiltonian Cycle in Unit Disk
Graphs

In this section, we give a tight lower bound for the running time of a Hamiltonian
cycle algorithm in UDGs, assuming the Exponential Time Hypothesis. We use
a reduction from 3-SAT.

We begin with a well-known reduction from 3-SAT to directed Hamiltonian
cycle [11], and modify it significantly. We introduce the construction briefly; see
Fig. 1 for an example of the construction with the formula (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨
x̄3 ∨ x̄4). Let n be the number of variables, and m be the number of clauses. For
each variable xi we introduce the vertices v1

i , . . . vb
i , where b = 3m + 3. On these

vertices we add a double chain (a directed path through the vertices and back);
this double chain is the row of this variable. The Hamiltonian cycle can traverse
this row left to right or right to left, which will indicate the truth setting of this
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variable. We add edges from the beginning and end of a variable’s row to the
beginning and end of the next variable’s row, and we add a starting and end-
ing point vstart and vend, the arc (vend, vstart), and arcs (vstart, v

1
1), (vstart, v

b
1),

(v1
n, vend), (vb

n, vend). In order to check the clauses, we add a vertex cj for each
clause j = 1, . . . , m. We connect the vertices v3j

i and v3j+1
i to clause j if a literal

of xi is present in the j-th clause. By orienting this arc pair correctly (depending
on the sign of the literal), we make it possible for the Hamiltonian cycle to make
a detour to cj while traversing the variable’s row in the direction (left or right)
corresponding to the sign of the literal. For more details about this construction
we refer the reader to the write-up in [11].

c1 c2

v1
1 vb1

v1
4 vb4

vstart

vend

(a) Original Construction

v1
1 vb1

v1
4

vb4

vstart

vend

c0
1c0

2

c1
1

c2
1

c3
1

c4
1

c5
1

c6
1

c1
2

c2
2

c3
2

c4
2

c5
2

c6
2

(b) Modified Construction

Fig. 1. (a) The construction for (x1∨ x̄2∨x3)∧(x2∨ x̄3∨ x̄4). (b) Modified construction
with a directed cycle for each clause.

Our Construction. We replace the clause vertices by a different gadget: for
each clause ci, we introduce a directed cycle containing seven vertices, c0i , . . . , c

6
i

(see Fig. 1b). If the first literal is the j-th variable, then we add the arcs v3i
j c2i

and c1i v
3i+1
j ; if the literal is negated, we add v3i+1

j c2i and c1i v
3i
j . Similarly, we

add entry and exit arcs for the second and third literals at c3i , c
4
i and c5i , c

6
i .

This modified graph has a directed Hamiltonian cycle if and only if the original
formula is satisfiable.

Next, we reduce to undirected Hamiltonian cycle. (From this point onward,
we use the abbreviation HC for Hamiltonian cycle.) To do this, we start by
replacing each vertex u of the construction with three vertices on a path: u−, u0

and u+. An arc previously going from u to w is represented in the new graph by
the edge u+w−. This reduction from directed to undirected HC is already present
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in Karp’s famous 1972 paper [10]. It is again routine to prove that the graph
resulting from this construction has a HC if and only if the original formula is
satisfiable. We denote the undirected graph that was obtained in this way by G.

We consider a specific drawing of G depicted on Fig. 2 of the resulting graph;
we plan to emulate its properties in a unit disk graph. Intuitively, we would like
to replace the edges of this graph by paths — this can be done by using unit
disks that induce a path, making sure that the new graph has a HC if and only
if the old graph has a HC. We call the set of disks used to represent an edge in
such a way a thread. The difficulty stems from edges that are not used in the
HC: substituting such edges with threads is not allowed. Essentially, we can only
use threads if it is guaranteed by the construction that every HC has to pass
through. If this cannot be guaranteed, we use snakes, which are constructions
that allow the HC to either ‘use’ the edge uv, or to make a detour from one of
the endpoints into the gadget, visiting every vertex inside.

v+
end

v−
end

v+
start

v−
start

− +

−
+

−
+

Fig. 2. A drawing of the undirected version.
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u = u

u v
u

u v
u

u v
u

v

e

e e

Head Tail Indicator

Fig. 3. A snake and a corresponding unit disk realization. Below: simulating a HC that
passes or avoids edge uv.

Lemma 4. The maximum vertex degree in G is four, and vertices of degree four
induce a subgraph in which the maximum degree is two.

Proof. The upper bound on the vertex degree follows from the fact that the
original directed graph has maximum indegree and maximum outdegree three.

For the second statement, notice that vertices of degree four are either in-
or out-vertices inside the row of a variable xi, i.e., they are of the form (vj

i )
+

or (vj
i )

−. Moreover, notice that every vertex of degree four has a neighbour of
degree two – the middle vertex (vj

i )
0. Thus it is sufficient to show that for any

degree four vertex v there is an additional neighbour of degree at most three.
The proof is for the case (vj

i )
+. If j = 1 or j = b = 3m + 3, then (vj

i )
+

has (v2
i )− or (vb−1

i )− as a neighbour, and these are vertices of degree three: in
the directed construction, the corresponding vertices had in- and outdegree two,
because they are vertices of the form vj

i , j ≡ 2 (mod 3). If 1 < j < n, then the
vertex has a neighbour in the clause loop, where the maximum degree is three.

��

Representing Edges with Snakes. The snake is simply a 2×k grid graph for
some k ∈ N, with an extra disk at the head of the snake. In Fig. 3 we illustrate
how a snake replacing an edge uv works. We need to add a disk u′ which has the
same neighbourhood as u - (this can be done by taking an identical or slightly
perturbed copy of the disk of u). At the other end of the snake (at the tail) no
such operation on v is required. Through the snake a HC can simulate passing
the edge uv and it can also make a detour from u that covers all inner vertices
if uv is not in the original HC. We define the indicator edge of the snake to be
the edge connecting the snake to v, indicated by e in Fig. 3. It is easy to verify
that if e is not used then we must detour (corresponding to avoiding uv in the
HC), otherwise we must zigzag (corresponding to using uv).

Crossing Gadgets. Notice that in all the crossings in Fig. 2, exactly one of the
crossing edges is a thick golden edge. These edges share the property that at
least one of their endpoints has degree two, thus any Hamiltonian cycle of the
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w

w

w

w
u u

Fig. 4. Crossing a snake and a thread.

construction must pass through the golden edges. Therefore, we can replace the
golden edges by threads; all other edges can be replaced by snakes. We have a
crossing gadget for thread–snake crossings that we describe below.

The crossing gadget is depicted in Fig. 4. A Hamiltonian cycle passing
through the snake in any way cannot enter the edges spanned by the thread: it
can only enter at vertex u, and continue on one of the outgoing thread edges;
that would render one of the points w and w′ unreachable to the HC.

We note that snakes and threads can be used to represent bending edges,
and a bend introduces only constant overhead; furthermore, a vertex can be the
starting or ending point of up to five internally disjoint snakes or threads; since
the maximum degree of G is four by Lemma 4, this threshold is not reached. We
place snakes so that vertices of degree four have at most one connecting snake
head – this can be done since the vertices of degree four in G span a collection
of vertex disjoint paths and cycles by Lemma 4.

v v

w

u3

u2

u1

w u2

u3

u1

v v

odd num. of pairs

Fig. 5. Construction for degree four vertices.

Modifying the Neighbourhood of Vertices of Degree Four with
a Snake Head. All degree four vertices have a neighbour of degree two (the in-
and outvertices u+ and u− are connected to the degree two vertex u0), thus the
connecting edge is always used by all HCs in G. Let v be a degree four vertex
with neighbours w, u1, u2 and u3; let w be the neighbour of degree 2, and let u1

be the neighbour whose snake head is at v. If the vertex has a connecting snake
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head, then we modify the neighbourhood of v so that v′ is not a duplication of
the disk representing v. Connect v to the tail of the w1v snake, and connect it to
the vw2 snake together with v; the two remaining snake tails are only connected
to v′ (see Fig. 5 for the case when wv and u1v are consecutive edges of v in the
drawing). We can also ensure that the length of the vw2 snake is odd, i.e., the
snake is a 2×2k+1 grid for some k ∈ N, not including v and v′. This is required
to make sure that the HC must pass both v and v′ when the snake is used.

Finally, if wv and u1v are non-consecutive edges around v in the drawing
of G (Fig. 2), then we can change the drawing by introducing a new crossing
between vw and vu2 to make wv and u1v consecutive around v. This requires a
new snake-thread crossing, for which we can use our crossing gadget.

v− v+ w−
w+ w−

v− v+ w+

Fig. 6. Adding an extra thread-snake crossing around degree four vertices might be
necessary. Here we added an extra crossing around the brown vertex w− by changing
a thread incident to w− (in violet). (Color figure online)

The Final Construction. We begin by recreating a drawing of G in the plane
with integer coordinates for all vertices, similar to the one seen in Fig. 2. This
fits in a rectangle of size O(n + m) × O(n + m): there are O(n) variable rows
of length O(m), and they require O(1) vertical space each; together with the n
long edges, we can fit these in O(n+m) horizontal and O(n) vertical space. The
loop edges require O(m) more vertical and horizontal space.

We apply a large constant scaling to make enough room for gadgets. Next, we
define an orientation on the snakes so that degree four vertices have at most one
snake head. Such an orientation exists due to Lemma 4. We also introduce extra
crossings around degree four vertices when needed to ensure that the thread edge
and the snake head are neighbours (see the change around w− in Fig. 6). Finally,
we exchange the golden edges with threads and the snake edges with snakes
(Fig. 7); if our initial constant scaling was large enough, we have enough space to
bend threads and snakes, without introducing intersections between independent
snakes and threads. For disks representing vertices, for every incoming snake we
introduce slightly perturbed disks (according to the original definition of snakes).
These extra disks are indicated by a green number in Fig. 7.

Lemma 5. Given an initial undirected graph G corresponding to a 3-CNF for-
mula of n variables and m clauses, the unit disk graph G′ constructed above is
computable in time polynomial in n + m, has O((m + n)2) vertices and it is
equivalent to G in the sense that G′ has a HC if and only if G has a HC.

Proof. First, we show that if G′ has a HC then G has a HC. (The other implica-
tion is trivial.) Let H ′ be a HC in G′. In each thread we designate an arbitrary



378 S. Kisfaludi-Bak and T.C. van der Zanden

v− v+ w− w+
w

w0v0 v +

2

3

2 2

Fig. 7. The part of the final construction corresponding to Fig. 6. Snake heads are
represented by two red disks, plus multiplicity of the end vertex when needed. Golden
disks correspond to threads. (Color figure online)

inner edge as indicator. Mark an edge in G if the indicator edge of the corre-
sponding thread or snake is contained in H ′. We claim that the set of marked
edges (denoted by H) is a HC in G. Observe that a cut C ⊆ E(G) corresponds
to a cut of the same size in G′: the indicator edges corresponding to the threads
or snakes of the edges in C define a cut of G′. Consequently, for any cut C the
number of H-edges contained in it is an even, positive number, since the corre-
sponding cut C ′ is crossed by H ′ an even, positive number of times. It follows
that H is a spanning connected Eulerian subgraph.

It remains to show that the maximum degree in H is two; since the maximum
degree of G is four, it is sufficient to show that any vertex v of degree four has
degree two in H. If v has no snake heads, then this follows from the fact that
the disk corresponding to v has four independent neighbours in G′.

Let v be a vertex of degree four with a snake head. We denote by S(x, y) the
snake from x to y, with the head at x. We use the notation w, u1, u2, u3 for the
neighbours of v, where deg(w) = 2 and S(v, u1) is the snake whose head is at v
(see Fig. 5). Since there is a thread between w and v, the edge (w, v) is marked.
If H ′ uses S(v, u1), then by the odd length of the snake and our construction,
vv′ is an edge of H ′ — this can be verified by stepping back through S(v, u1)
from the indicator edge at u1. So in this case, H ′ must detour on both S(u2, v

′)
and S(u3, v

′). Otherwise (if S(v, u1) is only a detour in H ′), then one of the
neighbours of v′ in H ′ is inside S(v, u1), so H ′ can use only one of S(u2, v

′) and
S(u3, v

′). Thus, the degree of v in H is two in both cases.
The construction can be created in polynomial time from an initial graph G.

It is placed in a rectangle of size O(n + m) × O(n + m); since every point in
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this rectangle is covered by at most four disks (which can occur if there are two
snake heads at a degree three vertex), it follows that the number of disks used
is O((n + m)2). ��
Theorem 4. There is no 2o(

√
n) algorithm for Hamiltonian cycle in unit disk

graphs, unless the ETH fails.

Proof. Suppose that the initial formula has m̂ clauses and n̂ variables. Without
loss of generality, suppose that m̂ = Θ(n̂) (see the Sparsification Lemma in [3]).
The graph G can be created in polynomial time starting from our formula, and
by Lemma 5 we can create G′ in polynomial time from G. The resulting unit disk
graph G′ has a HC if and only if the original formula is satisfiable. Since the
resulting UDG has O(n̂2) vertices, a 2o(

√
n) = 2o(

√
n̂2) algorithm would mean that

we could decide the satisfiability of the formula in 2o(n̂) time, which contradicts
the Exponential Time Hypothesis. ��

4 Colouring Disk Graphs

To complement our results on Hamiltonian Cycle, we show that the square root
phenomenon also holds for q-colouring on disk graphs when q is a constant.

Theorem 5. (a) For any constant q, there is an algorithm running in time
O(2O(

√
n)) that solves the q-colouring problem on disk graphs. (b) There is no

2o(
√

n) algorithm for q-colouring in unit disk graphs for any constant q ≥ 3,
unless the ETH fails.

5 Conclusions

We have shown that the HC problem and q-colouring both have 2O(
√

n) algo-
rithms in bounded-ratio disk graphs, and matching lower bounds 2Ω(

√
n) if ETH

holds. We have also seen that in case of the colouring problem, the same result
applies in general disk graphs.

Some preliminary work shows that it should be possible to get a 2Ω(
√

n) lower
bound for HC in the more restricted case of grid graphs, although the proof and
the gadgets used will be more complicated.

A major remaining open problem is to find a 2O(
√

n) algorithm for HC in
disk graphs. Finally, we remind the reader that reducing the coefficient of

√
n in

the exponents of these running times is also a worthwhile effort; in the case of
Hamiltonian Cycle on general graphs, a steady wave of improvements yielded
impressive results; can the community achieve something similar for these
square-root type algorithms?
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