1610.09130v1 [cs.CC] 28 Oct 2016

arxXiv

Improved Lower Bounds for
Graph Embedding Problems

Hans L. Bodlaender!2* and Tom C. van der Zanden!

! Department of Computer Science, Utrecht University, Utrecht, The Netherlands
{H.L.Bodlaender,T.C.vanderZanden}Quu.nl
2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands

Abstract. In this paper, we give new, tight subexponential lower bounds
for a number of graph embedding problems. We introduce two related
combinatorial problems, which we call STRING CRAFTING and ORTHOG-
ONAL VECTOR CRAFTING, and show that these cannot be solved in time
20Usl/loglsl) ynless the Exponential Time Hypothesis fails.

These results are used to obtain simplified hardness results for several
graph embedding problems, on more restricted graph classes than previ-
ously known: assuming the Exponential Time Hypothesis, there do not
exist algorithms that run in 2°(*/1°6™) time for SUBGRAPH ISOMORPHISM
on graphs of pathwidth 1, INDUCED SUBGRAPH ISOMORPHISM on graphs
of pathwidth 1, GRAPH MINOR on graphs of pathwidth 1, INDUCED
GRAPH MINOR on graphs of pathwidth 1, INTERVALIZING 5-COLORED
GRAPHS on trees, and finding a tree or path decomposition with width
at most ¢ with a minimum number of bags, for any fixed ¢ > 16.
20(n/1ogn) appears to be the “correct” running time for many pack-
ing and embedding problems on restricted graph classes, and we think
STRING CRAFTING and ORTHOGONAL VECTOR CRAFTING form a useful
framework for establishing lower bounds of this form.

1 Introduction

Many NP-complete graph problems admit faster algorithms when restricted to
planar graphs. In almost all cases, these algorithms have running times that are
exponential in a square root function (e.g. 20(vn) nOWEk) or ZO(ﬂ)nO(l)) and
most of these results are tight, assuming the Exponential Time Hypothesis. This
seemingly universal behaviour has been dubbed the “Square Root Phenomenon”
[1]. The open question [2] of whether the Square Root Phenomenon holds for
SUBGRAPH ISOMORPHISM in planar graphs, has recently been answered in the
negative: assuming the Exponential Time Hypothesis, there is no 2°("/logn)_
time algorithm for SUBGRAPH ISOMORPHISM, even when restricted to (planar)
graphs of pathwidth 2 [3]. The same lower bound holds for INDUCED SUBGRAPH

* The research of this author was partially supported by the NETWORKS project,

funded by the Netherlands Organization for Scientific Research NWO.

and (INDUCED) MINOR and is in fact tight: the problems admit 2°(*/1°8™)_time
algorithms on H-minor free graphs [3].

The lower bounds in [3] follow by reductions from a problem called STRING
3-Groups. We introduce a new problem, STRING CRAFTING, and establish
a 292(sl/logls)_time lower bound under the ETH for this problem by giving a
direct reduction from 3-SATISFIABILITY. Using this result, we show that the
242(Isl/1og IsI)_time lower bounds for (Induced) Subgraph and (Induced) Minor
hold even on graphs of pathwidth 1.

Alongside STRING CRAFTING, we introduce the related ORTHOGONAL VEC-
TOR CRAFTING problem. Using this problem, we show 22(71/1og 17D _time lower
bounds for deciding whether a 5-coloured tree is the subgraph of an interval
graph (for which the same colouring is proper) and for deciding whether a graph
admits a tree (or path) decomposition of width 16 with at most a given number
of bags.

For any fixed k, INTERVALIZING k-COLOURED GRAPHS can be solved in time
20(n/logn) 4], Bodlaender and Nederlof [5] conjecture a lower bound (under
the Exponential Time Hypothesis) of 20(n/logn) time for k > 6; we settle this
conjecture and show that it in fact holds for & > 5, even when restricted to trees.
To complement this result for a fixed number of colours, we also show that there
is no algorithm solving INTERVALIZING COLOURED GRAPHS (with an arbitrary
number of colours) in time 2°(™), even when restricted to trees.

The minimum size path and tree decomposition problems can also be solved
in 20(n/10gn) time on graphs of bounded treewidth. This is known to be tight
under the Exponential Time Hypothesis for £ > 39 [5]. We improve this to
k > 16; our proof is also simpler than that in [5].

Our results show that STRING CRAFTING and ORTHOGONAL VECTOR CRAFT-
ING are a useful framework for establishing lower bounds of the form 247/ logn)
under the Exponential Time Hypothesis. It appears that for many packing and
embedding problems on restricted graph classes, this bound is tight.

2 Preliminaries

Strings. We work with the alphabet {0,1}; i.e., strings are elements of {0, 1}*.
The length of a string s is denoted by |s|. The I character of a string s is
denoted by s(i). Given a string s € {0,1}*, § denotes binary complement of s,
that is, each occurrence of a 0 is replaced by a 1 and vice versa; i.e., |s| = |3],
and for 1 < i < |s], 5(i) = 1 — s(i). E.g., if s = 100, then 5 = 011. With s%,
we denote the string s in reverse order; e.g., if s = 100, then s® = 001. The
concatenation of strings s and t is denoted by s -t. A string s is a palindrome,
when s = s, By 0" (resp. 1") we denote the string that consists of n 0’s (resp.
1’s).

Graphs. Given a graph G, we let V(G) denote its vertex set and E(G) its edge
set. Let Nb(v) denote the open neighbourhood of v, that is, the vertices adjacent
to v, excluding v itself.

Treewidth and Pathwidth. A tree decomposition of a graph G = (V, E) is a tree
T with vertices t1,...,ts with for each vertex ¢; a bag X; C V such that for all
v eV, theset {t; € {t1,...,ts} | v € X;} is non-empty and induces a connected
subtree of T" and for all (u,v) € E there exists a bag X; such that {u,v} € X;.
The width of a tree decomposition is max;{|X;|—1} and the treewidth of a graph
G is the minimum width of a tree decomposition of G. A path decomposition is
a tree decomposition where T is a path, and the pathwidth of a graph G is the
minimum width of a path decomposition of G.
A graph is a caterpillar tree if it is connected and has pathwidth 1.

Subgraphs and Isomorphism. H is a subgraph of Gif V(H) C V(G) and E(H) C
E(G); we say the subgraph is induced if moreover E(H) = E(G)NV(H)xV (H).
We say a graph H is isomorphic to a graph G if there is a bijection f : V(H) —
V(G) so that (u,v) € E(H) < (f(u), f(v)) € E(G).

Contractions, minors. We say a graph G’ is obtained from G by contracting
edge (u,v), if G’ is obtained from G by replacing vertices u, v with a new vertex
w which is made adjacent to all vertices in Nb(u) UNb(v). A graph G’ is a minor
of G if a graph isomorphic to G’ can be obtained from G by contractions and
deleting vertices and/or edges. G’ is an induced minor if we can obtain it by
contractions and deleting vertices (but not edges).

We say G’ is an r-shallow minor if G’ can be obtained as a minor of G and
any subgraph of G that is contracted to form some vertex of G’ has radius at
most r (that is, there is a central vertex within distance at most r from any other
vertex in the subgraph). Finally, G’ is a topological minor if we can subdivide
the edges of G’ to obtain a graph G” that is isomorphic to a subgraph of G (that
is, we may repeatedly take an edge (u,v) and replace it by a new vertex w and
edges (u,w) and (w,v)).

For each of (induced) subgraph, induced (minor), topological minor and shal-
low minor, we define the corresponding decision problem, that is, to decide
whether a pattern graph P is isomorphic to an (induced) subgraph/(induced)
minor /topological minor/shallow minor of a host graph G.

3 String Crafting and Orthogonal Vector Crafting

We now formally introduce the STRING CRAFTING problem:

STRING CRAFTING

Given: String s, and n strings t1,...,t,, with |s| = Y1 [t:].

Question: Is there a permutation IT : {1,...,n} — {1,...,n}, such that
the string ¢/ = trqy -ty - - -t fulfils that for each 4, 1 <i < |s],
s(i) > t1(4).

Le., we permute the collection of strings {¢i,ts,...t,}, then concatenate
these, and should obtain a resulting string !/ (that necessarily has the same
length as s) such that on every position where ¢!/ has a 1, s also has a 1.

Given IT, 1 < i < [s|, we let idx (i) = max{l < j < n: Zizl\tk\ > i} and
let pos (i) =i — E,?fl”(z)*lﬁﬂ.

We also introduce the following variation of STRING CRAFTING, where, in-
stead of requiring that whenever ¢t has a 1, s has a 1 as well, we require that
whenever t has a 1, s has a 0 (i.e. the strings t// and s, viewed as vectors, are

orthogonal).

ORTHOGONAL VECTOR CRAFTING

Given: String s, and n strings t1, ..., t,, with |s|] = Y1, [t;].

Question: Is there a permutation IT : {1,...,n} — {1,...,n}, such that
the string ¢/ = tr() -t - - -t fulfils that for each 4, 1 < i < |s,
s(i) -t (i) = 0, i.e., when viewed as vectors, s is orthogonal to .

Theorem 1. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm that solves the STRING CRAFTING problem in 2°UsI/198151) time even
when all strings t; are palindromes and start and end with a 1.

Proof. Suppose we have an instance of 3-SATISFIABILITY with n variables and
m clauses. We number the variables x1 to x, and for convenience, we number
the clauses Cp 41 to Chypmy1-

We assume by the sparsification lemma that m = O(n) [0].

Let ¢ = [log(n +m)], and let r = 4¢g + 2. We first assign an r-bit number to
each variable and clause; more precisely, we give a mapping id : {1,...,n+m} —
{0,1}". Let nb(i) be the ¢-bit binary representation of ¢, such that 0 < nb(i) <
2" —1. We set, for 1 <i<n+m:

id(i) = 1-nb(i) - nb(@) - nb(0) - nb(i)" - 1

Note that each id(¢) is an 7-bit string that is a palindrome, ending and starting
with a 1.

We first build s. s is the concatenation of 2n strings, each representing one
of the literals.

Suppose the literal x; appears ¢; times in a clause, and the literal —z; appears
d; times in a clause. Set f; = ¢; + d;. Assign the following strings to the pair of
literals x; and —x;:

— a”i is the concatenation of the id’s of all clauses in which x; appears, followed
by d; copies of the string 1-072- 1.

— a ™ is the concatenation of the id’s of all clauses in which —z; appears,
followed by ¢; copies of the string 1- 0772 - 1.

— b =id(i) - a® -id(i) - a”% - id(i).

Now, we set s = bl - b2... o7~ 1. b7,
We now build the collection of strings t;. We have three different types of
strings:

— Variable selection: For each variable x; we have one string of length (f; 4+ 2)r
of the form id(i) - 0% - id(3).

— Clause verification: For each clause C;, we have a string of the form d(i).
— Filler strings: A filler string is of the form 1-07"2.1. We have n + 2m filler
strings.

Thus, the collection of strings ¢; consists of n variable selection strings, m
clause verification strings, and n + 2m filler strings. Notice that each of these
strings is a palindrome and ends and starts with a 1.

The idea behind the reduction is that s consists of a list of variable identifiers
followed by which clauses a true/false assignment to that variable would satisty.
The variable selection gadget can be placed in s in two ways: either covering all
the clauses satisfied by assigning true to the variable, or covering all the clauses
satisfied by assigning false. The clause verification strings then fit into s only
if we have not covered all of the places where the clause can fit with variable
selection strings (corresponding to that we have made some assignment that
satisfies the clause).

Furthermore, note that since X7, f; = 3m, the length of s is (3n+6m)r, the
combined length of the variable selection strings is (2n + 3m)r, the combined
length of the clause verification strings is mr, and the filler strings have combined
length (n + 2m)r.

In the following, we say a string ¢; is mapped to a substring s’ of s if s’ is
the substring of s corresponding to the position (and length) of ¢; in /.

Lemma 1. The instance of 3-SATISFIABILITY 1is satisfiable, if and only if the
constructed instance of STRING CRAFTING has a solution.

Proof. First, we show the reverse implication. Suppose we have a satisfying as-
signment to the 3-SATISFIABILITY instance. Consider the substring of s formed
by b?, which is of the form id(i) - a® -id(i) - a~% -id(i). If in the satisfying assign-
ment x; is true, we choose the permutation I so that variable selection string
id(i)-0"fi-id(i) corresponding to z; is mapped to the substring id(i)-a ™% -id(i); if
x; is false, we map the variable selection string onto the substring id(z)-a® -id (7).
A filler string is mapped to the other instance of id(i) in the substring.

Now, we show how the clause verification strings can be mapped. Suppose
clause C; is satisfied by the literal x; (resp. —x;). Since z; is true (resp. false),
the substring a® (resp. a™®%) of s is not yet used by a variable selection gadget
and contains id(j) as a substring, to which we can map the clause verification
string corresponding to C}.

Note that in s now remain a number of strings of the form 1-0""2 -1 and
a number of strings corresponding to id’s of clauses, together 2m such strings,
which is exactly the number of filler strings we have left. These can thus be
mapped to these strings, and we obtain a solution to the STRING CRAFTING
instance. It is easy to see that with this construction, s has a 1 whenever the
string constructed from the permutation does.

Next, for the forward implication, consider a solution IT to the STRING
CRAFTING instance. We require the following lemma:

Lemma 2. Suppose that t; = id(j). Then the substring w of s corresponding to
the position of t; in t1 is id(j).

Proof. Because the length of each string is a multiple of r, w is either id(k)
for some k, or the string 1-0"~2 . 1. Clearly, w can not be 1-0""2 -1 because
the construction of id(i) ensures that it has more than 2 non-zero characters,
so at some position w would have a 1 where w’ does not. Recall that id(i) =
1-nb(i) -nb(7) -nb(i)R~nb(i)R 1. If j # k, then either at some position nb(k) has
a 0 where nb(j) has a 1 (contradicting that IT is a solution) or at some position
nb(k) has a 0 where nb(j) has a 1 (again contradicting that IT is a solution).
Therefore j = k. a

Clearly, for any 4, there are only two possible places in t/ where the variable
selection string id(i) - 07'/¢ - id(i) can be mapped to: either in the place of id(i) -
a®i -id(i) in s or in the place of id(2) -a™* -id(7), since these are the only (integer
multiple of r) positions where id(¢) occurs in s. If the former place is used we
set x; to false, otherwise we set z; to true.

Now, consider a clause C}, and the place where the corresponding clause
verification gadget id(j)is mapped to. Suppose it is mapped to some substring
of id(i) - a® -id(i) - a™* - id(i). If id(j) is mapped to a substring of a®* then (by
construction of a®*) x; appears as a positive literal in C; and our chosen assign-
ment satisfies C; (since we have set z; to true). Otherwise, if id(j) is mapped to
a substring of a™*¢ x; appears negated in C; and our chosen assignment satisfies
C; (since we have set x; to false).

We thus obtain a satisfying assignment for the 3-SATISFIABILITY instance.

O

Since in the constructed instance, |s| = (3n + 6m)r and r = O(logn),m =
O(n), we have that |s| = O(nlogn). A 2°Usl/1egls)_time algorithm for STRING
CRAFTING would give a 20(nlogn/log(nlogn)) — 90(n)_time algorithm for deciding
3-SATISFIABILITY, violating the ETH. a

Note that we can also restrict all strings ¢; to start and end with a 0 by a
slight modification of the proof.

Theorem 2. Assuming the Exponential Time Hypothesis, ORTHOGONAL VEC-
TOR CRAFTING can not be solved in 2°UsI/ 198150 time even when all strings t;
are palindromes and start and end with a 1.

Proof. This follows from the result for STRING CRAFTING, by taking the com-
plement of the string s. a

Again, we can also restrict all strings ¢; to start and end with a 0.

As illustrated by the following theorem, these lower bounds are tight. The
algorithm is a simpler example of the techniques used in [34)5]. There, the
authors use isomorphism tests on graphs, here, we use equality of strings.

Theorem 3. There exists algorithms, solving STRING CRAFTING and ORTHOG-
ONAL VECTOR CRAFTING in 20(sl/1egls])

Proof. The brute-force algorithm of trying all n! permutations of the strings
t1,...,t, would take O(]s|!s) time in the worst case. This can be improved to
O(2!*!5?) by simple Held-Karp [7] dynamic programming: for each (multi-)subset
K CA{ty,...,tn} and | = Yick|t| we memoize whether the substring s(1) - - s(l)
of s together with K forms a positive instance of STRING CRAFTING (resp.
ORTHOGONAL VECTOR CRAFTING).

The number of such (multi-)subsets K is 2/ in the worst case. However, in
this case, each string ¢t € K is of length 1 and we can instead store the multiplicity
of each string, making for only O(|s|?) cases (since each string is either 0 or 1).

More generally, call a string t; long if |¢;| > logy(|s])/2 and short otherwise.
There are at most 2|s|/log |s| long strings, and as such we can store explicitly
what subset of the long strings is in K (giving 20Usl/ 1815 cases). Since there
are at most 2'°8sl/2 — \/H distinct short strings, storing the multiplicity of

each one contributes at most |s|V!sl = 2V/Isl108 I8l cages. O

4 Lower Bounds for Graph Embedding Problems

Theorem 4. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving SUBGRAPH ISOMORPHISM in 2°("/187) time even if G is a
caterpillar tree of maximum degree 3 or G is connected, planar, has pathwidth 2
and has only one vertex of degree greater than 3 and P is a tree.

Proof. By reduction from STRING CRAFTING. We first give the proof for the
case that G is a caterpillar tree of maximum degree 3, We construct G from s
as follows: we take a path of vertices v1,...,v|s (path vertices). If s(i) = 1, we
add a hair verter h; and edge (v, h;) to G (obtaining a caterpillar tree). We
construct P from the strings ¢; by, for each string t; repeating this construction,
and taking the disjoint union of the caterpillars created in this way (resulting
in a graph that is a forest of caterpillar trees, i.e., a graph of pathwidth 1). An
example of this construction is depicted in Figure

e
b0 ddodod

Fig. 1: Simplified example of the graphs created in the hardness reduction for
Theorem [4] The bottom caterpillar represents the host graph (corresponding to
string s), the top caterpillars represent the strings ¢; and form the guest graph.
Here s = 101110101 and ¢; = 1010, ¢2 = 101 and t3 = 00.

Lemma 3. The constructed instance of G contains P as a subgraph only if the
instance of STRING CRAFTING has a solution.

Proof. Suppose P contains G as a subgraph. Since X;|t;| = |s| and each string
t; starts and ends with a 1, the path vertices of P and G must be in one-to-one
correspondence (we can not map a hair vertex of P to a path vertex of G since
otherwise we would not be able to fit all connected components of P into G). The
order in which the connected components of P appear as we traverse the path
of G gives a permutation IT of the strings ¢;. We claim that this permutation is
a solution to the STRING CRAFTING instance, since G must have a hair vertex
whenever P has one (or else we would not have found P as a subgraph) we have
that s has a 1 whenever ¢t/ has a 1. Note that it does not matter that we can
flip a component of P (embed the vertices of the path in the reverse order) since
the strings ¢; are palindromes. O

Lemma 4. The constructed instance of G contains P as a subgraph if the
instance of STRING CRAFTING has a solution.

Proof. Let II be a solution for the STRING CRAFTING instance. We can map
the path vertices of the connected components of P to the path vertices of G in
the order the corresponding strings appear in the permutation IT (e.g. the first
path vertex of the connected component corresponding to I7(1) gets mapped to
the first path vertex vy, the first path vertex of the component corresponding to
I1(2) gets mapped to the [tr(1)| + 1th path vertex,...). Whenever a path vertex
in P is connected to a hair vertex, ¢!/ has a 1 in the corresponding position, and
therefore s has a 1 in the corresponding position as well and thus G also has a
hair vertex in the corresponding position. We can thus appropriately map the
hair vertices of P to the hair vertices of G, and see that P is indeed a subgraph
of G. a

Since the constructed instance has O(|s|) vertices, this establishes the first
part of the lemma. For the case that G is connected, we add to the graph G
constructed in the first part of the proof a vertex u and, for each path vertex v;,
an edge (v;,u). To P we add a vertex v’ that has an edge to some path vertex of
each component. By virtue of their high degrees, © must be mapped to v’ and
the remainder of the reduction proceeds in the same way as in the first part of
the proof. a

We now show how to adapt this hardness proof to the case of INDUCED
SUBGRAPH:

Theorem 5. Suppose the Exponential Time Hypothesis holds. Then there is
no algorithm solving INDUCED SUBGRAPH in 2°("/1°87) time even if G is a
caterpillar tree of maximum degree 3 or G is connected, planar, has pathwidth 2
and has only one vertex of degree greater than 3 and P is a tree.

Proof. Matousek and Thomas [8] observe that by subdividing each edge once, a
subgraph problem becomes an induced subgraph problem. Due to the nature of
our construction, we do not need to subdivide the hair edges. We can adapt the
proof of Theorem [4| by subdividing every path edge (but not the hair edges) and
for the connected case, also subdividing the edges that connect to the central
vertices v and u'. O

We now show how to adapt this proof to (INDUCED) MINOR, SHALLOW
MINOR and TOPOLOGICAL MINOR:

Theorem 6. Suppose the Exponential Time Hypothesis holds. Then there is
no algorithm solving (INDUCED) MINOR, SHALLOR MINOR or TOPOLOGICAL
MINOR in 2°07/1087) time even if G is a caterpillar tree of mazimum degree 3
or G is connected, planar, has pathwidth 2 and has only one verter of degree
greater than 3 and P is a tree.

Proof. We can use the same reduction as for (induced) subgraph. Clearly, if P
is an (induced) subgraph of G then it is also an (induced/shallow/topological)
minor. Conversely, if P is not a subgraph of G then allowing contractions in G or
subdivisions in P do not help: contracting a hair edge simply removes that edge
and vertex from the graph, while contracting a path edge immediately makes
the path too short to fit all the components. a

5 Tree and Path Decompositions with Few Bags

In this section, we study the minimum size tree and path decomposition prob-
lems:

MINIMUM S1ZzE TREE DECOMPOSITION OF WIDTH k (k-MSTD)

Given: A graph G, integers k,n.

Question: Does G have a tree decomposition of width at most &, that
has at most n bags?

The Minimum Size Path Decomposition (k-MSPD) problem is defined anal-
ogously. The following theorem is an improvement over Theorem 3 of [5], where
the same was shown for k > 39; our proof is also simpler.

Theorem 7. Let k > 16. Suppose the Exponential Time Hypothesis holds, then
there is no algorithm for k-MSPD or k-MSTD using 2°("/1°8™) time.

Proof. By reduction from ORTHOGONAL VECTOR CRAFTING. We begin by
showing the case for MSPD, but note the same reduction is used for MSTD.

For the string s, we create a connected component in the graph G as follows:
for 1 <4 < |s| + 1 we create a clique C; of size 6, and (for 1 < i < |s|) make
all vertices of C; adjacent to all vertices of C;y1. For 1 <i < |s], if s(i) = 1, we
create a vertex s; and make it adjacent to the vertices of C; and C;41.

For each string ¢;, we create a component in the same way as for s, but
rather than using cliques of size 6, we use cliques of size 2: for each 1 < ¢ < n
and 1 < j < |t;] + 1 create a clique T; ; of size 2 and (for 1 < j < |¢;|) make all
vertices of T; ; adjacent to all vertices of T; j11. For 1 < j < |t;|, if £;(j) = 1,
create a vertex ¢; ; and make it adjacent to the vertices of T; ; and T; jy1.

An example of the construction (for s = 10110 and ¢; = 01001) is shown in
Figure [2| We now ask whether a path decomposition of width 16 exists with at
most |s| bags.

§ § § § § §
(VA VAV

Fig.2: Simplified example of the graph created in the hardness reduction for
Theorem [7} The circles and ellipses represent cliques of various sizes. The com-
ponent depicted in the top of the picture corresponds to ¢ty = 01001, while the
component at the bottom corresponds to s = 10110.

Lemma 5. If there exists a solution II to the ORTHOGONAL VECTOR CRAFT-
ING instance, then G has a path decomposition of width 16 with at most |s| bags.

Proof. Given a solution I, we show how to construct such a decomposition with
bags X;,1 < i < |s]. In bag X; we take the vertices C;, C;11 and (if it exists)
the vertex s;. We also take the cliques Tiqu; (i),posy (i)s Lider (i+1),posn(i+1) and
the vertex tiqz ; (i), posy (i) (if it exists).

Each bag contains two cliques of size 6 and two cliques of size 2, adding up
to 16 vertices in each bag. Each bag may additionally contain a vertex s; or a
vertex tigq; (i),posy(i)> but, by nature of a solution to ORTHOGONAL VECTOR
CRAFTING, not both, showing that each bag contains at most 17 vertices and as
such the decomposition indeed has width 16. a

Lemma 6. If G has a tree decomposition of width 16 with at most |s| bags, then
the instance of ORTHOGONAL VECTOR CRAFTING has a solution.

Proof. Suppose we have a tree decomposition of width 16 with at most |s| bags.
Since for any 1 < ¢ < |s|, C; U C;41 induces a clique, there exists a bag that
contains both C; and C;1. Moreover, since each clique C; contains 6 vertices,
each bag of the decomposition can contain at most two such cliques. Moreover,
since the decomposition has at most (and thus we can assume exactly) |s| bags,
there exists exactly one bag containing both C; and Cj1.

Since (for 1 < ¢ < |s|) the bag containing C; and C;;+1 must be adjacent to
the bag containing C;_; and C; and to the bag containing C;41 and C;o we
see that all but two bags have degree at least two and the remaining two bags
have degree at least 1. Since a tree/path decomposition can not have cycles, we
see that the tree/path decomposition must take the form of a path, where the
bag containing C; and C;41 is adjacent to the bag containing C;_; and C; and
to the bag containing C;4; and Cj4o.

Assume the bags of the decomposition are Xi,... X, and C;,C;11 C X;.

Since in each of the bags we now have capacity for 5 more vertices, we see that
each bag contains exactly two cliques T} ;,1 < i <n,1 < j < [t;| + 1 and that
there exists a bag that contains both T} ; and T; ;41 forall1 <i <n,1 <j < |t;].
Moreover, for each 4, the bags containing {T; ; UT; j+1 : 1 < j < |t} must
be consecutive and appear in that order (or in the reverse order, but by the
palindromicity of ¢; this case is symmetric).

Note that at this point, each bag contains exactly 16 vertices and has room
for exactly 1 more vertex (which can be either an s; or a t;5).

Thus, if we were to list the intersection of each bag X; with {T; ;,1 < ¢ <
n,1 < j < |}, we would obtain the following sequence:

(T T2t ATn)t Traytne 1+1}
T Treets - AT e b Tre) tre 1+1)

{Trmys Tramy2ts - ATTm) Nty 1> T 7y 141}

Which gives us the permutation IT and string ¢/ we are after. Note that s(i)
and t(i) can not both be 1, because otherwise the vertex s; (being adjacent
to the vertices of C; and C;11) must go in bag X;, but so must the vertex
tide 1 (i),pos (i) Which would exceed the capacity of the bag. a

The size of the graph created in the reduction is O(]s|), so we obtain a
2¢2(n/1ogn) Jower bound for 16-MSPD under the Exponential Time Hypothesis.
We can extend the reduction to £ > 16 by adding universal vertices to the graph.

For the tree decomposition case, note that a path decomposition is also a tree
decomposition. For the reverse implication, we claim that a tree decomposition
of G of width 16 with at most |s| bags must necessarily be a path decomposition.
This is because for each 1 < i < |s|, there exists a unique bag containing C; and
C;+1 which is adjacent to the bag containing C; — 1 and C; (if ¢ > 1) and to the
bag containing C;y1 and Cipo (if ¢ < |s]). All but two bags are thus adjacent
to at least two other ones, and a simple counting argument shows that there
therefore is no bag with degree greater than two (or we would not have enough
edges). O

6 Intervalizing Coloured Graphs

In this section, we consider the problem of intervalizing coloured graphs:

INTERVALIZING COLOURED GRAPHS

Given: A graph G = (V| E) together with a proper colouring ¢ : V' —
{1,2,...,k}.

Question: Is there an interval graph G’ on the vertex set V', for which
c is a proper colouring, and which is a supergraph of G?

INTERVALIZING COLOURED GRAPHS is known to be NP-complete, even for
4-coloured caterpillars (with hairs of unbounded length) [9]. In contrast with
this result we require five colours instead of four, and the result only holds
for trees instead of caterpillars. However, we obtain a 2("/1°87) Jower bound
under the Exponential Time Hypothesis, whereas the reduction in [9] is from
MULTIPROCESSOR SCHEDULING and to our knowledge, the best lower bound
obtained from it is 2°2(¥™ (the reduction is weakly polynomial in the length of
the jobs, which following from the reduction from 3-PARTITION in [I0] is ©(n?)).
In contrast to these hardness results, for the case with 3 colours there is an O(n?)
time algorithm [11UT2].

Theorem 8. INTERVALIZING COLOURED GRAPHS does not admit a 20"/ 1087)_
time algorithm, even for 5-coloured trees, unless the Fxponential Time Hypoth-
esis fails.

Proof. Let s,tq,...,t, be an instance of ORTHOGONAL VECTOR CRAFTING. We
construct G = (V, E) in the following way:

S-String Path. We create a path of length 2|s| — 1 with vertices po, ... pajs|—2,
and set ¢(p;) = 1 if ¢ is even and ¢(p;) = 2 if ¢ is odd. Furthermore, for even
0 <i < 2|s| — 2, we create a neighbour n; with ¢(n;) = 3.

Barriers. To each endpoint of the path, we attach the barrier gadget, depicted in
Figure[3] The gray vertices are not part of the barrier gadget itself, and represent
po and ng (resp. pajs—2 and ng|s—2). Note that the barrier gadget operates on
similar principles as the barrier gadget due to Alvarez et al. [9]. We shall refer
to the barrier attached to py as the left barrier, and to the barrier attached to
D2|s|—2 as the right barrier.

The barrier consists of a central vertex with colour 1, to which we connect
eight neighbours (clique vertices), two of each of the four remaining colours. Each
of the clique vertices is given a neighbour with colour 1. To one of the clique
vertices with colour 2 we connect a vertex with colour 3, to which a vertex with
colour 2 is connected (blocking vertices). This clique vertex shall be the barrier’s
endpoint. Note that the neighbour with colour 1 of this vertex is not considered
part of the barrier gadget, as it is instead a path vertex. We let C; (e;) denote
the center (endpoint) of the left barrier, and C, (e,) the center (endpoint) of the
right barrier.

T-String Paths. Now, for each string t;, we create a path of length 2|¢;| + 1 with
vertices g; 0, ..., 2|, and set c(g; ;) = 3 if j is odd and set c(g; ;) = 2 if j is
even. We make ¢; ;1 adjacent to U. Furthermore, for odd 1 < j < 2jt;| — 1, we
create a neighbour m; with ¢(m;) = 1. We also create two endpoint vertices of
colour 3, one of which is adjacent to g; o and the other to g; o,/

Connector Vertex. Next, we create a connector vertex of colour 5, which is made
adjacent to p; and to g; 1 for all 1 < ¢ < n. This vertex serves to make the entire
graph connected.

(a) Barrier Gadget (b) Interval Representation

Fig.3: (a) Barrier Gadget. The gray vertices are not part of the barrier gadget
itself, and show how it connects to the rest of the graph. (b) How the barrier
gadget may (must) be intervalized.

Marking Vertices. Finally, for each 1 < ¢ < |s| (resp. for each 1 < i < n and
1 <j < |t]), if s(4) = 1 (resp. t;(j) = 1), we give poi—1 (resp. ¢;2j—1) two
neighbours (called the marking vertices) with colour 4. For each of the marking
vertices, we create a neighbour with colour 3.

This construction is depicted in Figure[d] In this example s = 10100, ¢; = 01
and t5 = 001. Note that this instance of ORTHOGONAL VECTOR CRAFTING is
illustrative, and does not satisfy the restrictions required in the proof.

Connector

)
€) ® O @
111 !11.1 111.2 3 2“‘ 0112,1 Q P Q 3
1,0 O\ ™ @ 2,0 O ®
@ @B @ @O
Blocking (2 Marking @
& '@\ @O @) @B ®
(]i(C P2s—2 _P2s—1 C,
AR D5 G5 05 @5 D5 O—0—0—D— 00O AROD
0L/ \N\@0 O, ®,, ®,, ® ® ©10%0 D
Q@ @D Q@ @O
@ O O® O

Fig. 4: Example of the graph created in the hardness reduction for Theorem

Informally, the construction works as follows: the barriers at the end of the
path of p-vertices can not be passed by the remaining vertices, meaning we have
to "weave” the shorter g-paths into the long p-path. The colours enforce that
the paths are in ”lockstep”, that is, we have to traverse them at the same speed.
We have to map every g-vertex with colour 3 to a p-vertex with colour 2, but

the marking vertices prevent us from doing so if both bitstrings have a 1 at that
particular position.

Lemma 7. G can be intervalized if the ORTHOGONAL VECTOR CRAFTING in-
stance has a solution.

Proof. As an example, Figure [5] shows how the graph from Figure [4] may be
intervalized. Let II be a solution to the instance of ORTHOGONAL VECTOR
CRAFTING. We can intervalize the barriers as depicted in Figure Bp, noting
that the right barrier should be intervalized in a mirrored fashion. The con-
nector vertex (which is the only remaining vertex of colour 5) can be assigned
an interval that covers the entire interval between the two barrier gadgets. If
no marker vertices are present, then we can weave the g-paths into the p-path
as depicted in Figure [5| whereby each interval corresponding to a g-vertex of
colour 3 completely contains the interval of a p-vertex of colour 2 (note that the
endpoint vertices of the g-paths are treated differently from the g-path vertices
with colour 3). If we intervalize the g-paths in the same order the corresponding
strings appear in IT, then we can also intervalize the marking vertices: Figure
shows that the marker vertices can also be intervalized, so long as a p-vertex and
its corresponding g-vertex are not both adjacent to marker vertices, but this is
guaranteed by the orthogonality of s and ¢/ O

Lemma 8. G can be intervalized only if the ORTHOGONAL VECTOR CRAFTING
instance has a solution.

Proof. Suppose we are given a properly coloured interval supergraph of G that
assigns to each vertex v € V its left endpoint [(v) and right endpoint r(v). For
vertices u,v € V, we write v C w if I(u) < I(v) < r(v) < r(u), and we write
v < uif r(v) <l(u). We write v < u if [(v) < l(u) < r(v) < r(u) - that is, the
interval of v starts to the left of the interval of u and the two intervals overlap.

We may without loss of generality assume that C; < C). and that no two
endpoints of intervals coincide.

Claim. For any non-barrier vertex v, we have that r(C;) < I(v) < r(v) < I(C}).

e iR | 2

Fig.5: How the graph from Figure |4 may be intervalized. Thick lines represent
intervals and are arranged vertically based on the colour of the associated ver-
tex. The thinner lines indicate the edges of the original graph. Black intervals
correspond to the barriers, p, n-vertices and the connector vertex, light gray in-
tervals to maker vertices and dark gray intervals to end point vertices and to
q, m-vertices.

CICISICIC)

Proof. Examining the situation for the left barrier, we see that a clique vertex
can not be contained completely inside the interval of the center vertex Cj since
it is adjacent to another vertex with colour 1 (whose interval may not intersect
that of the center). Since there are two clique vertices of each colour, for each
colour, the interval of one clique vertex of that colour must extend to the left of
the central vertex’ interval and the other must extend to the right. Therefore,
these intervals that contain r(¢;) induce a clique of size 5. Since we are looking
for a 5-coloured supergraph, no other intervals can contain r(c¢;).

Note that the clique vertices are interchangeable, except the ones coloured 2:
the clique vertex that is adjacent to pg must go to the right of the center vertex,
since otherwise the path from it to C, could not pass the clique at r(¢;).

Suppose that for some non-barrier vertex v, it holds that I(v) < r(¢,). This
is not possible, since the path from v to ¢, can not pass the clique induced at
r(c). Therefore, r(c;) < I(v).

The case for the right barrier is symmetric. a

Claim. For all 0 < ¢ < 2|s| — 1, we have that p; <p;11. Furthermore, C; < e; <pg
and P2jsj—1 <€ < C,.

Proof. The fact that C; <e;<pg (vesp. pajs|—1 <e, <C;) follows from the analysis
of the barrier gadget in the previous claim. We now proceed by induction, for
the purposes of which we shall write e; = p_; and e, = py|,: suppose the claim
holds for ¢ — 1, i.e. p;—1 < p;. It can not hold that p; 1 C p;, since it is adjacent
t0 pite, nor can it hold that p;11 < p; (since then it would intersect the interval
of Pi—1- O

For any 1 <4 <n, a similar fact holds for the path g;o,..., g2,
Claim. We may without loss of generality assume that g; o0 < ... < q; 2,

Proof. By a similar induction argument as above, it must hold that either ¢; o <
<< Qi2|t;] OF 3,03 .. .>(; 2)¢,)- However, since ; is palindromic, these two cases
are equivalent. a

Claim. Let 1 < ¢ < n,1 < j < |t;]. Then there exists 1 < k < |s| such that
P2r—1 C g5 25-1-

Proof. The interval of g; 2;—1 can not be completely contained in the interval of
a vertex with colour 1, since g¢;2;—1 is adjacent to m; 21 which has colour 1
as well. Therefore (since 7(C;) < 1(gi,2j—1) < 7(¢i,2j—1) < [(C;)), the interval of
¢i,2j—1 must intersect the interval of either a barrier endpoint or a path vertex
pak—1 for some 1 < k < |s|. It is not possible that gi,2j—1 intersects the interval
of a barrier endpoint, since (due to the blocking and clique vertices with colour
3, see Figure [3)) it would have to be completely contained inside this interval,
which is impossible since ¢; ;1 is adjacent to vertices with colour 2. Therefore
there exists a 1 < k < |s| such that the interval of g;2;_1 intersects that of
P2k—1-

Since ¢;,2j—2 < ¢i,2j—1 <qi,2; and ¢(qi,2j—2) = ¢(gi,25) = c(P2r—1) = 2 we must
have that ¢; 2j—2 < qar—1 < @s,2;. It now follows that par_1 C ¢;25-1. O

This allows us to define the position 1 < P(i,5) < |s| for each 1 < i <
n,1 < j < |t], which is equal to the k from the previous claim. Note that P is a
bijection, since each interval pax_1 is the subset of (the interval of) exactly one
g-vertex (each p-vertex interval can not be the subset of more than one g-vertex
interval, and the number of p-vertices is such that no ¢-vertex can completely
contain more than one g-vertex interval).

Claim. Let 1 <i<n,1 <j<|t;|—1. Then P(i,j+1) = P(i,j) + 1.

Proof. This follows from the fact that a g-vertex with colour 3 can not completely
contain a p-vertex with colour 1 (since it has an n-vertex as neighbour that has
colour 1 as well) and the fact that a ¢-vertex with colour 2 can not overlap a
p-vertex with colour 2.

Formally, let P (i, j) = k, then pog_1 C ¢; 25—1. Since ¢;2j—1 < ¢5.2j < ¢i.2j+1,
if the claim does not hold, we must have pagyi42m C Gs,254+1 for some m > 0.
We must have g; 2; C pax+or for some r > 0. If 7 = 0, then ¢; 25 < ¢;,2j41 which
is a contradiction. On the other hand, if > 0 then g;2;_1 < g;,2; which is also
a contradiction. O

Claim. Let IT be the permutation of {1,...,n} such that P(idx (i), posy(i)) =
i. Then IT exists and is a solution to the ORTHOGONAL VECTOR CRAFTING
instance.

Proof. The existence of IT follows from the previous claim. Suppose that IT is
not a solution. Then there exists an i, such that S(i) = T;qz,) (Posm (i) = 1.
However, this means that p2;—1 C Giduy(i),2posy(i)—1- Since both pa; 1 and
Qida (i), 2posy (i)—1 have marking vertices, this is impossible as the marking ver-
tices with colour 4 would have overlapping intervals. a

This completes the proof of Lemma [§] O

The number of vertices of G is linear in |s|, and we thus obtain a 2°(%/logn)
lower bound under the Exponential Time Hypothesis. O

Note that the graph created in this reduction only has one vertex of super-
constant degree. This is tight, since the problem is polynomial-time solvable for
bounded degree graphs (for any fixed number of colours) [13].

To complement this result for a bounded number of colours, we also show
a 2(")_time lower bound for graphs with an unbounded number of colors, as-
suming the ETH. Note that this result implies that the algorithm from [4] is
optimal. A complication in the proof is that to obtain the stated bound, one can
only use (on average) a constant number of vertices of each colour (when using
O(n) colours). A variation on the previous proof whereby instead of using bit-
strings, colours are used to identify clauses and variables is thus unlikely to work
since one would need to repeat each colour many times (in each place where a
particular bitstring does not fit).

Theorem 9. Assuming the Exponential Time Hypothesis, there is no algorithm
solving INTERVALIZING COLOURED GRAPHS in time 2°(™) | even when restricted
to trees.

Proof. By reduction from Exact COVER BY 3-SETS (X3C). X3C is the fol-
lowing problem: given a set X with |X| = n and a collection M of subsets
X1,..., Xy of size 3, decide whether there exists a subset M’ of size n/3 such
that |JM’ = X. Assuming the Exponential Time Hypothesis, there does not
exist an algorithm solving X3C in time 2°("™) (See e.g. [BJT4/15]. Note that 3-
DIMENSIONAL MATCHING is a special case of X3C.).

The intuition behind the reduction is that, to leverage the large number of
colours, one needs to force the creation of a very large clique in the intervalized
graph. For each element of X; € M, we create a component of which the vertices
have colours that correspond to the elements of X;. The graph created in the
reduction will be so that all but n/3 of the components corresponding to elements
of M can be placed in distinct intervals, but the remaining n/3 components will
have to overlap. This, in turn, is only possible if no two components in this
latter collection contain duplicated colours, that is, each element is represented
at most (and thus exactly) once in the selected n/3 components.

We assume the elements of X are labelled 1,...,n. We may assume that n
is a multiple of 3 (or we may return a trivial no-instance) and that m > n/3 (or
we can check immediately whether M covers X).

The graph created in the reduction has n 4+ 4 colours: two colours e; and f;
for each 1 < i < n and four additional colours a,b, c, d.

We construct the graph G as follows: we start with a path of 2(m —n/3) +1
vertices po, ..., Pa(m—n/3), Where p; has colour a if ¢ is even and p; has colour
b if i is odd. To pa(;m—n/3) We make adjacent a vertex with colour d, which we
shall refer to as the right barrier vertex.

Next, for each 1 < i < n, we create a vertex v; with colour e;, that is made
adjacent to pg. For each ¢, we create an additional vertex with colour d that is
made adjacent to v;. These vertices (with colour d) are called the left barrier
vertices.

Next, for each 3-set X; € M, we create a set component, consisting of a central
vertex with colour a, to which are made adjacent: two vertices with colour c,
each of which is adjacent to a vertex with colour b and, for each of the three
elements of X;, two vertices with the corresponding (to that element) colour f;,
each of which is made adjacent to a vertex with colour e;.

Finally, we connect all the components together with a connector vertex of
colour d, which is made adjacent to each set gadget and to a vertex of the path
(for instance to py). Figure |§| provides an example of the construction.

As with the case for five colours, a solution somehow has to “pack” the set
components into the part of the graph between the barriers: m — n/3 of the
set components can be packed into the path (each interval corresponding to a
b-vertex can hold at most one component); the remaining n/3 components have
to be packed between the left barrier vertices and py and this is possible only
if the corresponding sets are disjoint (otherwise intervals of the corresponding
colours would have to overlap).

Lemma 9. If G can be intervalized, then the X3C instance has a solution.

Fig.6: The construction used in the proof of Theorem @ In this example, X =
{{1,5,2},{7,1,2},...}. The topmost vertex with colour d is the connector vertex,
and its degree would increase as more elements are added to X.

Proof. In any interval supergraph of G, the interval of the connector vertex
should lie between the intervals of the left barrier vertices and the right barrier
vertex. Let X; € M. The interval of the central vertex of the set component
corresponding to X; must either be contained in the interval corresponding to
some vertex p; for some odd 1 < i < 2(m —n/3) or it should be contained in the
intersection of the intervals corresponding to the vertices {v; | 1 < j < n} (since
its interval can not intersect any interval of a vertex with colour a, nor can its
interval be contained in the interval of a left or right barrier vertex).

Claim. At most one interval corresponding to a central vertex can be contained
in the interval of any vertex p; (for odd 7).

Proof. Each central vertex is adjacent to two vertices with colour c. Since these
vertices in turn have neighbours with colour b, it follows that (if some central
vertex is contained in the interval of p;) the interval of one of the vertices with
colour ¢ must contain the left endpoint of the interval of p;, and the other must
contain the right endpoint. Therefore the interval of p; can not contain another
central vertex. ad

Claim. Let X; # X; € M. If X; N X; # 0, then the intervals of the central
vertices of the set components corresponding to X; and X; can not both be
contained in the intersection of the intervals corresponding to the vertices {vy |
1<k<n}.

Proof. Since X; N X; # 0, both central vertices have two neighbours with color
fm for some 1 < m < n. Each of these vertices has a neighbour with colour
em, and thus the interval of a vertex with colour f,, must contain either the
left or the right endpoint of the interval that is the intersection of the intervals

corresponding to the vertices {vy | 1 < k < n}. This is not possible, since either
the left or the right endpoint of this intersection will be contained in more than
one interval corresponding to a vertex with colour f,. a

We thus see that the elements of M that correspond to set components whose
intervals are contained in the intersection of the intervals corresponding to the
vertices {vy | 1 < k < n} form a solution: no element of X is contained in
more than one of them. As at most | X| — n/3 intervals of set components are
contained in intervals corresponding to some vertex v;, we have that at least
n/3 set components have intervals that are contained in the aforementioned
intersection. These must thus form a solution to the X3C instance. a

Lemma 10. If the X3C instance has a solution, then G can be intervalized.

Proof. The v-vertices are assigned to identical intervals. Their d-coloured neigh-
bours can be assigned arbitrarily small intervals that are placed in the left half
of the v-vertex interval. The p-vertices can then be placed from left to right, so
that pg overlaps a small portion of the right end of the v-vertex intervals, and
each p vertex interval overlaps the interval of the preceding p-vertex slightly.
Finally the right barrier vertex (with colour d) should be placed in the right half
of the interval corresponding to p22(m — n/3).

Next, the connector vertex (with colour d) can be assigned a long interval
between the left and right barrier vertices, that overlaps the v-vertex intervals
and all of the p-vertex intervals. This placement of the connector vertex allows
us to place the intervals of set components anywhere between the left and right
barriers.

Let M' C M be a solution to the X3C instance. Since |M’| = n/3, and there
are m — n/3 p-vertices with colour b, we can assign each element of M that is
not in the solution a unique p-vertex with colour a. We assign the central vertex
(which has colour a) of the set component of each such element an interval inside
the interval of its p-vertex, such that it does not intersect neighbouring p-vertices
(which have color a). The vertices with f- or e-colours of the set component
can be assigned similar intervals (not intersecting neighbouring p-vertices). One
of the vertices with colour ¢ is assigned an interval that extends past the left
endpoint of the p-vertex interval (and thus intersects the preceding p-vertex
interval), which allows us to assign its neighbour with colour b an interval that
is contained in the preceding p-vertex interval (and does not intersect any other
p-vertex interval). The other vertices with colours b and ¢ can be placed similarly
on the right.

Finally, for the set components corresponding to elements of M’, we can
assign the vertices with colours a, b, ¢ arbitrarily small intervals in the right
half of the v-vertex intervals; the f-coloured vertices can be placed so that their
intervals stick out beyond the right and left endpoints of the v-vertex intervals, so
that the e-coloured vertices can be placed not overlapping the v-vertex intervals.
The fact that M’ is a solution guarantees this can be done without any e, f-
colours overlapping each other, since each such colour occurs exactly twice (one
such pair of vertices can be placed on the left, the other on the right). a

This completes the reduction. Since the number of vertices of G is linear in
|M| and |X|, we see that INTERVALIZING COLOURED GRAPHS does not admit
a 2°(")_time algorithm, unless the Exponential Time Hypothesis fails. a

7 Conclusions

In this paper, we have shown for several problems that, under the Exponential
Time Hypothesis, 2("/1987) is the best achievable running time - even when the
instances are very restricted (for example in terms of pathwidth or planarity).
For each of these problems, algorithms that match this lower bound are known
and thus 20("/1987) is (likely) the asymptotically optimal running time.

For problems where planarity or bounded treewidth of the instances (or,
through bidimensionality, of the solutions) can be exploited, the optimal run-
ning time is often 28(v7) (or features the square root in some other way). On
the other hand, each of problems studied in this paper exhibits some kind of
“packing” or “embedding” behaviour. For such problems, 2€("/1°87) ig often
the optimal running time. We have introduced two artificial problems, STRING
CRAFTING and ORTHOGONAL VECTOR CRAFTING, that form a useful frame-
work for proving such lower bounds.

It would be interesting to study which other problems exhibit such behaviour,
or to find yet other types of running times that are “natural” under the Expo-
nential Time Hypothesis. The loss of the log n-factor in the exponent is due to
the fact that logn bits or vertices are needed to “encode” n distinct elements;
it would be interesting to see if there are any problems or graph classes where a
more compact encoding is possible (for instance only log! ™€ n vertices required,
leading to a tighter lower bound) or where an encoding is less compact (for in-
stance log® n vertices required, leading to a weaker lower bound) and whether
this can be exploited algorithmically.

Acknowledgement.

We thank Jesper Nederlof for helpful comments and discussions.

References

1. Marx, D.: The square root phenomenon in planar graphs. In Fellows, M., Tan, X.,
Zhu, B., eds.: Frontiers in Algorithmics and Algorithmic Aspects in Information
and Management: Third Joint International Conference, FAW-A AIM 2013, Dalian,
China, June 26-28, 2013. Proceedings., Springer (2013) 1-1

2. Marx, D.: What’s next? Future directions in parameterized complexity. In Bodlaen-
der, H.L., Downey, R., Fomin, F.V., Marx, D., eds.: The Multivariate Algorithmic
Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion
of His 60th Birthday, Springer (2012) 469-496

10.

11.

12.

13.

14.

15.

Bodlaender, H.L., Nederlof, J., van der Zanden, T.C.: Subexponential time al-
gorithms for embedding H-minor free graphs. In Chatzigiannakis, I., Mitzen-
macher, M., Rabani, Y., Sangiorgi, D., eds.: 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016). Volume 55 of Leibniz
International Proceedings in Informatics (LIPIcs)., Dagstuhl, Germany, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016) 9:1-9:14

Bodlaender, H.L., van Rooij, J.M.M.: Exact algorithms for Intervalizing Coloured
Graphs. Theory of Computing Systems 58(2) (2016) 273-286

Bodlaender, H.L., Nederlof, J.: Subexponential time algorithms for finding small
tree and path decompositions. In Bansal, N., Finocchi, I., eds.: Algorithms - ESA
2015: 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015,
Proceedings, Springer (2015) 179-190

Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63(4) (2001) 512 — 530
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10(1) (1962) 196—
210

Matousek, J., Thomas, R.: On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Mathematics 108(1) (1992) 343-364

Alvarez, C., Didz, J., Serna, M.: The hardness of intervalizing four colored cater-
pillars. Discrete Mathematics 235(1) (2001) 19 — 27

Jansen, K., Land, F., Land, K.: Bounding the running time of algorithms for
scheduling and packing problems. In Dehne, F., Solis-Oba, R., Sack, J.R., eds.:
Algorithms and Data Structures: 13th International Symposium, WADS 2013, Lon-
don, ON, Canada, August 12-14, 2013. Proceedings, Springer (2013) 439-450
Bodlaender, H.L., de Fluiter, B.: Intervalizing k-colored graphs. Technical Report
UU-CS-1995-15, Department of Information and Computing Sciences, Utrecht Uni-
versity (1995)

Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA phys-
ical mapping. Discrete Applied Mathematics 71(1) (1996) 55 — 77

Kaplan, H., Shamir, R.: Bounded degree interval sandwich problems. Algorithmica
24(2) (1999) 96-104

Bansal, N., Vredeveld, T., van der Zwaan, R.: Approximating Vector Schedul-
ing: Almost matching upper and lower bounds. In Pardo, A., Viola, A., eds.:
LATIN 2014: Theoretical Informatics: 11th Latin American Symposium, Montev-
ideo, Uruguay, March 31-April 4, 2014. Proceedings, Springer (2014) 47-59
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

	Improved Lower Bounds for Graph Embedding Problems

