Skip to main content

A Formal and Run-Time Framework for the Adaptation of Local Behaviours to Match a Global Property

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10231))

Included in the following conference series:

Abstract

We address the problem of automatically identifying what local properties the agents of a Cyber Physical System have to satisfy to guarantee a global required property \(\phi \). To enrich the picture, we consider properties where, besides qualitative requirements on the actions to be performed, we assume a weight associated with them: quantitative properties are specified through a weighted modal-logic. We propose both a formal machinery based on a Quantitative Partial Model Checking function on contexts, and a run-time machinery that algorithmically tries to check if the local behaviours proposed by the agents satisfy \(\phi \). The proposed approach can be seen as a run-time decomposition, privacy-sensitive in the sense agents do not have to disclose their full behaviour.

Research supported by: “VisColla” funded by Fondazione Cassa di Risparmio di Perugia; “BitCoins” co-funded by Banca d’Italia and Cassa di Risparmio di Perugia; the H2020 EU-funded European Network for Cyber Security, NeCS, (GA #675320).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Boolean c-semirings can be used to model crisp problems.

  2. 2.

    \({\mathbb {K}}\) is complete if it is closed with respect to infinite sums, and the distributivity law holds also for an infinite number of summands [1].

  3. 3.

    For the sake of readability, we write \(\Vert \) in place of \(\Vert ^2\), i.e., omitting the apex.

References

  1. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: ECAI, pp. 63–67 (2006)

    Google Scholar 

  2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bistarelli, S., Santini, F., Martinelli, F., Matteucci, I.: Automated adaptation via quantitative partial model checking. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1993–1996. ACM (2016)

    Google Scholar 

  4. Blyth, T.S., Janowitz, M.E.: Residuation Theory, vol. 102. Pergamon press, Oxford (1972)

    MATH  Google Scholar 

  5. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras. In: Alfaro, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001). doi:10.1007/3-540-44804-7_12

    Chapter  Google Scholar 

  6. Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for structural reconfiguration of components under behavioural adaptation. Electr. Notes Theor. Comput. Sci. 263, 95–110 (2010)

    Article  Google Scholar 

  7. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)

    Article  Google Scholar 

  8. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8265, pp. 68–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45114-0_6

    Chapter  Google Scholar 

  9. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organising systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75254-7_13

    Chapter  Google Scholar 

  10. Golan, J.: Semirings and Affine Equations Over Them: Theory and Applications. Kluwer Academic Publisher, Dordrecht (2003)

    Book  MATH  Google Scholar 

  11. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. J. Logic Comput. 1(6), 761–795 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J., Yarvis, M., Reiher, P.: Securing distributed adaptation. Comput. Netw. 38(3), 347–371 (2002)

    Article  Google Scholar 

  13. Lluch-Lafuente, A., Montanari, U.: Quantitative mu-calculus and CTL defined over constraint semirings. TCS 346(1), 135–160 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martín, J.A., Martinelli, F., Pimentel, E.: Synthesis of secure adaptors. J. Log. Algebr. Program. 81(2), 99–126 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martinelli, F., Matteucci, I., Santini, F.: Semiring-based specification approaches for quantitative security. In: Proceedings Thirteenth Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL. EPTCS, vol. 194, pp. 95–109 (2015)

    Google Scholar 

  16. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive systems. In: Workshop on Software Engineering for Adaptive and Self-managing Systems, SEAMS 2008, pp. 9–16. ACM (2008)

    Google Scholar 

  17. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International Conference on Wireless Communications & Signal Processing, WCSP 2011, pp. 1–6. IEEE (2011)

    Google Scholar 

  18. Splunter, S., Wijngaards, N.J.E., Brazier, F.M.T.: Structuring agents for adaptation. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2001-2002. LNCS (LNAI), vol. 2636, pp. 174–186. Springer, Heidelberg (2003). doi:10.1007/3-540-44826-8_11

    Chapter  Google Scholar 

  19. Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model robust adaptive distributed cyber-physical agent systems. In: Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 273–290. Springer, Cham (2015). doi:10.1007/978-3-319-15545-6_18

    Chapter  Google Scholar 

  20. Viganò, L.: Automated security protocol analysis with the AVISPA tool. ENTCS 155, 69–86 (2006)

    Google Scholar 

  21. Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg (2007). doi:10.1007/978-3-540-69868-5_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Santini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bistarelli, S., Martinelli, F., Matteucci, I., Santini, F. (2017). A Formal and Run-Time Framework for the Adaptation of Local Behaviours to Match a Global Property. In: Kouchnarenko, O., Khosravi, R. (eds) Formal Aspects of Component Software. FACS 2016. Lecture Notes in Computer Science(), vol 10231. Springer, Cham. https://doi.org/10.1007/978-3-319-57666-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57666-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57665-7

  • Online ISBN: 978-3-319-57666-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics