Skip to main content

Complexity Science for Sustainable Smart Water Grids

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 708))

Abstract

While the effects of climate change unfold and become more visible, infrastructures – especially those related to the distribution of water and energy – are the most exposed to the deep changes expected in the next years. Water is fundamental for people, and for infrastructures like energy, waste, and food production. Water sustainability is therefore a fundamental aspect to be addressed by an efficient use of the resources and by mainteining high quality standards. Hence, water industry and water infrastructure need a deep transformation; in this paper we present a framework based on complex systems and management science as a possible pathway to reshape and optimize the performance of the water infrastructure to cope with the complexity of todays’ challenges. To this aim, we propose the framework Acque 2.0 (Water 2.0), where we point out how the increase of the infrastructural resilience and of the overall quality of service can be attained by integrating models, algorithms and numerical methods like network simulations and big data analytics for the predictive maintenance of water networks. We discuss how Complexity Science is the natural glue allowing technical, management and social issues to be integrated in the holistic vision of the “water system” needed play to provide measures for an integrated sustainability reporting that involves utilities, regulators, policy makers, and citizens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Directive2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060.

References

  1. United Nations. World urbanization prospect, the 2014 revision. Technical report (2014)

    Google Scholar 

  2. McKinsey Global Institute. Resource revolution. Technical report (2012)

    Google Scholar 

  3. UNESCO. Water for a sustainable world. Technical report (2015)

    Google Scholar 

  4. Aydin, N.Y., Mays, L., Schmitt, T.: Sustainability assessment of urban water distribution systems. Water Resour. Manage. 28, 4373–4384 (2014)

    Article  Google Scholar 

  5. Tabesh, M., Saber, H.: A prioritization model for rehabilitation of water distribution networks using gis. Water Resour. Manage. 26, 225–241 (2012)

    Article  Google Scholar 

  6. Pirlata, K.R., Ariaratnam, S.T.: Reliability based optimal design of water distribution networks considering life cycle components. Urban Water J. 9(5), 305–316 (2012)

    Article  Google Scholar 

  7. Li, Y., Yang, Z.F.: Quantifying the sustainability of water use systems: calculating the balance between network efficiency and resilience. Ecol. Model. 222, 1771–1780 (2011)

    Article  Google Scholar 

  8. Hansman, R.J., Magee, C., de Neufville, R., Robins, R., Roos, D.: Research agenda for an integrated approach to infrastructure planning, design and management. Int. J. Crit. Infrastruct. 2(2/3), 146–159 (2006)

    Article  Google Scholar 

  9. Onyeji, I., Colta, A., Papaioannou, I., Mengolini, A.: Smart Grid projects in Europe: lessons learned and current developments. JRC (2011)

    Google Scholar 

  10. Gurung, T.R., Stewart, R.A., Sharma, A.K., Beal, C.D.: Smart meters for enhanced water supply network modelling and infrastructure planning. Resources 90, 34–50 (2014)

    Google Scholar 

  11. Boyle, T., Giurco, D., Mukheibir, P., Liu, A., Moy, C., White, S., Stewart, R.: Intelligent metering for urban water: a review. Water 5(3), 1052–1081 (2013)

    Article  Google Scholar 

  12. Britton, T.C., Stewart, R.A., O’Halloran, K.R.: Smart metering: enabler for rapid and effective post meter leakage identification and water loss management. J. Cleaner prod. 54, 166–176 (2013)

    Article  Google Scholar 

  13. Stewart, R.A., Willis, R., Giurco, D., Panuwtwanich, K., Capati, G.: Web-based knowledge management system: linking smart metering to the future of urban water planning. Aust. Planner 47(2), 66–74 (2010)

    Article  Google Scholar 

  14. Cole, G., O’Halloran, K.R., Stewart, R.A.: Time of use tariffs: implications for water efficiency. Water Sci. Tech. Water Supply 12, 90–100 (2012)

    Article  Google Scholar 

  15. Parker, J.M., Wilby, R.L.: Quantifying household water demand: a review of theory and practice in the UK. Water Res. man. 27, 981 (2013)

    Article  Google Scholar 

  16. Strogatz, S.: Nonlinear Dynamics and Chaos, 2nd edn. Westview Press, Boulder (2014)

    Google Scholar 

  17. Bradley, E., Kantz, H.: Nonlinear time-series analysis revisited. Chaos 25(9), 097610 (2015)

    Article  Google Scholar 

  18. Kantz, H., Schreiber, T., Hegger, R.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1997)

    MATH  Google Scholar 

  20. Albert, R., Barabsi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  21. Caldarelli, G.: Scale Free Networks: Complex Webs in Nature and Technology. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  22. D’Agostino, G., Scala, A.: Networks of Networks: The Last Frontier of Complexity. Springer, Switzerland (2014)

    Book  Google Scholar 

  23. Reka, A., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  24. Barthelemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  25. Yazdani, A., Jeffrey, P.: Applying network theory to quantify the redundancy and structural robustness of water distribution systems. J. Water Resour. Plann. Manage. 138(2), 153–161 (2012)

    Article  Google Scholar 

  26. Ángeles Serrano, A., Boguñá, M.: Clustering in complex networks. ii. percolation properties. Phys. Rev. E 74, 056115 (2006)

    Article  MathSciNet  Google Scholar 

  27. Shooman, M.L.: Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design. Wiley, New York (2002)

    Book  Google Scholar 

  28. Christodoulou, S., Fragiadakis, M.: Vulnerability assessment of water distribution networks considering performance data. J. Infrastruct. Syst., 04014040 (2015)

    Google Scholar 

  29. Sakshi Pahwa, Caterina Scoglio, and Antonio Scala. Abruptness of cascade failures in power grids. Sci. Rep., 4:-, January 2014

    Google Scholar 

  30. Rossman, L.A.: EPANET2 Users Manual. US E.P.A., Cincinnati (OH) (2000)

    Google Scholar 

  31. Mureddu, M., Caldarelli, G., Chessa, A., Scala, A., Damiano, A.: Green power grids: How energy from renewable sources affects networks and markets. PLoS ONE 10(9), e0135312 (2015)

    Article  Google Scholar 

  32. Water Authorities Association and Water Research Centre. Leakage control policy and practice. technical working group on waste of water. Technical report (1985)

    Google Scholar 

  33. Di Nardo, A., Di Natale, M., Santonastaso, G.F., Venticinque, S.: An automated tool for smart water network partitioning. Water Resour. Manage. 27(13), 4493–4508 (2013)

    Article  Google Scholar 

  34. Herrera, M., Canu, S., Karatzoglou, A., Péres-garcia, R., Izquierdo, J.: An approach to water supply clusters by semi-supervised learning. In: Swayne, D.A., Yang, W., Voinov, A.A., Rizzoli, A., Filatova, T. (eds.) Proceedings of International Environmental Modelling and Software Society (IEMSS) (2010)

    Google Scholar 

  35. Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., Santonastaso, G.F.: Water supply network partitioning based on weighted spectral clustering. In: Cherifi, H., et al. (eds.) Complex Networks & Their Applications V. SCI, vol. 693, pp. 797–807. Springer, Cham (2016)

    Chapter  Google Scholar 

  36. Sharma, A.K., Swamee, P.K.: Application of flow path algorithm in flow pattern mapping and loop data generation for a water distribution system. J. Water Supply Res. T. 54(7), 411–422 (2005)

    Google Scholar 

  37. Gomes, R., Sá Marques, A., Sousa, J.: Identification of the optimal entry points at district metered areas and implementation of pressure management. Urban Water J. 9(6), 365–384 (2012)

    Article  Google Scholar 

  38. Di Nardo, A., Di Natale, M., Santonastaso, G.F.: A comparison between different techniques for water network sectorization. Water Sci. Technol. Water Supply 14(6), 961–970 (2014)

    Article  Google Scholar 

  39. Izquierdo, J., Herrera, M., Montalvo, I., Pérez-Garca, R.: Division of water distribution systems into district metered areas using a multi-agent based approach. Comm. Com. Inf. S.C. 50(4), 167–180 (2011)

    Google Scholar 

  40. Diao, K., Zhou, Y., Rauch, W.: Automated creation of district metered area boundaries in water distribution systems. J. Water Res. P.L.-ASCE 139(2), 184–190 (2013)

    Google Scholar 

  41. Wang, Y., Ocampo-Martínez, C., Puig, V., Quevedo, J.: Gaussian-process-based demand forecasting for predictive control of drinking water networks. In: Panayiotou, C.G.G., Ellinas, G., Kyriakides, E., Polycarpou, M.M.M. (eds.) CRITIS 2014. LNCS, vol. 8985, pp. 69–80. Springer, Cham (2016). doi:10.1007/978-3-319-31664-2_8

    Chapter  Google Scholar 

  42. United Nations World Commission on Environment and Development. Our Common Future. Oxford University Press (1987)

    Google Scholar 

  43. Costanza, R., Daly, H., Bartholomew, J.A.: Goals, agenda, and policy recommendations for ecological economics. In: Costanza, R. (ed.) Ecological Economics, pp. 1–21. Columbia University (1991)

    Google Scholar 

  44. Pearce, D.W., Atkinson, G.D.: Capital theory and the measurement of sustainable development: an indicator of sustainability. Ecol. Econ. 8, 103–108 (1993)

    Article  Google Scholar 

  45. Costanza, R., Patten, B.C.: Defining and predic- ting sustainability. Ecol. Econ. 15, 193–196 (1995)

    Article  Google Scholar 

  46. Schubert, A., Láng, I.: The literature aftermath of the brundtland reportour common future a scientometric study based on citations in science and social science journals. Environ. Dev. Sustain. 7, 1–8 (2005)

    Article  Google Scholar 

  47. Ioannou, I., Serafeim, G.: What drives corporate social performance? the role of national-level institutions. J. Int. Bus. Stud. 43, 834–864 (2012)

    Article  Google Scholar 

  48. Cho, C.H., Laine, M., Roberts, R.W., Rodrigue, M.: Organized hypocrisy, organizational façades, and sustainability reporting, accounting. Organ. Soc. 40, 78–94 (2015)

    Article  Google Scholar 

  49. Dhaliwal, D.S., Li, O.Z., Tsang, A., Yang, Y.G.: Corporate social responsibility disclosure and the cost of equity capital: the roles of stakeholder orientation and financial transparency. J. Accountability Public Policy 33, 328–355 (2014)

    Article  Google Scholar 

  50. Lundin, M.: Assessment of the environmental sustainability of urban water systems. Ph.D. thesis, Chalmers University of Technology (1999)

    Google Scholar 

  51. Larsen, T.A., Gujer, W.: The concept of sustainable urban water management. Water Sci. Technol. 35, 3–10 (1997)

    Article  Google Scholar 

  52. International Integrated Reporting Council (IIRC). Towards integrated reporting: communicating value in the 21st century. Technical report (2011)

    Google Scholar 

  53. OECD. Environmental performance reviews: Italy 2013. Technical report (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Facchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Facchini, A. et al. (2017). Complexity Science for Sustainable Smart Water Grids. In: Rossi, F., Piotto, S., Concilio, S. (eds) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. WIVACE 2016. Communications in Computer and Information Science, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-319-57711-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57711-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57710-4

  • Online ISBN: 978-3-319-57711-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics