Skip to main content

Drug Dosage Balancing Using Large Scale Multi-omics Datasets

  • Conference paper
  • First Online:
Data Management and Analytics for Medicine and Healthcare (DMAH 2016)

Abstract

Cancer is a disease of biological and cell cycle processes, driven by dosage of the limited set of drugs, resistance, mutations, and side effects. The identification of such limited set of drugs and their targets, pathways, and effects based on large scale multi-omics, multi-dimensional datasets is one of key challenging tasks in data-driven cancer genomics. This paper demonstrates the use of public databases associated with Drug-Target(Gene/Protein)-Disease to dissect the in-depth analysis of approved cancer drugs, their genetic associations, their pathways to establish a dosage balancing mechanism. This paper will also help to understand cancer as a disease associated pathways and effect of drug treatment on the cancer cells. We employ the Semantic Web approach to provide an integrated knowledge discovery process and the network of integrated datasets. The approach is employed to sustain the biological questions involving (1) Associated drugs and their omics signature, (2) Identification of gene association with integrated Drug-Target databases (3) Mutations, variants, and alterations from these targets (4) Their PPI Interactions and associated oncogenic pathways (5) Associated biological process aligned with these mutations and pathways to identify IC-50 level of each drug along-with adverse events and alternate indications. In principal this large semantically integrated database of around 30 databases will serve as Semantic Linked Association Prediction in drug discovery to explore and expand the dosage balancing and drug re-purposing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figure 1 is partially adapted from [5].

  2. 2.

    Figure 2 is remodelled using [3, 6,7,8].

  3. 3.

    All predictions, dosage information and alternate indications having been reported by data driven approach only. Experiments must be conducted after wet-lab and clinical validations.

References

  1. Kumar, R., Chaudhary, K., Gupta, S., Singh, H., Kumar, S., Gautam, A., Kapoor, P., Raghava, G.P.: CancerDR: cancer drug resistance database. Scientific reports 3 (2013)

    Google Scholar 

  2. Gottlieb, A., Altman, R.B.: Integrating systems biology sources illuminates drug action. Clin. Pharmacol. Ther. 95(6), 663 (2014)

    Article  Google Scholar 

  3. Hahn, W.C., Weinberg, R.A.: A Subway Map of Cancer Pathways. Nature Publishing Group (2002)

    Google Scholar 

  4. Spanheimer, P.M., Cyr, A.R., Gillum, M.P., Woodfield, G.W., Askeland, R.W., Weigel, R.J.: Distinct pathways regulated by RET and estrogen receptor in luminal breast cancer demonstrate the biological basis for combination therapy. Ann. Surg. 259(4), 793 (2014)

    Article  Google Scholar 

  5. Croset, S., Drug repositioning and indication discovery using description logics (Doctoral dissertation, University of Cambridge) (2014)

    Google Scholar 

  6. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33(suppl 1), D428–D432 (2005)

    Google Scholar 

  7. Whirl-Carrillo, M., McDonagh, E.M., Hebert, J.M., Gong, L., Sangkuhl, K., Thorn, C.F., Altman, R.B., Klein, T.E.: Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92(4), 414 (2012)

    Article  Google Scholar 

  8. Chen, X., Wang, Y., Wang, P., Lian, B., Li, C., Wang, J., Li, X., Jiang, W.: Systematic analysis of the associations between adverse drug reactions and pathways. In: BioMed Research International (2015)

    Google Scholar 

  9. Ritschel, W.A.: Handbook of Basic Pharmacokinetics (1976)

    Google Scholar 

  10. Patel, N., Itakura, T., Jeong, S., Liao, C.P., Roy-Burman, P., Zandi, E., Groshen, S., Pinski, J., Coetzee, G.A., Gross, M.E., Fini, M.E.: Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. PloS one 10(2), e0117758 (2015)

    Article  Google Scholar 

  11. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: A linked data space for clinical trials. arXiv preprint arXiv:0908.0567

  12. Pauwels, E., Stoven, V., Yamanishi, Y.: Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 12(1), 169 (2011)

    Article  Google Scholar 

  13. Zheng, H., Wang, H., Xu, H., Wu, Y., Zhao, Z., Azuaje, F.: Linking biochemical pathways and networks to adverse drug reactions. IEEE Trans. NanoBiosci. 13(2), 131–137 (2014)

    Article  Google Scholar 

  14. Ma, H., Zhao, H.: Drug target inference through pathway analysis of genomics data. Adv. Drug Delivery Rev. 65(7), 966–972 (2013)

    Article  Google Scholar 

  15. Karp, P.D., Krummenacker, M., Paley, S., Wagg, J.: Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol. 17(7), 275–281 (1999)

    Article  Google Scholar 

  16. Atias, N., Sharan, R.: An algorithmic framework for predicting side effects of drugs. J. Comput. Biol. 18(3), 207–218 (2011)

    Article  MathSciNet  Google Scholar 

  17. Zhou, H., Gao, M., Skolnick, J.: Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Scientific reports, 5 (2015)

    Google Scholar 

  18. Pratanwanich, N., Lió, P.: Pathway-based Bayesian inference of drug-disease interactions. Mol. BioSyst. 10(6), 1538–1548 (2014)

    Article  Google Scholar 

  19. Hardt, C., Beber, M.E., Rasche, A., Kamburov, A., Hebels, D.G., Kleinjans, J.C., Herwig, R.: pathway-level interpretation of drug-treatment data. Database, p. baw052 (2016)

    Google Scholar 

  20. Li, J., Lu, Z.: Pathway-based drug repositioning using causal inference. BMC Bioinformatics 14(16), 1 (2013)

    Google Scholar 

  21. Guney, E., Menche, J., Vidal, M. and Barábasi, A.L., Network-based in silico drug efficacy screening. Nature Commun. 7 (2016)

    Google Scholar 

  22. Mehdi, M., Iqbal, A., Hogan, A., Hasnain, A., Khan, Y., Decker, S., Sahay, R.: Discovering domain-specific public SPARQL endpoints: a life-sciences use-case. In: Proceedings of the 18th International Database Engineering & Applications Symposium, pp. 39–45. ACM, July 2014

    Google Scholar 

  23. Jha, A., Khan, Y., Iqbal, A., Zappa, A., Mehdi, M., Sahay, R., Rebholz-Schuhmann, D.: Linked Functional Annotation For Differentially Expressed Gene (DEG) Demonstrated using Illumina Body Map 2.0

    Google Scholar 

  24. Jha, A., Khare, A., Singh, R.: Features’ Compendium for Machine Learning in NGS Data Analysis (2015)

    Google Scholar 

  25. Pirró, G., Cuzzocrea, A.: RECAP: building relatedness explanations on the web. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 235–238. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  26. Mehdi, M., Iqbal, A., Hasnain, A., Khan, Y., Decker, S., Sahay, R.: Utilizing domain-specific keywords for discovering public SPARQL endpoints: a life-sciences use-case. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 333–335. ACM, March 2014

    Google Scholar 

  27. Mehdi, M., Iqbal, A., Khan, Y., Decker, S., Sahay, R.: detecting inner-ear anatomical, clinical datasets in the Linked Open Data (LOD) cloud. In: Proceedings of International Workshop on Biomedical Data Mining, Modeling, Semantic Integration: A Promising Approach to Solving Unmet Medical Needs (BDM2I2015) (2015)

    Google Scholar 

  28. Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8_14

    Chapter  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alokkumar Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jha, A., Mehdi, M., Khan, Y., Mehmood, Q., Rebholz-Schuhmann, D., Sahay, R. (2017). Drug Dosage Balancing Using Large Scale Multi-omics Datasets. In: Wang, F., Yao, L., Luo, G. (eds) Data Management and Analytics for Medicine and Healthcare. DMAH 2016. Lecture Notes in Computer Science(), vol 10186. Springer, Cham. https://doi.org/10.1007/978-3-319-57741-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57741-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57740-1

  • Online ISBN: 978-3-319-57741-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics