Skip to main content

A Parallel Evolutionary Approach to the Molecular Docking Problem

  • Conference paper
  • First Online:
  • 846 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Abstract

The ligand-protein molecular docking is an unsolved problem in Bioinformatics consisting in determining the way in which two such molecules bind in nature, depending on their structure and interaction. The solution of this problem is one of the core aims of Bioinformatics and the basis for the rational drug design process. Through the use of evolutionary and parallelization techniques, a new approach is presented, consisting of a threaded implementation of an island model genetic algorithm. The results show a mixed outcome, with an aided search version achieving quick and accurate predictions, while the more ambitious free search proposal still does not produce acceptable results. Additional advantages of the software obtained are cross-platform nature, reasonable performance on average consumer hardware and ease of use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Teodoro, M.L., Philips, G.N., Kavraki, L.E.: Molecular docking: a problem with thousands of degrees of freedom. IEEE Int. Conf. Robot. Autom. 8(1), 960–966 (2001)

    Google Scholar 

  2. Bajaj, C., Chowdhury, R., Siddavanahalli, V.: F2Dock: fast Fourier protein-protein docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(1), 45–58 (2011)

    Article  Google Scholar 

  3. Geppert, T., Proschak, E., Schneider, G.: Protein-protein docking by shape-complementarity and property matching. J. Comput. Chem. 31(9), 1919–1928 (2010)

    Google Scholar 

  4. Klotz, I.M.: Protein interactions with small molecules. Acc. Chem. Res. 7, 162–168 (1974)

    Article  Google Scholar 

  5. PyMOL. http://www.pymol.org/pymol. Accessed 2016

  6. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis, S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 3–27. Springer, Cham (2015). doi:10.1007/978-3-319-15976-8_1

    Google Scholar 

  7. Hornby, G.S.: The age-layered population structure (ALPS) evolutionary algorithm, July 2009

    Google Scholar 

  8. Garzon, J.I., Lopz-Blanco, J.R., Pons, C., Kovacs, J., Abagyan, R., Fernandez-Recio, J., Chancon, P.: FRODOCK: a new approach for fast rotational protein-protein docking. Struct. Bioinform. 25(19), 2544–2551 (2009)

    Article  Google Scholar 

  9. Xie, Z.-R., Hwang, M.-J.: Ligand binding site prediction using ligand interacting and binding site-enriched protein triangles. Bioinformatics 28, 1579–1585 (2012)

    Article  Google Scholar 

  10. Espinosa-Galindo, D., Fernndez-Flores, J., Almanza-Romn, I.A., Rosas-Trigueros, J.L., Palma-Orozco, R.: Sistema de acoplamiento molecular. Escuela Superior de Cmputo del Instituto Politcnico Nacional, Ciudad de Mexico, Mexico (2016)

    Google Scholar 

  11. An Automated force field Topology Builder (ATB) and repository: version 1.0

    Google Scholar 

  12. Baker, J.E.: Genetic algorithms and their applications. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 101–111 (1985)

    Google Scholar 

  13. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  14. GlobalInterpreterLock. https://wiki.python.org/moin/GlobalInterpreterLock. Accessed 10 July 2016

  15. Cock, P., Antao, T., Chang, J., Bradman, B., Cox, C., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., Hoon, M.: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)

    Article  Google Scholar 

  16. The Geometry of the Reactive Site and of the Peptide Groups in Trypsin, Trypsinogen and its Complexes with Inhibitors. http://www.rcsb.org/pdb/explore/explore.do?structureId=3ptb. Accessed 14 Oct 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Rosas-Trigueros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Espinosa-Galindo, D., Fernández-Flores, J.A., Almanza-Román, I.A., Palma-Orozco, R., Rosas-Trigueros, J.L. (2017). A Parallel Evolutionary Approach to the Molecular Docking Problem. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics