Skip to main content

Computational Simulation of the Hemodynamic Behavior of a Blood Vessel Network

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Included in the following conference series:

Abstract

During development, blood vessel networks adapt to gradual changes in the oxygen required by surrounding tissue, shear stress, and mechanical stretch. The possible adaptations include remodeling the vessel network and thickening the walls of blood vessels. However, the treatment of several vascular diseases including cerebral arteriovenous malformations, arteriosclerosis, aneurysms, and vascular retinal disorders, may lead to abrupt changes that could produce hemorrhage or other problems. Modeling the hemodynamic behavior of a blood vessel network may help assess or even diminish the risks associated with each treatment. In this work, we briefly describe the radiological studies available to study the anatomy and hemodynamics of a patient. We then describe the segmentation, smoothing, healing, skeletonyzation, and meshing processes that are needed to obtain an initial model for the numerical simulations. Additionally, we state some important concepts about blood rheology and blood vessel elasticity. Further, we include a system of equations to describe the interaction between flowing blood and the elastic blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monahan-Earley, R., Dvorak, A., Aird, W.: Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost. 11(s1), 46–66 (2013)

    Article  Google Scholar 

  2. Kässmeyer, S., Plendl, J., Custodis, P., Bahramsoltani, M.: New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat. Histol. Embryol. 38(1), 1–11 (2009)

    Article  Google Scholar 

  3. Chillo, O., Kleinert, E.C., Lautz, T., Lasch, M., Pagel, J.-I., Heun, Y., Troidl, K., Fischer, S., Caballero-Martinez, A., Mauer, A., et al.: Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep. 16(8), 2197–2207 (2016)

    Article  Google Scholar 

  4. Simons, M., Gordon, E., Claesson-Welsh, L.: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17(10), 611–625 (2016)

    Article  Google Scholar 

  5. Voß, S., Glaßer, S., Hoffmann, T., Beuing, O., Weigand, S., Jachau, K., Preim, B., Thévenin, D., Janiga, G., Berg, P.: Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput. Math. Methods Med. 2016, 1–8 (2016). Article ID 9854539

    Article  Google Scholar 

  6. Brown, A.J., Teng, Z., Evans, P.C., Gillard, J.H., Samady, H., Bennett, M.R.: Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13(4), 210–220 (2016)

    Article  Google Scholar 

  7. Morbiducci, U., Kok, A.M., Kwak, B.R., Stone, P.H., Steinman, D.A., Wentzel, J.J., et al.: Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb. Haemost. 115(3), 484–492 (2016)

    Article  Google Scholar 

  8. Gelfand, B.D., Ambati, J.: A revised hemodynamic theory of age-related macular degeneration. Trends Mol. Med. 22(8), 656–670 (2016)

    Article  Google Scholar 

  9. Causin, P., Guidoboni, G., Malgaroli, F., Sacco, R., Harris, A.: Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech. Model. Mechanobiol. 15(3), 525–542 (2016)

    Article  Google Scholar 

  10. White, A., Smith, F.: Computational modelling of the embolization process for the treatment of arteriovenous malformations (AVMs). Math. Comput. Model. 57(5), 1312–1324 (2013)

    Article  MathSciNet  Google Scholar 

  11. Busch, K.J., Kiat, H., Stephen, M., Simons, M., Avolio, A., Morgan, M.K.: Cerebral hemodynamics and the role of transcranial doppler applications in the assessment and management of cerebral arteriovenous malformations. J. Clin. Neurosci. 30, 24–30 (2016)

    Article  Google Scholar 

  12. Golovin, S., Khe, A., Gadylshina, K.: Hydraulic model of cerebral arteriovenous malformations. J. Fluid Mech. 797, 110–129 (2016)

    Article  MathSciNet  Google Scholar 

  13. Penta, R., Ambrosi, D., Quarteroni, A.: Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math. Models Methods Appl. Sci. 25(01), 79–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Q., Jiang, L., Li, C., Hu, D., Bu, J.-W., Cai, D., Du, J.-L.: Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol. 10(8), e1001374 (2012)

    Article  Google Scholar 

  15. Humphrey, J.D., Harrison, D.G., Figueroa, C.A., Lacolley, P., Laurent, S.: Central artery stiffness in hypertension and aging a problem with cause and consequence. Circ. Res. 118(3), 379–381 (2016)

    Article  Google Scholar 

  16. Yu, H., Huang, G.P., Yang, Z., Liang, F., Ludwig, B.: The influence of normal and early vascular aging on hemodynamic characteristics in cardio-and cerebrovascular systems. J. Biomech. Eng. 138(6), 061002 (2016)

    Article  Google Scholar 

  17. Iacono, M.I., Neufeld, E., Akinnagbe, E., Bower, K., Wolf, J., Oikonomidis, I.V., Sharma, D., Lloyd, B., Wilm, B.J., Wyss, M., et al.: MIDA: a multimodal imaging-based detailed anatomical model of the human head and neck. PLoS ONE 10(4), e0124126 (2015)

    Article  Google Scholar 

  18. Fujiwara, H., Momoshima, S., Akiyama, T., Kuribayashi, S.: Whole-brain CT digital subtraction angiography of cerebral dural arteriovenous fistula using 320-detector row CT. Neuroradiology 55(7), 837–843 (2013)

    Article  Google Scholar 

  19. Wright, S.N., Kochunov, P., Mut, F., Bergamino, M., Brown, K.M., Mazziotta, J.C., Toga, A.W., Cebral, J.R., Ascoli, G.A.: Digital reconstruction and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography. Neuroimage 82, 170–181 (2013)

    Article  Google Scholar 

  20. Davis, B., Oberstar, E., Royalty, K., Schafer, S., Strother, C., Mistretta, C.: Volumetric limiting spatial resolution analysis of four dimensional digital subtraction angiography (4D-DSA). In: SPIE Medical Imaging, pp. 94121B–94121B. International Society for Optics and Photonics (2015)

    Google Scholar 

  21. Lescher, S., Gehrisch, S., Klein, S., Berkefeld, J.: Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations. J. NeuroInterv. Surg., 1–8 (2016). neurintsurg–2016

    Google Scholar 

  22. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008)

    Article  Google Scholar 

  23. Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D., Fangerau, M., Baumhauer, M., Maier-Hein, L., et al.: The medical imaging interaction toolkit: challenges and advances. Int. J. Comput. Assist. Radiol. Surg. 8(4), 607–620 (2013)

    Article  Google Scholar 

  24. Hsu, C.-Y., Schneller, B., Alaraj, A., Flannery, M., Zhou, X.J., Linninger, A.: Automatic recognition of subject-specific cerebrovascular trees. Magn. Reson. Med. 77, 398–410 (2016)

    Article  Google Scholar 

  25. Klepaczko, A., Szczypiński, P., Deistung, A., Reichenbach, J.R., Materka, A.: Simulation of MR angiography imaging for validation of cerebral arteries segmentation algorithms. Comput. Methods Programs Biomed. 137, 293–309 (2016)

    Article  Google Scholar 

  26. Du, Q., Wang, D.: Tetrahedral mesh generation and optimization based on centroidal voronoi tessellations. Int. J. Numer. Methods Eng. 56(9), 1355–1373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Liu, Y., Xu, W., Wang, W., Guo, B.: All-hex meshing using singularity-restricted field. ACM Trans. Graph. (TOG) 31(6), 177 (2012)

    Google Scholar 

  28. Hu, K., Zhang, Y.J.: Centroidal voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation. Comput. Methods Appl. Mech. Eng. 305, 405–421 (2016)

    Article  MathSciNet  Google Scholar 

  29. Fedosov, D.A., Noguchi, H., Gompper, G.: Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 13(2), 239–258 (2014)

    Article  Google Scholar 

  30. Rai, V., Rathore, D.S.: Analysis of viscosity of non-newtonian flow in blood vessels. Int. J. Res. Comput. Eng. Electron. 3(6), 1–6 (2015)

    Google Scholar 

  31. Barbee, J.H., Cokelet, G.R.: The fahraeus effect. Microvasc. Res. 3(1), 6–16 (1971)

    Article  Google Scholar 

  32. Albrecht, K., Gaehtgens, P., Pries, A., Heuser, M.: The fahraeus effect in narrow capillaries (id 3.3 to 11.0 \(\mu \)m). Microvasc. Res. 18(1), 33–47 (1979)

    Article  Google Scholar 

  33. Sankar, D., Hemalatha, K.: Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries-a mathematical model. Appl. Math. Model. 31(8), 1497–1517 (2007)

    Article  MATH  Google Scholar 

  34. Priyadharshini, S., Ponalagusamy, R.: Biorheological model on flow of herschel-bulkley fluid through a tapered arterial stenosis with dilatation. Appl. Bionics Biomech. 2015, 1–12 (2015). Article ID 406195

    Article  Google Scholar 

  35. Zheng, X., Ren, J.: Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. J. Theor. Biol. 393, 118–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., Quarteroni, A.: Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tricerri, P., Dedè, L., Deparis, S., Quarteroni, A., Robertson, A.M., Sequeira, A.: Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput. Mech. 55(3), 479–498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Buell, T.J., Ding, D., Starke, R.M., Crowley, R.W., Liu, K.C.: Embolization-induced angiogenesis in cerebral arteriovenous malformations. J. Clin. Neurosci. 21(11), 1866–1871 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ABACUS, CONACyT grant EDOMEX-2011-C01-165873. The numerical simulations for this work were performed in the Abacus I supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Klapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Weinstein, N., Aviles, A., Gitler, I., Klapp, J. (2017). Computational Simulation of the Hemodynamic Behavior of a Blood Vessel Network. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics