
ar
X

iv
:1

70
3.

04
87

8v
1

 [
cs

.C
R

]
 1

5
M

ar
 2

01
7

Superposition as memory: unlocking quantum

automatic complexity

Bjørn Kjos-Hanssen∗

July 8, 2018

Abstract

We define the semi-classical quantum automatic complexity Qs(x) of a
word x as the infimum in lexicographic order of those pairs of nonnegative
integers (n, q) such that there is a subgroup G of the projective unitary
group PU(n) with |G| ≤ q and with U0, U1 ∈ G such that, in terms of
a standard basis {ek} and with Uz =

∏
k
Uz(k), we have Uxe1 = e2 and

Uye1 6= e2 for all y 6= x with |y| = |x|. We show that Qs is unbounded
and not constant for strings of a given length. In particular,

Qs(0
212) ≤ (2, 12) < (3, 1) ≤ Qs(0

60160)

and Qs(0
120) ≤ (2, 121).

1 Introduction

Quantum locks. Imagine a lock with two states, “locked” and “unlocked”,
which may be manipulated using two operations, called 0 and 1. Moreover, the
only way to (with certainty) unlock using four operations is to do them in the
sequence 0011, i.e., 0n1n where n = 2. In this scenario one might think that
the lock needs to be in certain further states after each operation, so that there
is some memory of what has been done so far. Here we show that this memory
can be entirely encoded in superpositions of the two basic states “locked” and
“unlocked”, where, as dictated by quantum mechanics, the operations are given
by unitary matrices. Moreover, we show using the Jordan–Schur lemma that a
similar lock is not possible for n = 60.

Quantum security. A problem with traditional padlocks is that a clever lock-
breaker can seek to detect what internal state the lock is in part-way through
the entering of the lock code. This problem disappears when the internal states

∗This work was partially supported by a grant from the Simons Foundation (#315188 to
Bjørn Kjos-Hanssen). This material is based upon work supported by the National Science
Foundation under Grant No. 1545707.

1

http://arxiv.org/abs/1703.04878v1

are just superpositions of “locked” and “unlocked”. Of course, there may be
a positive probability that the system when observed part-way through the
entering of the lack code is observed in the “unlocked” state. To remedy this,
one could use a sequence of many locks, say 10k for a suitable positive integer
k, and add a third “permanently locked” state which, once reached, cannot
be left. Then observing the lock will likely eventually result in landing in the
permanently locked state. (In the case of the code 0n1n, the permanently locked
state might be implemented as having a probability related to the difference in
the number of 0s and 1s entered in the code so far.) Note that in theory this
is a purely quantum phenomenon: any simulation of the quantum device using
classical hardware will be subject to the original problem that a lock-breaker
may try to discern the internal states of the classical hardware.

Quantum automata. One of the fascinating aspects of quantum mechanics
is how our understanding of states is enriched, with observable states, pure
states, and mixed states. The notion of state of a finite automaton begs for a
generalization to the quantum realm. Indeed, quantum finite automata have
been studied already [1].

On the other hand automatic complexity introduced by Shallit and Wang
[2] has been related it to model selection in statistics [3] and to pseudorandom-
ness generation with linear feedback shift registers [4]. Other approaches to
automatic complexity [5, 6, 7] yield better insight into infinite words.

We shall consider complexity with respect to an arbitrary semigroup before
considering the quantum case of the projective unitary group PU(n).

Definition 1. Let TX denote the set of all transformations of the set X; TX =
{f | f : X → X}. The complexity of a string x ∈ {0, 1}n, n ≥ 0, is the class of
all semigroup actions ϕ : G → TX for semigroups G and sets X, with

• two1 elements δ0, δ1 ∈ G, inducing δy =
∏|y|

k=1 δy(k) for each y ∈ {0, 1}n,
y = y(1) · · · y(|y|);

• an initial state α ∈ X; and

• a final state ω ∈ X,

such that x is the only y ∈ {0, 1}n for which δyα := ϕ(δy)α = ω.
In this case we say that x has complexity at most ϕ, or, if ϕ is understood,

complexity at most G.

1.1 Quantum automatic complexity

Let e
(n)
j , 1 ≤ j ≤ n be the standard basis for Cn. Let U(n) be the group of

unitary complex n× n matrices and let PU(n) be the projective unitary group.

1noncommuting, unless x is a unary string like 0n

2

For n× n matrices U0 and U1 and a binary string x, we define

Ux =

|x|
∏

k=1

Ux(k).

Definition 2. A quantum deterministic finite automaton (quantum DFA) M
with q states consists of an initial state α ∈ CP

q, a final state ω, and δ0, δ1 ∈
PU(q). We say that M accepts a word x ∈ {0, 1}n, n ≥ 0 if

δxα = ω.

Let x ∈ {0, 1}n, n ≥ 0. The quantum automatic complexity of x, Q(x), is the
least q such that there exists a quantum DFA M with q states such that for all
y ∈ {0, 1}n, M accepts y iff y = x.

• If we additionally require that δ0, δ1 generate a finite subgroup of PU(q),
we obtain the finite quantum automatic complexity Qf(x).

• If we require α = e1 and β = e2 then we obtain semi-classical quantum
automatic complexity Qs.

• If we require both of the extra requirements for Qs and Qf , we get Qsf .

We can write Qs(x) ≤ (n,∞) if Qs(x) ≤ n, and Qs(x) ≤ (n, f) if Qsf (x) ≤ n
as witnessed by a finite group of order f . This way we see Aperm, the automatic
complexity [2] with the added restriction that the transition functions be per-
mutations, as an upper bound for n and a lower bound for f . Ordering these
pairs lexicographically, we shall show that

(3, 121) ≤ Qs(0
60160) ≤ (121,∞)

assuming the following conjecture.

Conjecture 3. Aperm(x) = |x|+ 1 for all x.

Remark 4. We have verified Conjecture 3 for binary strings of length up to 9.

Theorem 5. (1) If Qs(x) > (n,∞) then Qs(x) ≥ (n + 1, Aperm(x)). (2) We
always have Qs(x) ≤ (Aperm(x), Aperm(x)).

Proof. For (1) we note that the quantum states can be considered as states,
so that the Cayley graph of any group witnessing Qsf can be thought of as a
witness for Aperm. For (2) we note that we can restrict attention to only the

states e
(q)
j , 1 ≤ j ≤ q, refusing to use superposition.

Matrices M of dimension n× n whose entries are 0 and 1, with exactly one
1 per column, act on X = [n] = {1, . . . , n} by matrix multiplication in the
following way:

ϕ(M)(j) = k, where Me
(n)
j = e

(n)
k .

If M is additionally invertible then it thus induces an element of the symmetric
group Sn and belongs to O(n), the group of orthogonal matrices M (satisfying
M−1 = MT).

3

Theorem 6. For each string x, Qf(x) is finite.

Proof. By the embedding of Sn into O(n) above, and then inclusion of O(n)
into U(n) (simply because U−1 = UT for a real matrix U implies U−1 = U †),
we have Qf (x) ≤ (Aperm(x), Aperm(x)) ≤ (x+ 1, x+ 1).

We also have Q ≤ Qf ≤ Qsf and Q ≤ Qs ≤ Qsf . For our quantum
lock analogy we want distinct initial and final states, whereas for automatic
complexity A(x) or Aperm(x) it is natural to not require that.

2 Bounds on Qs

Arbitrary q-state DFA transition functions δ0, δ1 can be considered to belong to
the matrix algebra Mq of all q× q matrices. They are then exactly the matrices
whose entries are 0 and 1, with exactly one 1 per column. And the nondetermin-
istic case just corresponds to 0–1 valued matrices with not necessarily exactly
one 1 per column. Moving to arbitrary real matrices we can significantly reduce
the required dimension, from n/2 + 1 [8] to 2, as we now explain.

The following Theorem 7 indicates how any binary string can be encoded,
in a sense, by two 2× 2 matrices.

Theorem 7. For each binary string x there exist U0, U1 ∈ GL2(R) such that
Uxe1 = e2 and for any y 6= x, |y| = |x|, Uye1 6= e2.

We omit the proof.

Theorem 8. Q(x) ≤ 2 for all strings x.

Proof. It suffices to show that there is a free group generated by two unitary
matrices. It is well-known [9] that a generic pair of unitaries in U(2) generates
a free group. Indeed, the existence of free subgroups of SO(3) (and hence its
double cover SU(2)) was already known to F. Hausdorff [10]; see also [11] and
explicit examples in [12].

Unfortunately, perhaps, free groups are incompatible with the “semi-classical”
e1 7→ e2 property in the following way:

Theorem 9. There is no word x of length > 0 and pair of unitary matrices
U0, U1 such that U0 and U1 generate a free group and Uxe1 = e2 in projective
space.

3 Unboundedness of Qf

As usual we denote by H E G that H is a normal subgroup G, and by [G : H]
the index of H in G.

Theorem 10 (Jordan–Schur). There is a function f(n) such that given a finite
group G that is a subgroup of Mn(C), there is an abelian subgroup H E G such
that [G : H] ≤ f(n).

4

e1 7→ e2 required not required
finite group required ∞ ∞

not required unknown 2

Table 1: Supremum of quantum automatic complexity over all strings. In the
case where e1 7→ e2 is required (semi-classical quantum automatic complexity
Qs) but finiteness (Qf) is not, we at least know that free groups cannot answer
the question, by Theorem 9.

Corollary 11. For each n there exists an m such that for any u, v ∈ U(n)
which generate a finite group, we have [um, vm] = 1, i.e., umvm = vmum.

Proof of Corollary from Theorem. If G is a finite group generated by u and v,
and H a normal abelian subgroup of index [G : H] = m, then umH = H
and vmH = H (since any group element raised to the order of the group is
the identity) and so um and vm belong to H , hence, H being abelian, they
commute.

Theorem 12. For each n there is a binary string x with Qf(x) > n.

Proof. Let x = 0m1m where m is as in Corollary 11. Given δ0, δ1 ∈ PU(n) =
U(n)/U(1), choose x and y in U(n) such that δ0 = xU(1) and δ1 = yU(1). Then
δ0m1m = (xU(1))m(yU(1))m = xmymU(1) = ymxmU(1) = δ1m0m .

The extent to which 2×2 matrices suffice for quantum automatic complexity
is indicated in Table 1.

Theorem 13. Qsf (0
60160) > 2.

Proof. Note that we may assume our finite subgroups are primitive as there is
no point in having a separate automaton disconnected from the witnessing one.
Collins [13] then shows that for n = 2, the optimal value is m = 60.

On the other hand, we show below in Theorem 19 that Qsf (0
212) = 2,

leaving a gap (2, 60) for the least n such that Qsf (0
n1n) > 2. The state of our

knowledge of finiteness of quantum automatic complexity is given in Table 1.

4 Calculating Qs(0011) ≤ (2, 12)

The group SU(2) is the group of unit quaternions with the matrix representation
[14]

1 =

[

1 0
0 1

]

, i =

[

i 0
0 −i

]

, j =

[

0 1
−1 0

]

, k =

[

0 i
i 0

]

where i is the imaginary unit. We shall consider its order 24 subgroup the binary
tetrahedral group

{

±1,±i,±j,±k,
1

2
(±1± i± j± k)

}

,

5

also known by isomorphism as SL(2, 3). Moreover we shall consider the order
12 quotient PSL(2, 3) which is isomorphic to the alternating group Alt(4).

Theorem 14. There exist a,b ∈ SU(2) such that

aabb 6∈ {a,b}4 \ {aabb}.

Proof. It turns out we can use the binary tetrahedral group to realize 0011
within SU(2). Namely, let

a = δ0 = (1+ i+ j− k)/2, b = δ1 = (1+ i+ j+ k)/2

in the quaternion representation,

a =
1

2

[

1 + i 1− i
−i− 1 1− i

]

, b =
1

2

[

1 + i 1 + i
i− 1 1− i

]

.

We can check that aabb = −j is unique among 4-letter words in a,b.

Theorem 15. For x = 0011, there exist δ0, δ1 ∈ SO(3) such that for all y ∈
{0, 1}4, δy = δx iff y = x.

Proof. Another way to express a and b in Theorem 14 is as

eiϕ
[

eiΨ 0
0 e−iΨ

] [

cos θ sin θ
− sin θ cos θ

] [

ei∆ 0
0 e−i∆

]

where ϕ = 0, θ = π/4, and a has (Ψ,∆) = (0, π/4) and b has (Ψ,∆) = (π/4, 0).
Thus

a =
1− i

2

[

1 1
−1 1

] [

i 0
0 1

]

=

(

1√
2

[

1 1
−1 1

])(

1− i√
2

[

i 0
0 1

])

is a product of two matrices rs in SU(2). The first one, r, corresponds [15] to
the SO(3) rotation

0 0 −1
0 1 0
1 0 0

which is a 90-degree rotation in the xz-plane, and the second one, s, to a 90-
degree rotation

0 −1 0
1 0 0
0 0 1

in the xy-plane in SO(3). We have

b =
1− i

2

[

i 0
0 1

] [

1 1
−1 1

]

= sr.

6

One remaining wrinkle, taken care of in Theorem 19, is to make sure the
other words are not only distinct from aabb, but map the start state to distinct
vectors from what aabb does.

Theorem 16 (well known). The order 24 group SL(2, 3) is given by a3 = b3 =
c2 = abc, or equivalently a3 = b3 = abab.

Theorem 17 ([16]). SL(2, 3) is isomorphic to the binary tetrahedral group, a
subgroup of U(2).

The group Alt(4) does serve as complexity bound for 0011. It is not a
subgroup of U(2) [16], but:

Theorem 18. There is a faithful, irreducible representation of Alt(4) ∼= PSL(2, 3)
as a subgroup of SL(2, 3) of index 2 and as a subgroup of PU(2).

Proof. Let a be as in Theorem 16. We define an equivalence relation ≡ by
u ≡ v ⇐⇒ u ∈ {v, a3v}. It is required to show that each element of our
SL(2, 3) is equivalent to an element of Alt(4). This is done in detail in Figure
1.

The representation from Theorem 18 is used in the proof of Theorem 19.

Theorem 19. Qsf (0011) = 2.

Proof. Let v =

[

v1
v2

]

with v1, v2 ∈ R. Let

E0 = a =
1

2

[

1 + i 1− i
−1− i 1− i

]

, E1 = b =
1

2

[

1 + i 1 + i
−1 + i 1− i

]

.

Let

D =

[

v1 −v2
v2 v1

]

= [v | E0011v], C =
1√

detD
D.

Let
Uj = C−1EjC, j ∈ {0, 1}.

Then it follows that

CU0011

[

1
0

]

= E0011C

[

1
0

]

= E0011

[

v1
v2

]

= C

[

0
1

]

.

Hence

U0011

[

1
0

]

=

[

0
1

]

.

Since fortunately our E0 and E1 satisfy E0011 = −j, C is orthogonal, and in

particular C is unitary. If we now choose v =

[

1
2

]

, then v is sufficiently generic

7

1, (1)

a, (2)

b, (3)

a2 = bab, (4)

ab, (5)

ba, (6)

b2 = aba, (7)

a3 = b3 = baba = abab ≡ 1, (8)

a2b = bab2, (9)

ab2 = a2ba, (10)

ba2 = b2ab = aba2b, (11)

b2a = aba2 = ab2ab, (12)

a4 = ab3 = b3a = a2bab = ababa ≡ a, (13)

a3b = ba3 = b4 = abab2 ≡ b, (14)

a2b2 = a3ba ≡ ba, (15)

ab2a = a2ba2, (16)

ba2b ≡ abba, (17)

b2a2 = a4b = aba3 = ab4 ≡ ab, (18)

a5 = a2b3 = ab3a ≡ a2, (19)

a3b2 ≡ b2, (20)

a2b2a ≡ baa, (21)

ab2a2 ≡ aab, (22)

ba2b2 ≡ bba, (23)

b2a2b ≡ abb. (24)

Figure 1: The 24 elements of SL(2, 3). All strings of length at most 2 are unique
of their length. By symmetry, words of length 5 starting with b are not written
down.

8

that Uye1 6= e2 as elements of CP1 for all y ∈ {0, 1}4 \ {x}. We have verified as
much with an Octave computation (see Figure 2 and Figure 3). We have

C =
1√
5

[

1 −2
2 1

]

, C−1 =
1√
5

[

1 2
−2 1

]

,

U0 =
1

10

[

5 + i 5 + 7i
−5 + 7i 5− i

]

and U1 =
1

10

[

5− 7i 5 + i
−5 + i 5 + 7i

]

.

Remark 20. It is still a question what the nature of the “complexity” Q and
Qs are picking out is. If it is anything like Aperm it may be less than intuitive.
However, there is some reason to believe that quantum automatic complexity
is better than permutation automatic complexity at distinguishing strings of the
same length. For permutation automatic complexity we do not know any ex-
ample of strings of the same length having distinct complexity, but for quantum
automatic complexity, 060160 and 0120 form such an example. The latter has
complexity at most 2 whereas the former does not (Theorem 13).

References

[1] A. Kondacs and J. Watrous, “On the power of quantum finite state au-
tomata,” in 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, 1997, pp.
66–75. [Online]. Available: http://dx.doi.org/10.1109/SFCS.1997.646094

[2] J. Shallit and M.-W. Wang, “Automatic complexity of strings,” J. Au-
tom. Lang. Comb., vol. 6, no. 4, pp. 537–554, 2001, 2nd Workshop on
Descriptional Complexity of Automata, Grammars and Related Structures
(London, ON, 2000).

[3] B. Kjos-Hanssen, “Few paths, fewer words: model selection with auto-
matic structure functions,” Experimental Mathematics, 2018, conditionally
accepted; arXiv 1608.01399.

[4] B. Kjos-Hanssen, “Shift registers fool finite automata,” ArXiv e-prints, Jul.
2016.

[5] A. Shen, “Automatic Kolmogorov complexity and normality revisited,”
ArXiv e-prints, Jan. 2017.

[6] V. Becher, O. Carton, and P. A. Heiber, “Normality and automata,”
J. Comput. System Sci., vol. 81, no. 8, pp. 1592–1613, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.jcss.2015.04.007

9

http://dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1016/j.jcss.2015.04.007

0

16
13

−
15
13

i−
9
13

+ 20
13

i

16
13

+ 15
13

i
9
37

+ 20
37

i

3
4

−
4
3

∞

−
16
37

−
15
37

i
9
37

−
20
37

i

−
9
13

−
20
13

i−
16
37

+ 15
37

i

Figure 2: Quantum complexity witness having the shape of a cuboctahedron.
The label α represents the projective point [1 : α]. The initial state is [1 : 0]
denoted by 0 and the accept state is [0 : 1] denoted by ∞. Dashed lines indicate
multiplication by U0. Solid lines indicate multiplication by U1.

10

I, (ab)2, (ba)2

a2a4, b3a, ab3

abaa bbab

abba, baab

bbaaaabb

ba3, b4, a3bb2

babbaaba

Figure 3: Another view of the quantum complexity witness having the shape of
a cuboctahedron of Figure 2.

11

[7] C. S. Calude, K. Salomaa, and T. K. Roblot, “Finite state complexity,”
Theoret. Comput. Sci., vol. 412, no. 41, pp. 5668–5677, 2011. [Online].
Available: http://dx.doi.org/10.1016/j.tcs.2011.06.021

[8] K. Hyde and B. Kjos-Hanssen, “Nondeterministic automatic complexity of
overlap-free and almost square-free words,” Electron. J. Combin., vol. 22,
no. 3, pp. Paper 3.22, 18 pp., 2015.

[9] A. Thom, “Convergent sequences in discrete groups,” Canad. Math.
Bull., vol. 56, no. 2, pp. 424–433, 2013. [Online]. Available:
http://dx.doi.org/10.4153/CMB-2011-155-3

[10] F. Hausdorff, “Bemerkung über den Inhalt von Punktmengen,”
Math. Ann., vol. 75, no. 3, pp. 428–433, 1914. [Online]. Available:
http://dx.doi.org/10.1007/BF01563735

[11] S. Świerczkowski, “On a free group of rotations of the Euclidean space,”
Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math., vol. 20, pp.
376–378, 1958.

[12] ——, “A class of free rotation groups,” Indag. Math.
(N.S.), vol. 5, no. 2, pp. 221–226, 1994. [Online]. Available:
http://dx.doi.org/10.1016/0019-3577(94)90026-4

[13] M. J. Collins, “On Jordan’s theorem for complex linear groups,” J.
Group Theory, vol. 10, no. 4, pp. 411–423, 2007. [Online]. Available:
http://dx.doi.org/10.1515/JGT.2007.032

[14] Q. Yuan. (2011, 2) su(2) and the quaternions. [Online]. Available:
https://qchu.wordpress.com/2011/02/12/su2-and-the-quaternions/

[15] I. M. Gel′fand, R. A. Minlos, and Z. J. ˇ Sapiro, Predstavleniya gruppy
vrashcheni i gruppy Lorentsa, ikh primeneniya. Gosudarstv. Izdat. Fiz.-
Mat. Lit., Moscow, 1958.

[16] K. M. Parattu and A. Wingerter. (2011) Tribimaximal mixing from small
groups. [Online]. Available: https://arxiv.org/pdf/1012.2842v2.pdf

12

http://dx.doi.org/10.1016/j.tcs.2011.06.021
http://dx.doi.org/10.4153/CMB-2011-155-3
http://dx.doi.org/10.1007/BF01563735
http://dx.doi.org/10.1016/0019-3577(94)90026-4
http://dx.doi.org/10.1515/JGT.2007.032
https://qchu.wordpress.com/2011/02/12/su2-and-the-quaternions/
https://arxiv.org/pdf/1012.2842v2.pdf

	1 Introduction
	1.1 Quantum automatic complexity

	2 Bounds on Qs
	3 Unboundedness of Qf
	4 Calculating Qs(0011)<=(2,12)

