Skip to main content

Quantum-Dot Cellular Automata: A Clocked Architecture for High-Speed, Energy-Efficient Molecular Computing

  • Conference paper
  • First Online:
  • 475 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

Abstract

Quantum-dot cellular automata (QCA) is a non-transistor-based, classical computing paradigm. QCA devices may be implemented using mixed-valence molecules, and logic circuits are formed by laying out ordered arrays of QCA molecules on a substrate. Molecules are locally coupled via the Coulomb field. The molecular circuits can be clocked using an applied perpendicular electric field. A fully-quantum model of field-driven electron transfer (ET) is used to determine the ET rate for specific QCA candidate molecules. The diferrocenyl acetylene (DFA) molecule is taken as an example QCA molecule, and this model indicates DFA may support classical computation at speeds well beyond the GHz range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is important to provide some disambiguation. In this context, “QCA” refers to quantum-dot cellular automata,” a paradigm for general-purpose classical computing proposed by Lent, Tougaw, Porod, and Bernstein [19]. Here, classical bits are manipulated by exploiting quantum phenomena: quantum tunneling, and the quantization of charge. “QCA” also stands for “quantum cellular automata,” a model for universal quantum computing. Since this abbreviation has served extensively in the distinct bodies of literature, we seek to avoid further other confusion by providing this note here, and by continuing to use “QCA” to refer in this context only to the classical computing paradigm.

References

  1. Andrae, A., Edler, T.: On global electricity usage of communication technology: Trends to 2030. Challenges 6, 117–157 (2015)

    Article  Google Scholar 

  2. Blair, E., Corcelli, S., Lent, C.: Electric-field-driven electron-transfer in mixed-valence molecules. J. Chem. Phys. 145, 014307 (2016)

    Article  Google Scholar 

  3. Blair, E., Lent, C.: An architecture for molecular computing using quantum-dot cellular automata. In: IEEE Conference on Nanotechnology, vol. 1, pp. 402–405. IEEE (2003)

    Google Scholar 

  4. Blair, E., Yost, E., Lent, C.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)

    Article  Google Scholar 

  5. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford Scholarship Online (2010)

    Google Scholar 

  6. Christie, J., Forrest, R., Corcelli, S., Wasio, N., Quardokus, R., Brown, R., Kandel, S., Lu, Y., Lent, C., Henderson, K.: Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem. 127, 15668–15671 (2015)

    Article  Google Scholar 

  7. Frank, D.: Power-constrained CMOS scaling limits. IBM J. Res. Dev. 46(2/3), 235–244 (2002)

    Article  Google Scholar 

  8. Gardelis, S., Smith, C., Cooper, J., Ritchie, D., Linfield, E., Jin, Y.: Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 67(3), 033302 (2003)

    Article  Google Scholar 

  9. Gorini, V., Kossakowski, A., Sudarshan, E.: Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  MathSciNet  Google Scholar 

  10. Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

    Article  Google Scholar 

  11. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

    Article  Google Scholar 

  12. Holstein, T.: Studies of polar on motion part I. The molecular-crystal model. Ann. Phys. New York 8, 325–342 (1959)

    Article  MATH  Google Scholar 

  13. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  14. Karbasian, G., Orlov, A., Mukasyan, A., Snider, G.: Single-electron transistors featuring silicon nitride tunnel barriers prepared by atomic layer deposition. In: 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS 2016). IEEE, January 2016

    Google Scholar 

  15. Lent, C.S.: Molecular electronics - bypassing the transistor paradigm. Science 288, 1597–1599 (2000)

    Article  Google Scholar 

  16. Lent, C., Henderson, K., Kandel, S., Corcelli, S., Snider, G., Orlov, A., Kogge, P., Niemier, M., Brown, R., Christie, J., Wasio, N., Quardokus, R., Forrest, R., Peterson, J., Silski, A., Turner, D., Blair, E., Lu, Y.: Molecular cellular networks: a non von Neumann architecture for molecular electronics. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–7. IEEE, October 2016

    Google Scholar 

  17. Lent, C., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  18. Lent, C.S., Snider, G.L.: The development of quantum-dot cellular automata. In: Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. LNCS, vol. 8280, pp. 3–20. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43722-3_1

    Google Scholar 

  19. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49 (1993)

    Article  Google Scholar 

  20. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C., Bernstein, G., Snider, G., Peiris, F.: Quantum-dot cellular automata at a molecular scale. Ann. N.Y. Acad. Sci. 960, 225–239 (2002)

    Article  Google Scholar 

  21. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997)

    Article  Google Scholar 

  23. Prager, A., George, H., Orlov, A., Snider, G.: Experimental demonstration of hybrid CMOS-single electron transistor circuits. J. Vac. Sci. Tenchnol. B 29(4), 041004 (2011)

    Article  Google Scholar 

  24. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  25. Sarveswaran, K., Huber, P., Lieberman, M., Russo, C., Lent, C.: Nanometer scale rafts built from DNA tiles. In: IEEE-NANO, Third IEEE Conference on Nanotechnology, vol. 1, pp. 402–405. IEEE (2003)

    Google Scholar 

  26. Snider, G.L., Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority logic gate. Jpn. J. Appl. Phys. 38(12B), 7227–7229 (1999)

    Article  Google Scholar 

  27. Tougaw, P., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  28. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique P. Blair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Blair, E.P. (2017). Quantum-Dot Cellular Automata: A Clocked Architecture for High-Speed, Energy-Efficient Molecular Computing. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics