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Abstract. Android users recently were given the ability to selectively
grant access to sensitive resources of their mobile devices when apps
request them at runtime. The Android fine-grained runtime permission
model has been gracefully accepted by the majority of users, who also
seem to be consistent regarding their privacy and security preferences.
In this paper we analyse permission data collected by Android devices
that were utilising the runtime permission model. The reconstructed data
represent apps’ settings snapshots. We compare behavioural insights ex-
tracted from the acquired data with users’ privacy preferences reported
in our previous work. In addition, compared with the responses received
from another group of mobile device users, users’ privacy settings seem to
be affected by the functionality of apps. Furthermore, we advise visual
schemata that describe users’ privacy settings and point out a usabil-
ity issue regarding the installation process of Android apps under the
runtime permission model.

Keywords: Runtime, Permissions, Android, Settings, Apps, Marshmal-
low, Privacy, Security, Usability, Profile

1 Introduction

Mobile device sales are increasing every year [1] and consequently, more peo-
ple are nowadays able to use smartphones and tablets. Contemporary portable
devices are usually equipped with numerous sensors and advanced storage capac-
ity. Hence, provided software (apps) can nowadays perform complex tasks and,
therefore, produce large amounts of highly personalised data. This type of per-
vasive technology has been widely criticised in the past, with criticism focusing
particularly on the privacy issues it accumulates [§].

Until recently (i.e., autumn 2015), Android users could not control which
resources should be available to apps during runtime. However, modern versions
of the most popular operating systems (Android and iOS) are now equipped
with permission control management systems. One common characteristic of



these systems is that when an app needs to access for the first time specific
components of the system, e.g. the microphone, the user has to explicitly grant
(or deny) permission for this action. Thus, users’ privacy and security awareness
can be, theoretically, increased.

We can categorise Android versions in two generations, regarding their per-
mission system. The old generation devices (until version 5.1.1) do not allow
users to permit or deny access to sensitive resources during runtime, when apps
make such requests. The permission model used on devices that run old gen-
eration versions requires the user to accept, before installation, all permissions
an app might request. In other words, when users want to install an app via
the Google Play app store, which is the official Android marketplace, they will
see a list of requested permissions before they install the app. Then they have
two choices; either accept and continue the installation process (granting thus
access to all requested resources), or cancel the installation. Users of the new
generation versions might also see a similar list of requested permissions before
installing an app. Then, they also need to accept or deny the app installation.
The major difference with the old generation versions is that, if an app requests
access for the first time to sensitive resources (during runtime), the system will
issue a dialogue message requesting from the user to deny or grant access to
the specific resource. According to the Android Developer documentation [2], as
of February 2017 there exist nine groups of dangerous permissions: Calendar,
Camera, Contacts, Location, Microphone, Phone, Sensors, SMS, Storage.

Runtime permissions are increasing users’ security and privacy awareness
and, in theory, allow them to handle more efficiently the personal data they
share. Users can revoke granted permissions anytime using the Settings app.
Thus, if for example we assume that users do not prefer to share their SMS list
with other ecosystems (i.e., apps), they are given the ability under the current
permission model to install apps that function properly, but at the same time,
they cannot access restricted areas of the device; these areas are set by the users.

We recently conducted a study aiming to examine how Android users adopted
to this change [4]. The study demonstrated that users make in general consistent
choices regarding the resources they are more willing to grant access. In this
paper, we compare previous results with the analysis of a new dataset that
came from a different group of Android users. We report similar trends on the
way these two different user groups handle permission requests from social (and
messaging) apps. Additionally, the current study demonstrates that although
people have specific perceptions when asked which resources would be more
reluctant to allow an app to access, they eventually overlook their priorities
when they need to benefit from functionalities that various apps offer. Also, we
stress the luck of sufficient information on the official marketplace regarding the
least required permissions, which are needed in order an app to function properly.
Finally, we conclude this paper by proposing visual schemes that could be used
to represent users security profiles.

The rest of this paper is organised as follows: we discuss related work in the
next Section and present the methodology we used to gain our dataset in Sec-



tion 3. Section 4 demonstrates our data analysis method and Section 5 presents
our results. We further discuss the outcomes and limitations of our work in
Section 6 and conclude this paper in Section 7.

2 Related work

Over-privileged applications introduce security threats to mobile device ecosys-
tems and pose various reputational risks to online markets such as the Android
marketplace [13]. Such threats, according to [13], often derive from the use of
advertising libraries. Additionally, users are often not aware of the context of the
permissions they granted to installed applications in the past [3]. As a matter of
fact, a recent study demonstrated that the majority of users would prevent at
least one requested permission from an experimental application, if they knew
beforehand the purpose of this request [14]. Furthermore, mobile device users
are often astounded by the capabilities of various apps to collect personal data
and share them with third-party entities [11]. If an app, for example, is able to
gain access to personal data, such as the device’s list of incoming or outbound
SMS, it is even possible to acquire information about the emotional state of the
entities that exchange these messages [5].

Consequently, previous research studies proposed extension mechanisms that
would allow to overcome privacy and security constrains of the old permission
model [9]. Researchers also introduced in the past fine-grained access control
methodologies for Android apps using explicit policies [12]. FlaskDroid [9] for
example, offers a flexible fine-grained access control system. Other systems were
designed to protect only specific streams of data, such as users’ location [7].
A popular technique used for location data protection is obfuscation [10]. The
concept of obfuscation is simple; the system feeds with shadow or fake data any
application that requests access to location services [6].

Fine-grained access control has been introduced to mobile device users in
the past, when the iOS 6 was launched. However, Android users became familiar
with the runtime permission model when the sixth version was presented (Marsh-
mallow). In our previous work [4], we presented the first study that was focused
on Android Marshmallow users. The study suggested that Android users were
comfortable with the runtime permission model. Moreover, data derived from 50
participants demonstrated that Android users make consistent choices regarding
their privacy preferences. In the current work we aim to compare responses and
permission data from a different group of users with the previous study.

3 Methodology

We developed an Android app, targeting users of the ‘Marshmallow’ or ‘Nougat’
versions. In order to apply this limitation, the app was compiled utilising the
android:minSdkVersion attribute of the AndroidManifest.xml file of the app; this
attribute was set to API level 23 (Marshmallow). This app was used in our
previous work [4], but for the needs of the current experiments we included



additional fractions of code to get the timestamps of the first installation of each
installed app and its latest update. At a later version, we also included in the
collected data the targetSDKVersion attribute of each app, aiming to figure out
if the installed apps in each device were compiled following the standards of the
newest Android version (currently API 25, as on February 2017).

Participants could download the app via the official Android app marketplace
(Google Play); the app was named “Permissions Snapshot”. After installing
the app, participants had to launch our survey-app and read the Information
Sheet and Consent Agreement. If they were satisfied with the terms of use, they
had to click on a check box; then the data collection procedure succeeded. The
respondents were asked to provide some basic demographic data and then they
had to answer 6 questions related to the use of the runtime permission model.
As described in our previous work [4], the app was also collecting data about
the permissions that were granted to the installed apps at the given time. This
was achieved utilising the PackageManager class. At the end of this procedure the
participants had to upload to a server the collected data by clicking a button.
They also had the opportunity to read a very brief tutorial, which reminded them
that they could check and control app permissions anytime, using the Settings
app of their devices.

The questions (also described in our previous work [4]) can be summarised
as follows: The participants were asked: 1) how long they were using the current
Android version; 2) if they had noticed any changes at the permission model;
3) if they believed that using the runtime model they had gained additional
control over the data they were sharing; 4) if they knew that they could grant,
deny or revoke permissions using the Settings app; 5) if they found the runtime
permission model irritating, “because it asks too many questions” and 6) if they
prefer the runtime permissions model or the previous one. Note that this study
was approved by the UCL Research Ethics Committee (Project ID Number:
8945/001).

As a second step to our experiments, we were aiming to highlight how users
would probably react when an app requested access to sensitive resources of their
devices. Without a doubt, the act of granting permissions to apps to allow them
to access specific resources of a mobile device, relates primarily to the apps’ func-
tionality. However, it is also interesting to see how users prioritise the resources
they consider as more sensitive. To this end, we asked the following question to
4 groups of undergraduate students, using an online tool (“poll everywhere”):
“Assume an Android app requests access to your phone’s resources. Rank them
according to the possibility to allow the app to access them. On the top of the
stack you should place the group that you are more keen to permit access: Calen-
dar, Camera, Contacts, Location, Microphone, Phone, Sensors, SMS, Storage”.
The students were given five minutes to answer the question. They could rear-
range the groups of dangerous permissions using the interface provided by the
online tool. The groups were shown as a stack and the participants could use the
mouse and rearrange the stack. We eventually collected anonymous responses
from 25 unique participants. We refer to this group of participants as the “on-



line questionnaire respondents”. The results of this experiment are presented at
Section 5.

4 Data Collection and Analysis

“Permissions Snapshot” collected anonymous permission data from participants’
mobile devices. The app was using the PackageManager class to accumulate in-
formation about the installed apps (packages) on each device. We made use of its
getInstalledApplications method with the GET_META_DATA flag to acquire access to
the packages; then we invoked the method getPackageInfo with the GET_PERMISSIONS
flag to get information about the packages. The requested permissions were acquired
using the requestedPermissions and requestedPermissionsFlags attributes of the
PackageInfo data types. The PackageInfo data type also returned information about
the first installation time, the last update time, and the target SDK version of each
installed app, i.e., firstInstallTime, lastUpdateTime, targetSdkVersion. Note that
we excluded system apps from the data collection process.

Granted permissions for each installed app were obtained using the correlation of
data received from the following data types: packageInfo.requestedPermissions and
packageInfo.requestedPermissionsFlags. The former is an array of Strings and the
latter is an array of ints. These data types describe users’ settings related to the per-
missions granted to each app at the given time. Assuming that we are interested to see
if a user granted permission to the Facebook app to access the Camera group, we need
to see which flag (int) is associated with the permission android.permission.CAMERA.
As suggested in [4], when this flag is equal to 1 this means that the permission was not
granted. On the other hand, if the permission was granted, then this number would be
equal to 3.

The permission data we analysed and present in this paper are complimentary to
the data presented in our previous work [4]. They were collected from 13 participants
using the same app (“Permissions Snapshot”) that was used in [4]. These participants
do not belong to the group of Android users that participated in our previous work.
Also, the responses presented in this paper were basically collected during the last three
months of 2016. Users’ anonymity was maintained by calculating a hashed value of the
ANDROID_ID of each device. This hexadecimal number describes uniquely a device; we
used a hashed value of it to conceal the real identity of the user and, at the same time,
to avoid having duplicate entries from the same device.

The collected responses from the 13 participants also contained demographic data
and the answers to the aforementioned questions (Section 3). The participants pro-
vided basic demographics (Gender, Age, Area of Residence) and then were asked to
answer six multiple-choice questions. Each question was presented sequentially hav-
ing a predefined answer to allow us identify any users that where just skipping the
questions by clicking the “Next” button. Two responses contained the predefined an-
swers to all multiple-choice questions and were thus excluded from this presentation.
However, their permission data were included in our analysis since users cannot ma-
nipulate them; these are device-dependent data. Moreover, two files did not contain
demographic data; they only contained permission data. Hence, the following demo-
graphic information was extracted from nine participants.

Most of the respondents were males (88.88%) and they were between 18 to 30
years old (77.78%) or 31 to 46 years old (22.22%). We got valid responses from Europe
(66.67%), Asia (22.22%) and the Americas (11.11%). Additionally, one third of the



participants claimed they were using the current Android version for 0 - 6 months,
one third said they were using it for 7 - 12 months, 22.22% chose the “More than 1
year” option and 11.11% selected “I Dont Know”. According to the replies to the second
question, most participants (77.78%) had noticed the changes to the permission model.
Also, the majority of users (88.89%) agreed that under the new permission model they
felt they could control the data they share more efficiently. In the fourth question,
66.67% of the participants knew that they could revoke, or grant access to installed
apps using the Settings app of their devices (tapped the “Correct” option); 22.22%
chose the “Wrong” option and 11.11% replied “I Dont Know”. Furthermore, 55.56%
suggested that they were not frustrated by the fact that the system interacts with the
user frequently, asking them to grant permissions. Finally, users’ preference for the
runtime model is evident (77.78%). The rest 11.11% preferred the previous model and
11.11% chose the “I don’t have any preference” option.

Compared to the responses from our previous work, we identify similarities in
most cases. The only difference we noticed here (in question 5) is that 44.46% of the
respondents believed that under the runtime permission model, the system interacts
very frequently with the users, requesting from them to grant permissions to the app
that runs at the foreground. This is quite interesting considering the fact that in our
previous study only 15% of the respondents expressed the same belief. However, the
responses demonstrate that the participants were knowledgeable and felt they have
more control on the data they share under the runtime permission model. Thus, they
eventually prefer the runtime permission model against the old one.

Considering the replies from the group of 25 respondents, who prioritised the dan-
gerous groups according to the possibility to allow an app to access them, we can see
that these users are keener to allow access to the Calendar or the Sensors of their de-
vices and are more hesitant to grant permission to the SMS or the Microphone groups.
The dangerous groups that participants would be more willing to allow an app to access
(in descending order) are as follows: Calendar, Sensors, Storage, Location, Contacts,
Camera, Phone, SMS, Microphone. In the next Section we will further discuss these
responses. The next Section presents results obtained from the analysis of the collected
permission data from 13 Android devices.

5 Results

The results presented in this Section derive from data received from 13 unique Android
devices. Note that this sample might not be large enough to provide clues about par-
ticular behavioural characteristics of Android users. However, in this paper, we refer
to this group of users in order to compare previous results and eventually confirm our
findings, presented in [4].

5.1 General Information

The devices of the 13 participants contained a variety of data. On average, 46 apps
were installed in each device (we do not consider system apps in this study). This is a
rough estimation because there were some outliers in our sample. For example, device
No4 contained 197 apps and, on the other hand, devices No5 and No9 contained only
4 and 2 apps, respectively. If we do not consider the latter, the average number is
54 apps per device. The participants’ devices contained 523 unique apps. As already
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Fig. 1. Number of declared permissions (blue colour) and dangerous permissions (or-
ange colour) in installed apps on device Nol.
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Fig. 2. Average number of declared permissions (blue colour) and dangerous permis-
sions (orange colour) per device.

mentioned, the maximum number of installed apps on a device was 197 and the min-
imum was only 2. The app that declared the maximum number of permissions (83)
is the tool com.sec.android.easyMover, which transfers data across different devices.
Moreover, com.quickheal.platform and org.thoughtcrime.securesms were the apps
that declared the maximum number of dangerous permissions (20).

Figure 1 shows the number of permissions declared in each installed app on device
Nol. In addition, the same figure shows the number of dangerous permissions included
in these apps. Roughly, one can estimate that almost one third of the declared per-
missions per app belong to dangerous groups. Furthermore, figure 2 demonstrates the
average number of declared and the average number of dangerous permissions per de-
vice. Again, the same trend is evident in the specific figure. Finally, we calculated the
declared and the dangerous permissions of the apps that constitute our sample. The
average number of declared permissions per app is 15.92 and the average number of
dangerous permissions is 4.61. This means that 28.96% of the declared permissions in
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Fig. 3. Percentage of apps per device that request access to sensitive resources.

Table 1. Most requested dangerous permission groups by installed apps (on average).

Permission groups Our study (%) Previous work [4] (%)

CALENDAR 9.05 7.34
CAMERA 34.71 30.46
CONTACTS 58.68 58.02
LOCATION 42.42 49.67
MICROPHONE 25.78 21.63
PHONE 44.45 40.56
SENSORS 0.75 0.93
SMS 24.12 16.51
STORAGE 75.82 76.64

each device belongs to dangerous groups. Compared to our previous study, where we
reported (on average) approximately 12.39 declared and 3.85 dangerous permissions
per app, we can see that the same trend exists in the current work; nearly 30% of the
requested permissions belong to dangerous groups.

5.2 Dangerous Permission Groups

Figure 3 demonstrates the percentage of apps per device that request access to sen-
sitive resources, according to the declared permissions in their AndroidManifest.xml
files. The figure illustrates that most apps request access to the devices’ Storage group.
Contacts, Phone, Location and Camera are also the most requested resources. Table 1
shows on average which are the most requested dangerous permission groups by the
installed apps. The last column indicates the results of our previous work [4]. The com-
parison between the two groups of participants shows that Storage, Contacts, Location
or Phone, and Camera are the most requested dangerous groups per device (considering
permissions requested in the AndroidManifest.xml file).
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Fig. 4. Percentage of apps that were granted access to dangerous permissions per
device.

Android’s runtime permission model was introduced in order to make the user aware
that an app needs to access resources that deemed to be sensitive. Hence, figure 3
indeed provides insightful information about the most requested dangerous groups.
However, it does not actually show which permissions were granted when participants
completed our survey. Thus, using information gathered from the PackageManager (as
discussed in Section 4), we estimated which resources were open to installed apps for
each device. In other words, we calculated the percentage of apps per device that seemed
to have access to sensitive resources; figure 4 showcases these results. Note that the
accessibility of sensitive resources for each user differs. For example, user Nol1 seems to
be more reluctant to grant access to sensitive resources, compared to user No3. Also, it
seems that most participants had a stable behaviour when granting access to sensitive
resources. For instance, the accessibility rates of user No2 are between the range of
64% to 70% for most sensitive resources. However, so far we might have included in
our analysis apps that were never used by the participants. This limitation occurred
because it is not possible to get usage statistics from contemporary versions of the
Android OS, without having users’ permission.

Another limitation of the current study (which was also reported in [4]) is re-
lated to the fact that if we utilise the PackageManager to get permission informa-
tion for apps that were compiled with parameter “targetAPIVersion” < 23, then the
packageInfo.requestedPermissionsFlags variables will always return the integer 3.
This means that we consider that permissions were granted by default to all dangerous
groups for these specific applications.

5.3 Fine-grained Permissions

To overcome the former limitation, we continued our analysis considering data gen-
erated from apps that contained only fine-grained user preferences. Thus, for the rest
of this section we consider fine-grained permission data from the following users: 2, 3,
4, 6, 10, 11, 13. The numbers of apps with fine-grained permission settings considered
from each device respectively are: 12, 6, 11, 7, 6, 6, 22. We will refer to this group as
the “f-g” group.
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Fig. 6. Percentage of accessible resources per device in the f-g group.

Figure 5 shows the percentage of apps in the f-g group that requested access to
sensitive resources. The most requested resources on average are as follows: Storage
95.67%, Contacts 85.82%, Location 67.56%, Phone 61.94%, Camera 53.40%.

Figure 6 demonstrates the accessibility to sensitive resources focusing on the partic-
ipants with fine-grained permission settings. These results are also provided in table 2.
Table 2 shows that the most accessible resources (in descending order) in the f-g group
were: Sensors, Camera, Storage, Location, Phone, Contacts, SMS, Microphone, Calen-
dar.

Furthermore, we compared the responses from the two groups of our study (the
‘online questionnaire respondents’ and the ‘f-g group participants’) and compiled re-
sulted preferences in table 3. The first column lists the permissions that respondents
were more willing to allow an app to access; the second column lists on average the
accessibility to sensitive resources in the devices of our f-g participants, as shown in
table 2 (both in descending order). Interestingly, we can see common trends in these
two groups; first, Sensors appear to be more accessible in both groups. This means



Table 2. Percentage (%) of accessible resources in the f-g group.

Groups No2 No3 No4 No6 Nol0 Noll Nol3 Average
CALENDAR 0 0 0 N/A 0 50.00 0 8.33
CAMERA 50.00 100.0 50.00 25.00 66.67 50.00 42.86  54.93

CONTACTS 33.33 83.33 50.00 57.14 33.33 25.00 26.32  44.06
LOCATION 28.57 100.0 33.33 16.67 75.00 16.67 60.00 47.18
MICROPHONE 0 33.33 25.00 66.67 66.67 33.33 41.67  38.09

PHONE 75.00 50.00 25.00 40.00 100.0 20.00 15.38  46.48
SENSORS N/A N/A N/A N/A 100.0 N/A 50.00 75.00
SMS 33.33 50.00 66.67 50.00 50.00 25.00 20.00 42.14
STORAGE 66.67 66.67 40.00 42.86 33.33 60.00 47.62  51.02
Average 35.86 60.42 36.25 42.62 58.33 35.00 33.76

Table 3. Comparison between the priority list provided by questionnaire respondents
and the accessibility of resources noticed in the f-g group.

Questionnaire  f-g group

CALENDAR  SENSORS
SENSORS CAMERA
STORAGE STORAGE
LOCATION LOCATION
CONTACTS PHONE

CAMERA CONTACTS
PHONE SMS
SMS MICROPHONE

MICROPHONE CALENDAR

that if an app requests access to the device’s sensors, it is very possible that the user
will grant this permission. In addition, SMS and Microphone groups are located at the
bottom of both columns. On the contrary, Camera appears to be the second most ac-
cessible resource in the f-g group and Calendar the least accessible. These results might
indicate that even though users believe they should not provide access to the Camera
when requested by an app, they are more keen to do so when this request is actually
made. Additionally, despite that questionnaire respondents replied they would allow
an app to access their Calendar, we see that the f-g group accessibility to the Calendar
resources received the lowest percentage. This phenomenon may have occurred as a
result of the fact that some apps request access to the Calendar as a secondary feature
of their functionality, thus users did not have the chance to grant or deny access to it.

5.4 Messaging and Social Media Apps

The latter finding urged us to focus on specific apps, aiming to identify connections
between functionality and users’ privacy settings. The most popular (social) apps in our
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Fig. 8. Percentage of users that allowed access to sensitive resources (current study).

dataset were the following: Facebook Messenger, Twitter, WhatsApp, Skype, Facebook,
Instagram, Snapchat and Slack. Given the small number of participants in this study
we will only present comparative results between the current and our previous work
for the following apps: Facebook Messenger, Twitter, WhatsApp, Skype, Facebook.

Figures 7 and 8 illustrate the percentage of users that allowed access to sensitive
resources after the aforementioned apps requested it. First, we should notice that,
in general, the rates of accessibility to the various resources seem to follow the same
patterns. For example, WhatsApp users allow access to Camera, Contacts, Microphone,
and Storage in both studies. Also, the rates of accessibility to the Storage group for all
apps are very high in the current and our previous work. Hence, we conclude that it is
very possible an app to get access to the storage of a device when such a request has
been made.

Other common characteristics can be highlighted when we examine Skype users;
Camera, Contacts, Microphone and Phone are the most accessible resources. Moreover,
Facebook Messenger is a similar app, having the same functionality with WhatsApp



Table 4. Percentage of users that allowed access to sensitive resources (previous study).

Groups ORCA TWITTER WHATSAPP SKYPE KATANA
CALENDAR 0 N/A N/A N/A 6.67
CAMERA 73.68 40.00 83.33 100.0 33.33
CONTACTS 47.37 33.33 94.44 80.00 33.33
LOCATION 26.32 80.00 22.22 20.00 60.00
MICROPHONE  84.21 6.67 77.78 100.0 20.00
PHONE 5.26 6.67 5.56 100.0 20.00
SMS 10.53 6.67 66.67 30.00 6.67
STORAGE 84.21 73.33 100.0 90.00 93.33

Table 5. Percentage of users that allowed access to sensitive resources (current study).

Groups ORCA TWITTER WHATSAPP SKYPE KATANA
CALENDAR 0 N/A N/A N/A 66.67
CAMERA 42.86 40.0 100.0 75.00 66.67
CONTACTS 57.14 20.00 80.00 50.00 66.67
LOCATION 28.57 60.00 40.00 25.00 100.0
MICROPHONE  57.14 20.00 80.00 75.00 66.67
PHONE 42.86 20.00 40.00 75.00 66.67
SMS 42.86 20.00 40.00 25.00 66.67
STORAGE 42.86 40.00 100.0 50.00 100.0

and Skype. One can notice that the most accessible dangerous groups for Messenger are:
Camera, Contacts, Microphone and Storage. In addition, the use of Location services
was found to be popular among Twitter and Facebook users. Tables 4 and 5 show the
percentage of users that allowed access to sensitive resources (considering messaging
apps) in the previous and the current study, respectively.

Those common trends, derived by the two different groups of Android users, indi-
cate that their privacy settings and preferences depend on the functionality of certain
apps. Furthermore, given that users have a consistent attitude when apps request per-
mission to access specific resources, as demonstrated in [4], it comes with no surprise
the fact that we observed high accessibility to three dangerous groups (Camera, Con-
tacts, Microphone) for three different messaging apps (Messenger, WhatsApp, Skype).
Moreover, as discussed previously in this section, despite that people believe they would
be more hesitant to allow access to the Camera or the Microphone groups, they even-
tually grant permission to specific apps with similar functionality (messaging apps).
However, additional research needs to be conducted to investigate whether users’ pri-
vacy preferences are related with their trust on specific apps.
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6 Discussion

Section 3 discussed the methodology we used to acquire data from participants’ devices.
We also mentioned that additional metadata were included in the gathered information,
i.e., the timestamp of the last update of installed apps and, in some cases, the API
version that was used to compile these apps. The latter information was not collected
from all devices because we incorporated this feature in later versions of our app.

6.1 App Updates and API Status

Figure 9 illustrates our findings. Blue bars indicate the percentage of apps per device
that had been updated at least once (either manually or automatically). Orange bars
show the percentage of apps per device compiled with targetSDKVersion greater that
API 23. Analysis showed that 50% of the participants did not update their apps or,
they selectively updated a small number of apps (up to 17% of the apps were updated
in some cases). Additionally, figure 9 demonstrates that 50% of the users in our sample
updated at least 50% of their apps sometime in the past. Hence, we can deduct that in
our small sample of users, only half of them regularly update their apps. Thus, one can
suggest that 50% of the users are more vulnerable to malware, given that the updated
version of an app can be considered more secure from its previous version.
Additionally, considering data collected from devices Nol, Noll, Nol2, Nol3 (see
figure 9), we deduce that, approximately 63% of the installed apps (per device) were
designed to be compatible with APIs 23, 24 and 25 (API 25 was the most modern
version as of February 2017). This means that these apps were fully utilising the ca-
pabilities of the runtime permission model. Hence, we can consider that behavioural
trends noticed in this study are not substantially skewed by the existence of older apps
in some devices. Moreover, as metioned earlier, we did not collect app usage statistics
to avoid engaging our volunteers (Android users) in going through additional steps,



App permissions

. Signal Private Messenger

needs a o Facebook
T . oo
& v 8  cam
B caler v 8 o
B .

Q@ Location °

@ Location v
B s . 3 Microphe
. Phon v B oswms
B Photos/Media/Files v m s °
@ con v A" Telephone
¢ Microph v

i =a

4 o o d (e} o
(a) Permission list (b) Settings (c) LRP
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permissions (LRP) for an app.

such as manually turning on the usage statistics feature for our app. Thus, results
presented in Section 5.2 might contain information about apps that were never used.

6.2 Privacy Profiles

The usual (and preferred) app installation procedure on an Android device is as follows:
Users navigate to the Google Play app store (or any other third-party marketplace),
where they can search for their preferred app. Before downloading the app, users have
the chance to see a list of permissions that might be requested (figure 10a). After
installation, and during runtime, if a sensitive resource needs to be accessed, the system
will issue a message dialogue to get user’s approval to access the resource. Users can
review and revoke the granted permissions via the Settings app (figure 10b).

Section 5.4 showcased privacy settings that seem to be common among users. For
example, we noticed that all WhatsApp users allowed access to the Storage. Thus, one
could suggest that the app will not be functional if permission to the Storage is not
granted. However, users do not have a priori knowledge of this information before they
download the particular app. Such information is not provided by the official (or third-
party) app marketplaces. Hence, we can state that there exists a gap in the installation
procedure, which needs to be filled. In other words, we suggest that users should be
able to get basic information about the permissions they need to grant to apps in order
to get the minimum functionality they can offer. For instance, the popular messaging
app “Google Allo” will not function if access is not granted to (at least) the Contacts,
SMS and Storage groups. Another example could be the “Google Duo” video app,
which cannot function, unless the user grants access to (at least) the Camera or the
Microphone group.

Google Duo is a video app and, indeed, the use of camera is obviously needed,
but we believe that users would benefit from schemes that would inform them about
the basic requirements of an app. In figure 10c, we propose a visual scheme that aims
to concisely indicate the minimum permission requirements needed by Android apps
in order to function properly. In particular, we consider that a representation of the
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dangerous permission categories, placed on a 3x3 grid and marked with red and green
background colours according to the corresponding accessibility requirements of an
app, would probably visualise sufficiently the minimum functionality requirements of
this app. Figure 10c demonstrates the proposed visual scheme for an app that will not
function unless access to the Camera and Contacts groups is given. Such schemes might
also visually compliment (or substitute) existing system information (figure 10b).

Finally, although graphs like the one presented in figure 4 provide insightful infor-
mation about the percentage of granted permissions per category (and per device), it
would be also useful to propose schemes that efficiently describe these data visually.
Hence, we could create a “privacy profile” that represents each user. Figure 11 presents
the profiles of 11 participants. Each profile is basically a heat map which represents
the percentage of apps (per device) that were granted access to the 9 categories of dan-
gerous permission groups. For example, participant No9 is more keen to provide access
to the Calendar, Camera and Microphone, compared to other participants. Moreover,
we could say that users like participant Noll or Nol3 seem to be more cautious when
granting permissions to apps, compared to users like No3, No7 or Nol0.

Further work needs to be done in order to investigate if users who are more keen
to grant permissions to apps are more vulnerable to malware attacks. This knowledge
might assist major app distributors to fight malware expansion. In addition, further
work on the usability of schemes like the one presented in figure 10c needs to be done,
to assess their usefulness and value to the users’ experience provided by online stores.

7 Conclusions

Privacy-aware users were anticipating the advent of Android’s fine-grained permission
model for a long time. Our previous study showed that the majority of Android users
positively adapted to this major update. This paper confirmed that most users prefer
the new model. Furthermore, we confirmed that the vast majority of Android apps
request access to the devices’ storage and that most users are willing to permit this
action. Moreover, we deduced that although people are more reluctant to allow access
to resources such as their cameras or microphones, they tend to grant these permissions
to specific app categories. They overcome their initial hesitation to benefit from the
provided apps’ functionality. We also noted that almost half of the participants in this
research work did not update their apps; the other 50% of the participants seem to
update their apps regularly. Furthermore, we suggested that users should be informed
about the least required resources an app needs to provide its basic functionality. Hence,
we proposed a visualisation scheme which could be used in online app marketplaces.
Finally, this paper suggested the use of heat maps to represent users’ privacy profiles.
We intent to test the usability of the proposed schemes as part of future work.
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