Undergraduate Topics in Computer Science

Series editor

Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems. Many include fully worked solutions.

More information about this series at http://www.springer.com/series/7592

Wolfgang Ertel

Introduction to Artificial Intelligence

Second Edition

Translated by Nathanael Black With illustrations by Florian Mast

Wolfgang Ertel Hochschule Ravensburg-Weingarten Weingarten Germany

ISSN 1863-7310 ISSN 2197-1781 (electronic) Undergraduate Topics in Computer Science ISBN 978-3-319-58486-7 ISBN 978-3-319-58487-4 (eBook) DOI 10.1007/978-3-319-58487-4

Library of Congress Control Number: 2017943187

1st edition: © Springer-Verlag London Limited 2011 2nd edition: © Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface to the Second Edition

After 60 years, Artificial Intelligence (AI) has now reached industry and the consciousness of the population. The impressive successes and new AI methods are now so relevant that they should be taught even in a basic course. In about 30 new pages, I report mainly on *deep learning*, a consistent further development of neural networks, which finally enables image processing systems to recognize almost any object in pixel images. Among other benefits, this lead to the first computer program that could beat one of the world's best Go players.

In the new section on Deep Learning, we must not leave out a short report about the fascinating new subarea of *creativity*. For the first time neural networks can creatively generate texts, music pieces, and even paintings in the style of the old masters. These achievements are based on many years of research on neural networks and machine learning. Practical AI has developed into an engineering discipline in which programs are developed in large industrial teams by experts from various specializations.

Self-driving cars, service robots, and smart homes—which are all applications of AI—will greatly change our lives. However, in addition to great rays of hope, there will be a dark side. Though we live in a time of rapid technological progress, we have long since exceeded the limits of growth. We must therefore think about sustainability when implementing each new invention. In Chap. 1, I would like to give you some food for thought about this topic.

Other new additions to the book include a section on performance evaluation of clustering algorithms and two practical examples explaining Bayes' theorem and its relevance in everyday life. Finally, in a section on search algorithms, we analyze the cycle check, explain route planning for car navigation systems, and briefly introduce Monte Carlo Tree Search.

All known errors have been corrected and updates have been made in many places.

I would like to sincerely thank the readers who have given me feedback and all those who contributed to this new edition through proofreading and suggestions.

I would especially like to thank Adrian Batzill for the route planning measurements and graphs, as well as Nate Black, Nicole Dathe, Markus Schneider, Robin Lehmann, Ankita Agrawal, Wenzel Massag, Lars Berge, Jonas Lang, and Richard Cubek.

Ravensburg March 2017 Wolfgang Ertel

Preface to the First Edition

Artificial Intelligence (AI) has the definite goal of understanding intelligence and building intelligent systems. However, the methods and formalisms used on the way to this goal are not firmly set, which has resulted in AI consisting of a multitude of subdisciplines today. The difficulty in an introductory AI course lies in conveying as many branches as possible without losing too much depth and precision.

Russell and Norvig's book [RN10] is more or less the standard introduction into AI. However, since this book has 1,152 pages, and since it is too extensive and costly for most students, the requirements for writing this book were clear: it should be an accessible introduction to modern AI for self-study or as the foundation of a four-hour lecture, with at most 300 pages. The result is in front of you.

In the space of 300 pages, a field as extensive as AI cannot be fully covered. To avoid turning the book into a table of contents, I have attempted to go into some depth and to introduce concrete algorithms and applications in each of the following branches: agents, logic, search, reasoning with uncertainty, machine learning, and neural networks.

The fields of image processing, fuzzy logic, and natural language processing are not covered in detail. The field of image processing, which is important for all of computer science, is a stand-alone discipline with very good textbooks, such as [GW08]. Natural language processing has a similar status. In recognizing and generating text and spoken language, methods from logic, probabilistic reasoning, and neural networks are applied. In this sense this field is part of AI. On the other hand, computer linguistics is its own extensive branch of computer science and has much in common with formal languages. In this book we will point to such appropriate systems in several places, but not give a systematic introduction. For a first introduction in this field, we refer to Chaps. 22 and 23 in [RN10]. Fuzzy logic, or fuzzy set theory, has developed into a branch of control theory due to its primary application in automation technology and is covered in the corresponding books and lectures. Therefore we will forego an introduction here.

The dependencies between chapters of the book are coarsely sketched in the graph shown below. To keep it simple, Chap. 1, with the fundamental introduction for all further chapters, is left out. As an example, the thicker arrow from 2 to 3 means that propositional logic is a prerequisite for understanding predicate logic.

The thin arrow from 9 to 10 means that neural networks are helpful for understanding reinforcement learning, but not absolutely necessary. Thin backward arrows should make clear that later chapters can give more depth of understanding to topics which have already been learned.

This book is applicable to students of computer science and other technical natural sciences and, for the most part, requires high school level knowledge of mathematics. In several places, knowledge from linear algebra and multidimensional analysis is needed. For a deeper understanding of the contents, actively working on the exercises is indispensable. This means that the solutions should only be consulted after intensive work with each problem, and only to check one's solutions, true to Leonardo da Vinci's motto "Study without devotion damages the brain". Somewhat more difficult problems are marked with *, and especially difficult ones with **. Problems which require programming or special computer science knowledge are labeled with **.

On the book's web site at http://www.hs-weingarten.de/~ertel/aibook digital materials for the exercises such as training data for learning algorithms, a page with references to AI programs mentioned in the book, a list of links to the covered topics, a clickable list of the bibliography, an errata list, and presentation slides for lecturers can be found. I ask the reader to please send suggestions, criticisms, and tips about errors directly to ertel@hs-weingarten.de.

This book is an updated translation of my German book "Grundkurs Künstliche Intelligenz" published by Vieweg Verlag. My special thanks go to the translator Nathan Black who in an excellent trans-Atlantic cooperation between Germany and California via SVN, Skype and Email produced this text. I am grateful to Franz Kurfeß, who introduced me to Nathan; to MatthewWight for proofreading the translated book and to Simon Rees from Springer Verlag for his patience.

I would like to thank my wife Evelyn for her support and patience during this time consuming project. Special thanks go to Wolfgang Bibel and Chris Lobenschuss, who carefully corrected the German manuscript. Their suggestions and discussions lead to many improvements and additions. For reading the corrections and other valuable services, I would like to thank Richard Cubek, Celal Döven, Joachim Feßler, Nico Hochgeschwender, Paul Kirner, Wilfried Meister, Norbert Perk, Peter Radtke, Markus Schneider, Manfred Schramm, Uli Stärk, Michel Tokic, Arne Usadel and all interested students. My thanks also go out to Florian Mast for the priceless cartoons and very effective collaboration.

I hope that during your studies this book will help you share my fascination with Artificial Intelligence.

Ravensburg February 2011 Wolfgang Ertel

Contents

1	Introduction				
	1.1	What Is Artificial Intelligence?			
		1.1.1 Brain Science and Problem Solving			
		1.1.2 The Turing Test and Chatterbots			
	1.2	The History of AI			
		1.2.1 The First Beginnings			
		1.2.2 Logic Solves (Almost) All Problems			
		1.2.3 The New Connectionism			
		1.2.4 Reasoning Under Uncertainty			
		1.2.5 Distributed, Autonomous and Learning Agents 10			
		1.2.6 AI Grows Up			
		1.2.7 The AI Revolution			
	1.3	AI and Society			
		1.3.1 Does AI Destroy Jobs?			
		1.3.2 AI and Transportation			
		1.3.3 Service Robotics			
	1.4	Agents			
	1.5	Knowledge-Based Systems			
	1.6	Exercises			
2	Prop	ositional Logic			
	2.1	Syntax			
	2.2	Semantics			
	2.3	Proof Systems			
	2.4	Resolution			
	2.5	Horn Clauses			
	2.6	Computability and Complexity			
	2.7	Applications and Limitations			
	28	Evereiges 37			

x Contents

3	First-	order Predicate Logic	39			
	3.1	Syntax	40			
	3.2	Semantics	41			
		3.2.1 Equality	45			
	3.3	Quantifiers and Normal Forms	45			
	3.4	Proof Calculi	49			
	3.5	Resolution	51			
		3.5.1 Resolution Strategies	55			
		3.5.2 Equality	55			
	3.6	Automated Theorem Provers	56			
	3.7	Mathematical Examples	57			
	3.8	Applications	60			
	3.9	Summary	63			
	3.10	Exercises	63			
4	Limit	ations of Logic	65			
•	4.1	The Search Space Problem	65			
	4.2	Decidability and Incompleteness	67			
	4.3	The Flying Penguin	69			
	4.4	Modeling Uncertainty	71			
	4.5	Exercises	73			
_	Logio	Programming with PROLOG	75			
5	5.1	PROLOG Systems and Implementations	76			
	5.2	Simple Examples	76			
	5.3	Execution Control and Procedural Elements	79			
	5.3 5.4	Lists	81			
	5.5	Self-modifying Programs				
	5.6					
	5.7					
	5.8	ε ε ε				
	5.8 5.9	· · · · · · · · · · · · · · · · · · ·				
			88 91			
6		Search, Games and Problem Solving				
	6.1	Introduction				
	6.2	Uninformed Search	97			
		6.2.1 Breadth-First Search	97			
		6.2.2 Depth-First Search	99			
		6.2.3 Iterative Deepening	100			
		6.2.4 Comparison	102			
		6.2.5 Cycle Check	102			
	6.3	Heuristic Search	103			
		6.3.1 Greedy Search	106			
		6.3.2 A*-Search	107			
		6.3.3 Route Planning with the A [*] Search Algorithm	109			

Contents xi

		6.3.4	IDA*-Search	111
		6.3.5	Empirical Comparison of the Search Algorithms	111
		6.3.6	Summary	113
	6.4	Games	s with Opponents	114
		6.4.1	Minimax Search	114
		6.4.2	Alpha-Beta-Pruning	115
		6.4.3	Non-deterministic Games	117
	6.5	Heuris	tic Evaluation Functions	118
		6.5.1	Learning of Heuristics	118
	6.6	State of	of the Art	119
		6.6.1	Chess	120
		6.6.2	Go	121
	6.7	Exerci	ses	122
7	Dagge		dh Umaantainte	105
7	7.1		th Uncertainty	125 127
	7.1	7.1.1	uting with Probabilities	130
	7.2		Conditional Probability	
	7.2		rinciple of Maximum Entropy	136
		7.2.1 7.2.2	An Inference Rule for Probabilities	136
			Maximum Entropy Without Explicit Constraints	141
		7.2.3	Conditional Probability Versus Material	1.40
		7.2.4	Implication	142
		7.2.4	MaxEnt-Systems	143
	7.2	7.2.5	The Tweety Example	144
	7.3		D, an Expert System for Diagnosing Appendicitis	145
		7.3.1	Appendicitis Diagnosis with Formal Methods	145
		7.3.2	Hybrid Probabilistic Knowledge Base	146
		7.3.3	Application of Lexmed	149
		7.3.4	Function of Lexmed	150
		7.3.5	Risk Management Using the Cost Matrix	153
		7.3.6	Performance.	155
	7.4	7.3.7	Application Areas and Experiences	157
	7.4		ning with Bayesian Networks	158
		7.4.1	Independent Variables	158
		7.4.2	Graphical Representation of Knowledge as a	1.00
		7.40	Bayesian Network	160
		7.4.3	Conditional Independence	160
		7.4.4	Practical Application	162
		7.4.5	Software for Bayesian Networks	163
		7.4.6	Development of Bayesian Networks	165
		7.4.7	Semantics of Bayesian Networks	168
	7.5		ary	170
	7.6	Everci	Ses	171

xii Contents

8			rning and Data Mining	175	
	8.1		Analysis	180	
	8.2		erceptron, a Linear Classifier	183	
		8.2.1	The Learning Rule	185	
	0.0	8.2.2	Optimization and Outlook	188	
	8.3		earest Neighbor Method	189	
		8.3.1	Two Classes, Many Classes, Approximation	193	
		8.3.2	Distance Is Relevant	194	
		8.3.3	Computation Times	195	
		8.3.4	Summary and Outlook	196	
		8.3.5	Case-Based Reasoning	197	
	8.4		on Tree Learning	198	
		8.4.1	A Simple Example	199	
		8.4.2	Entropy as a Metric for Information Content	200	
		8.4.3	Information Gain	203	
		8.4.4	Application of C4.5	205	
		8.4.5	Learning of Appendicitis Diagnosis	207	
		8.4.6	Continuous Attributes	210	
		8.4.7	Pruning—Cutting the Tree	211	
		8.4.8	Missing Values	212	
		8.4.9	Summary	213	
	8.5		Validation and Overfitting	213	
			ng of Bayesian Networks	215	
		8.6.1	Learning the Network Structure	215	
	8.7	The N	aive Bayes Classifier	218	
		8.7.1	Text Classification with Naive Bayes	220	
	8.8	One-C	lass Learning	222	
		8.8.1	Nearest Neighbor Data Description	223	
	8.9	Cluster	ring	224	
		8.9.1	Distance Metrics	225	
		8.9.2	k-Means and the EM Algorithm	226	
		8.9.3	Hierarchical Clustering	228	
		8.9.4	How is the Number of Clusters Determined?	230	
	8.10	Data N	Mining in Practice	233	
		8.10.1	The Data Mining Tool KNIME	233	
	8.11	Summ	ary	236	
	8.12	Exercises			
9	Neural		orks	245	
	9.1	From 1	Biology to Simulation	246	
		9.1.1	The Mathematical Model	247	
	9.2	Hopfie	eld Networks	250	

Contents xiii

		9.2.1 Application to a Pattern Recognition Example	251		
		9.2.2 Analysis	252		
		9.2.3 Summary and Outlook	255		
	9.3	Neural Associative Memory	256		
		9.3.1 Correlation Matrix Memory	257		
		9.3.2 The Binary Hebb Rule	259		
		9.3.3 A Spelling Correction Program	261		
	9.4	Linear Networks with Minimal Errors	263		
		9.4.1 Least Squares Method	264		
		9.4.2 Application to the Appendicitis Data	265		
		9.4.3 The Delta Rule	266		
		9.4.4 Comparison to the Perceptron	268		
	9.5	The Backpropagation Algorithm	269		
		9.5.1 NETtalk: A Network Learns to Speak	272		
		9.5.2 Learning of Heuristics for Theorem Provers	273		
		9.5.3 Problems and Improvements	274		
	9.6	Support Vector Machines	275		
	9.7	Deep Learning	277		
		9.7.1 Nature as Example	278		
		9.7.2 Stacked Denoising Autoencoder	279		
		9.7.3 Other Methods	280		
		9.7.4 Systems and Implementations	281		
		9.7.5 Applications of Deep Learning	281		
	9.8	Creativity	282		
	9.9	Applications of Neural Networks	284		
	9.10	Summary and Outlook			
	9.11	Exercises	286		
10	Reinfo	orcement Learning	289		
	10.1	Introduction	289		
	10.2	The Task.	291		
	10.3	Uninformed Combinatorial Search			
	10.4	Value Iteration and Dynamic Programming			
	10.5	A Learning Walking Robot and Its Simulation	298		
	10.6	Q-Learning	300		
		10.6.1 Q-Learning in a Nondeterministic Environment	303		
	10.7	Exploration and Exploitation	304		
	10.8	Approximation, Generalization and Convergence	305		
	10.9	Applications	306		
	10.10	AlphaGo, the Breakthrough in Go	306		
	10.11	Curse of Dimensionality	309		
	10.12	Summary and Outlook	310		
	10.13	Exercises	310		

xiv Contents

11	Solutions for the Exercises			
	11.1	Introduction	313	
	11.2	Propositional Logic	314	
	11.3	First-Order Predicate Logic	316	
	11.4	Limitations of Logic	317	
	11.5	PROLOG	317	
	11.6	Search, Games and Problem Solving	319	
	11.7	Reasoning with Uncertainty	322	
	11.8	Machine Learning and Data Mining	329	
	11.9	Neural Networks	335	
	11.10	Reinforcement Learning	337	
Ref	erences		339	
Ind	ev		351	