
An Affordable Bio-Sensing and Activity Tagging 

Platform for HCI Research 

Siddharth1,2, Aashish Patel1, Tzyy-Ping Jung2, and Terrence J. Sejnowski2,3 

 Department of Electrical and Computer Engineering, University 

of California, San Diego 

 Institute for Neural Computation, University of California, 

San Diego 

 The Computational Neurobiology Laboratory, Salk Institute 

 

{ssiddhar@eng.ucsd.edu, anp054@eng.ucsd.edu, jung@sccn.ucsd.edu, 

terry@salk.edu} 

Abstract.  

We present a novel multi-modal bio-sensing platform capable of integrating 

multiple data streams for use in real-time applications. The system is composed 

of a central compute module and a companion headset. The compute node col-

lects, time-stamps and transmits the data while also providing an interface for a 

wide range of sensors including electroencephalogram, photoplethysmogram, 

electrocardiogram, and eye gaze among others. The companion headset con-

tains the gaze tracking cameras. By integrating many of the measurements sys-

tems into an accessible package, we are able to explore previously unanswera-

ble questions ranging from open-environment interactions to emotional-

response studies. Though some of the integrated sensors are designed from the 

ground-up to fit into a compact form factor, we validate the accuracy of the sen-

sors and find that they perform similarly to, and in some cases better than, al-

ternatives. 
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1 Introduction 

Electroencephalogram (EEG) systems have experienced a renewed interest by the 

research community for use in non-clinical studies. Though being deployed in large-

scale studies, many of the advances have not been translated to substantial real-world 

applications. A major challenge is that the hardware and software typically used to 

make measurements limit their use to controlled environments. Additionally, the low 

spatial resolution of EEG itself limits the amount of usable information that can be 

extracted from noise in dynamic recording environments. Lastly, the absence of a 

method to automatically extract user-environment interactions for tagging with EEG 

data introduces an immense overhead to researchers - having to manually tag events 
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or limit experimental design by requiring the subjects to provide information during 

the experiments. 

Most of the EEG research from the past decades has been conducted under labora-

tory based controlled environments as opposed to practical daily-use applications. On 

the other hand, there are many fitness trackers available today capable of providing 

accurate heart-rate, blood pressure, galvanic skin response (GSR), steps taken etc. 

Under controlled laboratory conditions, EEG researchers have been able to control a 

quadcopter [1], control robots [2], control wheelchair to move around [3] etc. Unfor-

tunately, research labs have been unable to show applications of EEG “into the wild” 

due to constraints imposed by the existing EEG decoders [17]. 

EEG research often studies event-related brain responses evoked or elicited by a 

visual or auditory stimulus. But, for real-world experiments with EEG, the stimulus 

onset is not measured or is ill-defined. A solution is to use saccadic eye movements 

and fixations as the time-locking mechanism for analyzing naturalistic visual stimuli 

[26, 27, 28]. Hence, we need to simultaneously record and synchronize EEG and eye-

gaze data in real-world neuroimaging studies.  For real-world experiments with EEG 

there is also a need to pinpoint the stimulus that is causing the changes in EEG. 

Hence, user’s visual perspective is necessary to be recorded for EEG recordings in 

real-world experiments. 

For the analysis of emotional responses, recent research [8, 10] (in NeuroCardiolo-

gy) has shown that the heart also has a role to play in generation of emotions. This 

falsifies the wide ranging decades old belief that the brain is solely responsible for the 

generation and subsequent emotional feelings. But, there is no currently available 

system which can reliably sense and record EEG and electrocardiogram (ECG) to-

gether in a mobile environment. Furthermore, ECG complicates the experimental 

setup since subjects have to wear a belt or place several sensors on their chest. A 

workaround is to use photoplethsmogram (PPG) from commercially available devices 

that derive PPG from the wrist. But, such devices usually use low sampling rates to 

save battery power and hence can only measure heart rates, but not heart-rate variabil-

ity (HRV) that is typically only estimated by commercial devices. 

Addressing the above key limitations of existing systems, we present an affordable, 

wearable multi-modal bio-sensing platform that is capable of monitoring EEG, PPG, 

eye-gaze, and limb dynamics (Fig. 1). The platform also supports the addition of other 

biosensors including galvanic skin response (GSR) and lactate levels. Leveraging the 

capabilities of this system, a new breadth of applications can be explored that allow 

for better translations to impactful solutions. 



 

Fig. 1. Portable multi-modal bio-sensing platform paired with an Emotiv Epoc for EEG, PPG 

behind ear and eye-gaze collection. 

2 System Overview 

We use modular design to increase the flexibility and efficiency of multiple meas-

urements of the multi-modal bio-sensing platform. Selecting a control board that is 

well supported by the open-source community and had capable expansion was a pri-

ority. To this end, this study has explored different solutions including the Arduino, 

Raspberry Pi, LeMaker Guitar, and other ARM-based embedded controllers. The 

hardware evaluation metric that determined viability was the ability for the systems to 

hit lower-bound frame-rates and collect data from multiple sensors in real-time using 

the Lab-Streaming Layer (LSL [23]). The last but one of the most important evalua-

tion metrics was the expandability via general input/output or communication proto-

cols. After evaluation of the different platforms, the Raspberry Pi 3 (RPi3) was identi-

fied as being the system that best balances cost, support, and capabilities. The sensors 

that were selected for preliminary use are explored in detail below. 

2.1 Electroencephalogram (EEG) 

Non-invasive EEG is used to collect neural signals from individuals. Any EEG 

system that is supported by LSL can be used in the proposed multi-modal bio-sensing 

framework. The Emotiv Epoc+ system is shown in Fig. 1 as it has a suitable tradeoff 

between ease-of-use and performance. The Epoc allows for wireless collection of data 

that can be time-stamped and synchronized in real-time by RPi 3. The sampling fre-

quency of the system is on the lower end of new commercial systems at 128Hz, but 

has 14 channels (saline activated) and a gyroscope allowing for collection of cleaner 

signals. Independent Component Analysis (ICA) [5, 6, 21] is used in real time using 

ORICA [20, 24] toolbox in Matlab to separate the sources of EEG recordings in real-



time and plot them. For each of the independent components, the scalp map is plotted 

in real-time to better depict the source localization. ICA is also used to remove EEG 

artifacts due to eye blinks, muscles and other movements. 

2.2 Photoplethsmogram (PPG) 

Due to the uncomfortable nature of existing heart-rate and heart-rate variability 

sensors, a new miniaturized PPG sensor (Fig. 2) was developed that magnetically 

clipped to the ear. The miniaturization was achieved by integrating a high-precision 

and high-sampling rate ADC to the sensor.  Additionally, to eliminate noise, a third-

order filter (bandpass 0.8 – 4 Hz) was also integrated on the board such that only the 

digitized and filtered signals are transmitted to the control board. To also account for 

motion artifacts in the heart-rate signals, a 3-axis accelerometer was integrated into 

the board. The two data streams, once collected by the core controller, are integrated 

using an adaptive noise cancellation algorithm (ANC) [7, 18] (Fig. 3). Addressing the 

discomfort and bulk associated with existing systems, the device was developed to be 

mountable to the ear-lobe using magnets [7]. Because the system is low-profile and 

capable of resting behind the ear [9, 16], more mobile studies can be conducted with-

out the constrained natures of existing systems. 

 

Fig. 2. Miniaturized PPG sensor with scale reference. (A) 3-axis accelerometer, (B) 100 Hz 12-

bit ADC, (C) IR emitter and receiver, (D) third-order filter bank. 

 



 

Fig. 3. Schematic overview of adaptive noise cancellation integration with PPG. 

2.3 Eye Gaze 

The next sensor of the multi-modal system is a pair of cameras. One camera, an IR 

emitting device, is capable of accurately capturing the pupil location. A pupil-

centering algorithm is also integrated into the platform and is capable of maintaining 

the exact location even under perturbation. An algorithm developed by Pupil Labs [4] 

for pupil detection and eye-gaze calibration is utilized. Refer to the results section for 

quantification of tracking accuracy.  

The second integrated camera in the system is a world-view camera. The camera 

provides a wide-angle view of what the wearer is seeing. While being small and inte-

grated into the headset, the camera itself is a standard easily-accessible module. With 

the information that is retrievable from both the pupil and the world cameras, it is 

possible to retrospectively reconstruct the full-view that the user was observing. The 

primary problem that stems from this type of mass video collection is that the amount 

of data that must be manually labelled is enormous. There are machine-learning tools 

that are capable of labelling video post-hoc, but limit the types of experiments that 

can be performed. To create a truly portable system, the system’s video can be 

streamed to a computer and processed using deep-learning libraries such as You Only 

Look Once (YOLO) [19] that are capable of labelling 20 objects in real-time (trained 

on Pascal VOC [20] dataset). By labelling exactly what the user is looking at and 

allowing labelled data to be accessible during the experiment, the experimental rigidi-

ty can be relaxed allowing for more natural free-flowing behavior to be measured 

with minimally intrusive cues (Fig. 4). 

 



 

Fig. 4. Pupil and world views from companion headset device (top-left). Deep-learning pack-

age used to classify objects in real-time (top-right). EEG with real-time ICA and PPG signals 

capture (bottom panels). 

2.4 Galvanic Skin Response (GSR) 

The final sensor considered for addition to our multi-modal setup is a galvanic skin 

response sensor. GSR specifically allows for the measurement of arousal through the 

measurement of the skin’s impedance. This sensor is unique in that the efficacy of a 

third party commercial product being integrated into this research platform needed to 

be explored. The GSR sensor that was selected for use was the Microsoft Band 2 [14].  

3 Evaluation 

The proposed device addresses many of the limitations of existing systems while 

providing the measurement capabilities in a form-factor that is convenient for both 

researchers and subjects. To evaluate the efficacy of the system, the individual com-

ponents that were created in this study were evaluated. In particular, the evaluations 

of the Emotiv Epoc and Microsoft Band are not explicitly evaluated in this review. 

The novel PPG and eye-gaze tracking systems will be evaluated for effectiveness in 

their respective areas. 

3.1 PPG Evaluation 

To quantify the performance of the miniaturized PPG sensor, different scenarios 

are considered that are representative of real-world uses. The baseline system for 

comparison is an EEG/ECG collection system from the Institute of Neural Engineer-

ing of Tsinghua University, Beijing, China. It is capable of measuring EEG/ECG at 



1,000 Hz. Because the reference system takes measurements from electrodes placed 

near the heart, the artifacts introduced from movements or other physiological re-

sponses are minimized. Simultaneously while taking measurements from the refer-

ence system, the PPG is collecting the ECG signal from the user’s ear at a rate of 100 

Hz. As both systems can be connected in parallel, they are synchronized using the 

lab-streaming layer [23] and analyzed post-hoc. 

The first experiment was a resting scenario - the user remained seated for a fixed 

period of two minutes. For the PPG sensor, the data were compared to the reference 

with and without the adaptive noise cancellation filter. The second experiment was an 

active scenario where the user was instructed to walk in-place at a normal pace to 

simulate an active walking scenario. Again the data after using adaptive noise cancel-

lation was compared against the standard raw PPG signal. 

A peak detection algorithm [25] using minimum distance to next peak as one of the 

parameters to eliminate false peaks was used to calculate Heart Rate (HR) from ECG 

and PPG Data. Fifteen-second trails were used to calculate the HR using the peak-

detection algorithm. Figures 5 & 6 show the normalized errors, the ratio of the differ-

ence in HR between PPG and ECG-based methods divided by the mean HR obtained 

by PPG. A perfect HR estimation should result in 0%. Examining the results from the 

reference signal, the ANC enabled, and ANC disabled signals, it is clear that the ANC 

enabled signals have the least amount of noise and most closely match the reference 

signal. For resting, the ANC-disabled signals were nearly undistinguishable from the 

ANC-enabled signals (Fig. 5). It is in active environments that having the ANC filter-

ing provide a marked improvement in noise rejection (Fig. 6). 

 



 

 

Fig. 5. Bland-Altman plot comparing the measured PPG signal to a reference while at rest 

(top). Similarly comparing the measured PPG signal using an adaptive noise cancellation filter 

to reference while at rest (bottom). 



 

 

Fig. 6. Bland-Altman plot comparing the measured PPG signal while walking (top). Similarly 

comparing the measured PPG signal using an adaptive noise cancellation filter while walking 

(bottom). 



3.2 Eye Gaze Evaluation 

The performance of the paired pupil- and world- view cameras was evaluated using 

a structured visual task to measure precision and accuracy during use. The user sat 2-

2.5 feet away from a computer monitor such that the world camera was >90% of the 

camera view was composed of the task screen. Both cameras were streamed at 30fps. 

For the first task, the participant was instructed to fix their head movement and only 

move their eyes to gaze at static targets that appeared on the screen. A calibration step 

where 9 targets appeared in a regular fashion on the screen calibrated the user’s gaze 

marker. Immediately following the calibration process, a series of 20 unique targets 

are collected in distributed manner across the full screen accounting for the majority 

of the field of view. This process was followed by a period of 30 seconds of rest 

where the user was asked to move their head around without removing the headset. 

This action was designed to simulate the active movement scenarios when wearing 

the headset. Next, the participant is instructed to return to a preferred position and 

maintain head position. Twenty new unique points are shown on the screen to meas-

ure the precision and accuracy of the eye-tracking system after active use. This pro-

cess was repeated for a total of three trials per subject. 

Examining the results for the patients, we are able to observe that the accuracy and 

precision of the eye gaze setup does not drift significantly from the expected output. 

The accuracy is measured as the average angular offset (distance in degrees of the 

visual angle) between fixation locations and the corresponding fixation targets (Fig. 

7). The precision is measured as the root-mean-square of the angular distance (degree 

of visual angle) between successive samples during a fixation (Fig 8.). Compared to 

literature, the gaze accuracy drift of 0.42 degrees is significantly less than the 1-2 

degree drift found in commercial systems [11, 12]. The precision, on the other hand, 

experiences only a 0.2 degree shift post movement, indicating a minimal angular dis-

tance shift. 

 



 

Fig. 7. Gaze accuracy analysis comparing the mean after calibration (red) and after 30 seconds 

of dynamic head movement to simulate active conditions (blue). 

 

Fig. 8. Angular precision analysis comparing the mean after calibration (red) and after 30 sec-

onds of dynamic head movement to simulate active conditions (blue). 



4 Conclusion 

 There are numerous sensors capable of measuring useful metrics for human 

behavior and interactions, however, limitations in the collection hardware and soft-

ware hinder their use in experiments spanning multiple modalities. By developing a 

low-cost, portable, multi-modal bio-sensing platform that is capable of interfacing 

with numerous different sensors, we are able to explore richer experimental questions 

that have previously been unable to be accessed due to the constrained nature of the 

measurement hardware. In particular, the modular nature of the control board, inter-

face software, and headset, time can be better spent looking for novel research in-

sights rather than wrangling devices and software packages from different manufac-

turers. 
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