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Fast Fourier Transforms (FFTs) are exploited in a wide variety of fields
ranging from computer science to natural sciences and engineering. With
the rising data production bandwidths of modern FFT applications, judging
best which algorithmic tool to apply, can be vital to any scientific endeavor.
As tailored FFT implementations exist for an ever increasing variety of high
performance computer hardware, choosing the best performing FFT imple-
mentation has strong implications for future hardware purchase decisions, for
resources FF'Ts consume and for possibly decisive financial and time savings
ahead of the competition. This paper therefor presents gearshifft, which
is an open-source and vendor agnostic benchmark suite to process a wide va-
riety of problem sizes and types with state-of-the-art FFT implementations
(fftw, c1FFT and cuFFT). gearshifft provides a reproducible, unbiased and
fair comparison on a wide variety of hardware to explore which FFT variant
is best for a given problem size.
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Fast Fourier transforms (FFTs, [31]) are at the heart of many signal processing and phase
space exploration algorithms. Examples for their substantial usage include image recon-
struction in life sciences [27, 28|, amino acid sequence alignment in bioinformatics [22],
phase space reduction for weather simulations [23], option price analysis and prediction
in financial mathematics [19] and machine learning [5] to just name a few.

An FFT is a fast implementation of the discrete Fourier transform which is a standard
text-book mathematical procedure. The forward transform is a mapping from an array
x of n complex numbers in the time domain to an array X of n complex numbers in the
frequency domain (referred to as Fourier domain):

Xk = aljle (1)

with k& being an integer index within 0 < k < n and the imaginary unit i?= — 1. This
operation was found to be computable in O(nlogn) complexity by Cooley-Turkey [§],
who rediscovered findings of Gauss [16]. The basis of the Cooley-Turkey approach is the
observation that the DFT of size n can be rewritten by smaller DFTs of size ny and no
by the factorization of n = niny. Given the indices j=jino+j2 and k=ki+koni, Eq. (1)
can be re-expressed as:
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Eq. (2) describes a decomposition that can be performed recursively [15]. Here, ny
is denoted radiz as it refers to ny transforms of size ny. These smaller transforms are
combined by a butterfly graph with ny DFTs of size n; on the outputs of the corresponding
sub-transforms. Radix-2 DFTs (n being a power of two) are mostly implemented with
the Cooley-Tukey algorithm [8]. Stockham’s formulations of the FFT can be applied [29]
to avoid incoherent memory accesses. Arbitrary and mixed radices can be tackled with
the prime-factorization or Chirp Z-transform implemented by the Bluestein’s algorithm
[6].

The top ten list of the fastest worldwide computer installations (Top500 [24]) shows
that the used hardware is by far not homogeneous in terms of vendor and composition.
This trend can be even more observed in practice, where library architects and domain
specialists are confronted with an essential question: Which FFT implementation works
best on what hardware?

With increasing experimental data production [18] and simulation output bandwidths
[23], input data to FFT libraries in the order of gigabytes becomes the standard. With the
advent of graphics processing units (GPUs) for scientific computing around the beginning
of the 21st century and the subsequent availability of general purpose programming
paradigms to program these [11]|, vendor-specific and open-source libraries to perform
FFTs on accelerators emerged (cuFFT [25] by Nvidia, open-source c1FFT [3]) to offer
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performance which supersedes traditional high-performance implementations running on
standard Central Processing Units (CPUs) such as the open-source fftw library [15] or
the Intel specific MKL |[20].

To our surprise, comprehensive and peer-reviewed benchmarks of FFT implementa-
tions across different hardware platforms have not been published extensively. Fither
only specific hardware is chosen for the benchmark [2, 12, 26] or only specific FFT im-
plementation variants are tested [9, 10]. In addition, many performance benchmarks are
tied to domain-specific implementations [14] that either lack comprehensiveness or the
ability to map the results obtained to other implementation requirements.

Thus, a new open-source benchmark package called gearshifft [17] has been de-
veloped. It is able to benchmark available state-of-the-art FFT libraries in a repro-
ducible, automated, comprehensive and vendor-independent fashion on CPUs and GPUs.
gearshifft helps library authors and domain-specific developers to choose the best
FFT library available. The discussion above motivates the following design goals of
gearshifft:

e open-source and free code

e standardized output format for downstream statistical analysis
o state-of-the-art build system

e open and extensible architecture with generic interface

e community-ready and vendor independent project infrastructure through version
control and public accessibility

Given the multitude of mathematical formulations and the heterogeneity of hardware,
gearshifft approaches the challenge of benchmarking a variety of FFT libraries from a
user perspective. This means, that the following parameters should be easy to study:

e FFT dimension and radix-type (e.g. 32x32x32 as radix-2 3D FFT)
e transform kinds, i.e. real-to-complex or complex-to-complex transforms
e precision, i.e. 32-bit or 64-bit IEEE floating point number representation

e memory mode

— in-place: the input data structure is used for storing the output data (low
memory footprint and low bandwidth are to be expected)

— out-of-place: where the transformed input is written to a different memory
location than where the input resides (high memory footprint and high band-
width are to be expected)

e transform direction, i.e. forward (from discrete space to frequency space) or back-
ward (from frequency space to discrete space)
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The remainder of this article is organized as follows: the C++ implementation of gearshifft
is discussed in Section 2 after an introduction to modern FFT APIs. The largest part

of the paper is dedicated to the presentation of first results in Section 3, after which our
conclusions are presented in Section 4.

2 Implementation

2.1 Using a Modern FFT Library

Before discussing the design of gearshifft, a brief introduction into the use and appli-
cation programming interfaces (APIs) of modern FFT libraries is required to illustrate
the design choices made. Many FFT libraries today, and particularly those used in this
study, base their API on fftw 3.0.

Here, in order to execute an FFT on a given pointer to data in memory, a data structure
for plans has to be created first using a planner. For this, the FFT problem is defined
in terms of rank (1D, 2D or 3D), shape of the input signal (the dimensional extent),
type of the input signal (single or double precision of real or complex inputs), type of the
transformation (real-to-complex, complex-to-complex, real-to-half-complex) and memory
mode of the transformation (in-place versus out-of-place). These parameters describing
the FFT problem are then used as input to the planner.

The planner is a piece of code inside fftw that tries to find the best suited radix
factorization based on the shape of the input signal. By default, it then performs several
FFTs derived from the mathematical descriptions discussed in Section 1 on the input
data to sample the runtime of different FFT implementations available inside fftw. This
ensemble of runtimes is then used to find the optimal FFT implementation to use. After
the plan has been created, it is used to execute the FFT itself.

Listing 1: Minimal usage example of the fftw single precision real-to-complex planner
API. Memory management is omitted.

1 int shapel[] = {32,32,32};

2 fftw_plan r2c_plan = fftw_plan_dft_r2c(

3 /x rank, here 3D */ 3,

| /* shape of the input */ shape,

5 /% input data array */ (float *) input_buffer,
6 /x output data array x/ (fftwf_complex *) output,
7 /x plan—rigor flag */ FFTW_ESTIMATE );

8 fftwf_execute(r2c_plan);

Listing 1 illustrates the fftw API for a single precision real-to-complex out-of-place
transform. fftw offers the freedom to choose the degree of optimization for finding the
most optimal FFT implementation for the signal at hand by means of the planner flag,
also referred to as plan rigors. Listing 1 uses the FFTW_ESTIMATE flag as an example,
which is described in the £fftw manual [13]:

“FFTW_ESTIMATE specifies that, instead of actual measurements of different
algorithms, a simple heuristic is used to pick a (probably sub-optimal) plan
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Table 1: Methods an FFT client in gearshifft has to implement

constructor get_alloc_size execute_forward

destructor get_transfer_size execute_inverse
allocate get_plan_size upload
destroy init_forward download

init_inverse

quickly. With this flag, the input/output arrays are not overwritten during
planning.”

fftw offers five levels for this planning flag, where two further descriptions are given here:

“FFTW_MEASURE tells fftw to find an optimized plan by actually computing
several FF'Ts and measuring their execution time. Depending on your ma-
chine, this can take some time (often a few seconds).

FFTW_WISDOM_ONLY is a special planning mode in which the plan is only cre-
ated if wisdom is available for the given problem, and otherwise a NULL plan
is returned.”

In fftw terminology, wisdom is a data structure representing a more or less optimized
plan for a given transform. The fftw_wisdom binary, that comes with the fftw bundle,
generates hardware adapted wisdom files, which can be loaded by the wisdom API into
any fftw application. cuFFT and c1FFT follow this API mostly, only discarding the plan
rigors and wisdom infrastructure, cp. Listing 2.

Listing 2: Minimal usage example of the cuFFT single precision real-to-complex planner
API. Memory management is omitted.

1 int N = 32;

2 cufftHandle plan;

3 cufftPlan3d(&plan, N, N, N, CUFFT_R2C);

4 cufftExecR2C(plan, input_buffer, output);

2.2 The Architecture of gearshifft

gearshifft is developed as an open-source framework using C++ (following the 2014
ISO standard [21]) and the Boost Unit Test Framework (UTF, [7]). One goal is to
have a unified benchmark infrastructure and an extensible set of FFT library clients.
The benchmark framework is independent of the used FFT library and provides the
measuring environment, data handling and processing of results. gearshifft involves
template meta-programming for a compile-time constant interface between the clients and
the benchmark framework. Such a generic approach is necessary to obtain comparable
results between FFT libraries and reproducible data for later statistical analysis while
keeping code redundancy and overhead at a minimum.
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In gearshifft a benchmark is meant to collect performance indicators of the opera-
tions in Table 1 defining the interface for the FFT clients. Different parameters such as
precision, FFT extents, transform variant, device type or FFT library relate to different
benchmarks. gearshifft controls many of them by command line arguments. The FFT
libraries are related to different gearshifft binaries (gearshifft_cufft, ...). For the
full documentation of gearshifft the reader is referred to [17].

There are common interfaces for the context management and for the FFT workflow.
The user has to implement the context and the FFT client class. The create and
destroy context methods of the client encapsulate time-consuming device and library
initialization, which are measured separately and run only once. The library only must
be initialized within the FFT client when the library stores plan information (cp. fftw
wisdoms). The client’s context class derives from ContextDefault which enables to access
and extend the program options.

Listing 3: Required template arguments for FFT client implementation

1 template<

2 typename TFFT, // e.g. gearshifft::FFT_Inplace_Real,
3 typename TPrecision, // e.g. double, float,

| size_t NDim // 1,..,3

5

/* .. further template types if needed .. *x/ >
) struct MyFFTClient;

a C

The FFT client implementation in Listing 3 is instantiated once per benchmark run
and follows the resource allocation is initialization (RAII) idiom [30]. gearshifft invokes
the FFT client methods listed in Table 1 to perform the benchmarks and to populate
the benchmark data. The FFT client can assign user-defined template types to create
different FFT client classes to mimic various use cases.

Depending on the FF'T library, after a forward transform the same plan handle might be
recreated for backward transform. This saves memory as there is only one plan allocated
at any point in time. For example, a cuFFT plan allocation can be several times bigger
than the actual signal data for the FFT. £fftw can overwrite input and output buffers
during the planning phase, when e.g. FFTW_MEASURE is used. Afterwards, the buffers
can be filled with data. In turn, this plan handle cannot be recreated later on, as the
result buffer of the previous plan would be overwritten at plan recreation. gearshifft’s
compile-time interface supports this use case, where both plans are allocated before
the round-trip FFT starts. The gearshifft interface also allows library-specific time
measurements, which is only implemented for the cuFFT library at the moment, where
CUDA events measure the runtime on GPU. For fftw and c1FFT, the CPU timer exposed
by the C++14 chrono header is used.

Listing 4: Define FFT client types for corresponding FFTs

1 namespace MyFFT {
2 using Inplace_Real = gearshifft::FFT<
3 gearshifft::FFT_Inplace_Real, MyFFTClient, TimerCPU >;
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Figure 1: The benchmark framework of gearshifft using Boost UTF and a realized
FFT interface; Here, only FFT interfaces are shown, that are measured (gray
operations are measured by device timers if provided); Context also has an
implicit interface, which is omitted here.

Listing 4 shows a type definition for the user implemented class MyFFTClient and
specifies an in-place-real FET (cp. Listing 3). This type is added to a list for the bench-
mark runner, as demonstrated in benchmark. cpp (Listing 5). The gearshifft::List is a
compile-time constant list, which holds the different template instantiations of an FFT
client. FFT_Is_Normalized denotes a compile time flag if the backward transformed data
needs to be normalized in order to achieve identity with the input.

Listing 5: Using FFT client types to run the benchmarks

1 using namespace gearshifft;

2 using Context = MyFFT::Context;

3 using FFTs List<MyFFT::Inplace_Real>;
| using Precisions List<float, double>;

5 using FFT_Is_Normalized std::false_type;

6 int main( int argc, charx argv[] ) {

7 try {
8 Benchmark<Context> benchmark;
9 benchmark.configure(argc, argv);

10 benchmark.run<FFT_Is_Normalized, FFTs, Precisions>();
11 } catch(const std::runtime_error& e) { // ...

The back-end of gearshifft uses the Boost Unit Test Framework to generate the
benchmark instances within a tree data structure, which is referred to as the benchmark
tree. The measurement layout and benchmark framework are illustrated in Fig. 1. One
single run comprises time measurement of each operation (allocate, ...). The total time
measures all from allocate to destroy. The size of the allocated buffers and the memory
information of the FFT library (if available) is recorded as well. The functor FFT calls the
FFT client operations wrapped with time measurements. The input data buffer, filled
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with a see-saw function in [0,1) in BenchmarkData, is held by the BenchmarkExecutor.
A copy is given to the FFT functor in each run and is used for the output. For each
benchmark configuration a number of warmups and benchmark repetitions is performed.
After the last benchmark run the round-trip transformed data is validated against the
original input data. The error € is computed by the sample standard deviation of input
and round-trip output. When that error is greater than 1075, the benchmark is marked
as failed and gearshifft continues with the next configuration in the benchmark tree.

gearshifft adapts the API of the different FF'T libraries to a common interface. The
FFT functor defines the interface of the common FFT workflow. This pattern refers to
Wrapper Facades and Static Adapter design pattern which provides static polymorphism
at compile-time [4]. Currently, gearshifft implements three different FFT libraries,
cuFFT (CUDA runtime, [25]) for Nvidia GPUs, c1FFT (OpenCL runtime, [3]|) for CPU
and GPUs and fftw for CPU (C/C++ runtime, [15]). By this selection, an accelerator-
only, a mixed CPU-GPU and a CPU-optimized library is covered. The cmake build
system is used to setup build paths to construct one executable for each supported FFT
library found by cmake as well as for collecting the include paths during the build process
and library locations for linking later on. There are options for disabling FFT libraries
or pointing to non-standard installation paths and to configure compile-time constants
such as the error-bound as well as the number of warmups and repetitions.

For the command-line arguments, Boost is utilized, particularly for benchmark list cre-
ation and selection. There are several gearshifft program options to control benchmark
settings, for example:

| gearshifft_clfft —e 128x128 1024 —r x/float/*/Inplace_Real —d cpu

Here, the c1FFT benchmarks would first run a 128 x128-point FFT and then a 1024-point
FFT, performing in-place transforms with real input data in single-precision. The default
setting instructs gearshifft to use all CPU cores and to store the results into result.csv.
The gearshifft benchmark selection syntax supports wildcards. The first wildcard x*
relates to the title of the FFT client (CLFFT in this example). The second one refers to
the FFT extents.

3 Results

3.1 Experimental Environment

This section will discuss the results obtained with gearshifft v0.2.0 on various hard-
ware in order to showcase the capabilities of gearshifft. Based on the applications in
[27, 28], 3D real-to-complex FFTs with contiguous single-precision input data are chosen
for the experiments. If not stated, this is the transform type assumed for all illustrations
hereafter. Expeditions into other use cases will be made where appropriate. The curious
reader may rest assured that a more comprehensive study is possible with gearshifft,
however the mere multiplicity of all possible combinations and use cases of FFT render
it neither feasible nor practical to discuss all of them here.
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Table 2: Benchmark Hardware

Taurus Hypnos Islay

HPC Cluster [33] HPC Cluster [1] Workstation
CPU family Haswell Xeon  Sandybridge Xeon Haswell Xeon Haswell Xeon
CPU model 2x Eb5-2680 v3  2x E5-2450 2x E5-2603 v3  2x E5-2640 v3
RAM 64 GiB 48 GiB 64 GiB 64 GiB
GPU (PCle3.0) 4x K80 2x K20x 1x P100 1x GTX 1080
GPU memory 4x 12GiB 6 GiB 16 GiB 8 GiB
GPU driver 367.48 367.48 367.48 367.57
0S RHEL 6.8 RHEL 6.8 Ubuntu 14.04.3  CentOS 7.2

This study concentrates on three modern and current FF'T implementations available
free of charge: fftw (3.3.6pll, on x86 CPUs), cuFFT (8.0.44, on Nvidia GPUs) and c1FFT
(2.12.2, on x86 CPUs or Nvidia GPUs). This is considered as the natural starting point
of developers beyond possible domain specific implementations. It should be noted, that
this will infer not only a study in terms of hardware performance, but also how well the
APIs designed by the authors of fftw, c1FFT and cuFFT can be used in practice.

The results presented in the following sections were collected on three hardware instal-
lations: All systems presented in Table 2 will be used for the benchmarks in this section.
Access was performed via an ssh session without running a graphical user interface on
the target system. All measurements used the GNU compiler collection (GCC) version
5.3.0 as the underlying compiler. All used GPU implementations on Nvidia hardware
interfaced with the proprietary driver and used the infrastructure provided by CUDA
8.0.44 if not stated otherwise. After a warmup step a benchmark is executed ten times.
From this, the arithmetic mean and sample standard deviations are used for most of the
figures.

3.2 Overhead of gearshifft

gearshifft is designed to be a lightweight framework with a thin wrapper for the FFT
clients, where the interface between back-end and front-end is resolved at compile-time.
Performance indicators of each benchmark are collected and buffered to be processed
after the last benchmark finished. For validation purposes, a cuFFT standalone code [17]
was created that provides a timer harness like gearshifft (referred to as standalone).
In addition, the time to solution of a straightforward implementation of a round-trip
FFT was measured as well (referred to as standalone-tts). Both invoke a warm-up step
and ten repetitions of the entire round-trip FFT process. Fig. 2 shows the impact of the
gearshifft internal time measurement with cuFFT for two input signal sizes. Fig. 2a il-
lustrates that the time measurement distribution of gearshifft overlaps with standalone
code using multiple timers. A comparison of gearshifft and standalone-tts visually shows
a shift in the average obtained timing result (most likely due to timer object latencies),
the scale of this shift resides in the regime below 2 % which we consider negligible. We
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make this strong claim also because one of the goals of gearshifft is measuring individ-
ual runs of the benchmark for downstream statistical analysis, thus using one timer object
would prohibit this core feature of the benchmark. Fig. 2b shows the impact of larger
input signals on the time measurement result. Here, the difference between gearshifft,
standalone and standalone-tts decreases even more and converges to a permille level (the
longer duration of the benchmark mitigates timer object latencies).

gearshifft — standalone —— standalone-tts

- 600 - 250
o O 200
§ 400 § 150
100
g 2 S 50
L 0 L 0 .
2.6 2.7 2.8 2.9 3.0 24.8 25.2 25.6 26.0

Time Total [ms] Time Total [ms]

iy ] i_24.8 . Pt . H Foa 2 o oV i 4y
0 50 100 150 200 250 0 50 100 150 200 250
iteration iteration
(a) 1024-point FFT (b) 16777216-point FFT

Figure 2: Time-to-solution measured in gearshifft (cuFFT), in a standalone cuFFT ap-
plication using multiple timer objects and in a standalone application using
one timer object (standalone-tts) for a single-precision in-place real-to-complex
round-trip FFTs on the K80 [33].

3.3 Time To Solution

The discussion begins with the classical use case for developers that might be accustomed
to small size transforms. As such, an out-of-place transform with powerof2 3D signal
shapes will be assumed. The memory volume required for this operation amounts to
the real input array plus an equally shaped complex output array of the same precision.
Fig. 3 reports a comparison of runtime results of powerof2 single-precision 3D real-to-
complex forward transforms from fftw and cuFFT. It is evident that given the largest
device memory available of 16 GiB, the GPU data does not yield any points higher than
8 GiB. The more recent GPU models supersede fftw which used all 2x12 CPU Intel
Haswell cores. Any judgment on the superiority of cuFFT over £fftw can be considered
premature at this point, as fftw was used with the FFTW_ESTIMATE planner flag.

Fig. 4 compares the time-to-solution to the actual time spent for the FFT operation
itself. FFTW_MEASURE imposes a total runtime penalty of 1 to 2 orders of magnitude
with respect to FFTW_ESTIMATE. It however offers superior performance considering FFT
execution time compared to FFTW_ESTIMATE. To compare FFTW_ESTIMATE or FFTW_MEASURE
with plans using FFTW_WISDOM_ONLY, wisdom files are generated with the fftw_wisdom
binary. fftw_wisdom precomputed plans for a canonical set of sizes (powers of two and ten

10
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Figure 3: Time-to-solution for powerof2 3D single-precision real-to-complex out-of-place
forward transforms using fftw (FFTW_ESTIMATE) and cuFFT. Fig. 3b shows the
same data as Fig. 3a but in a logl0-log2 scale.

fftw-estimate — fftw-measure — fftw-wisdom
10°1
10*1 o 10°1
& 10%1 E
E, 107 = 10%]
-— 1] L
10 w
10°4 10
10
2-15 2-10 2-5 20 25 210 2-15 2-10 2-5 20 25 210
signal size [MiB] signal size [MiB]
(a) time to solution (b) time for forward transform only

Figure 4: fftw on Intel E5-2680v3 CPU with FFTW_ESTIMATE, FFTW_MEASURE and
FFTW_WISDOM_ONLY computing powerof2 3D single-precision real-to-complex in-
place forward transforms. Fig. 4a reports the time to solution, whereas Fig. 4b
shows the time spent for the execution of the forward transform only. Both
figures use a logl0-log2 scale.

11
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Figure 5: Time-to-plan for powerof2 single-precision in-place real-to-complex forward
transforms using fftw (Intel E5-2680v3 CPU), cuFFT (K80 GPU) and c1FFT
(K80 GPU). Fig. ba reports the complete time to plan for 3D FFTs and Fig. 5b
for 1D FFTs. “None” refers to the planning with cuFFT or c1FFT as they do
not support the plan rigor concept. Both figures use a logl0-log2 scale.

up to 220) in FFTW_PATIENT mode, which in all took about one day on Taurus [33] using
(see [13] for command-line flag details): fftwf—wisdom —v —c —n —T 24 —o wisdomf.

As during plan creation, the wisdom has to be loaded from disk only, the planning times
for calling the planner with FFTW_WISDOM_ONLY are drastically reduced. Fig. 4b shows that
the user is rewarded by pure FFT runtimes of less than an order of magnitude for small
signal sizes. Unexpectedly, the FFT runtimes become larger than those of FFTW_ESTIMATE
for input signal sizes of more than 32 KiB, which apparently contradicts the FFTW_PATIENT
setting which should find better plans than FFTW_MEASURE. It must be emphasized that
the planning times for FFTW_MEASURE become prohibitively long and reach minutes for
data sets in the gigabyte range. This is a well-known feature of fftw as the authors note
in [15]:

“In performance critical applications, many transforms of the same size are
typically required, and therefore a large one-time cost is usually acceptable.”

gearshifft allows one to dissect this problem further and isolate the planning time
only. Fig. 5 illustrates the problem to its full extent. FFTW_MEASURE consumes up to 3—4
orders of magnitude more planning time than other plan-rigors and plans from GPU
based libraries. The 3D planning is compared with its counterpart in 1D (see Fig. 5b). It
is important to note that fftw planning in 1D appears to be very time consuming as the
FFTW_MEASURE curve is very steep compared to Fig. 5a. At input sizes of 128 MiB in 1D,
the planning phase exceeds the duration of 100s. The multi-threaded environment could
be a problem for fftw (compiled against OpenMP): when using 24 threads in fftw the
time to solution with FFTW_MEASURE was up to 6x slower than using 1 thread. Even worse,
FFTW_PATIENT was up to 50x slower than in a single-thread environment. Unfortunately,

12
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the number of threads used for wisdoms, which usually run in FFTW_PATIENT mode, must
be equal to the ones used by the client later on.

In practice, this imposes a challenge on the client to the fftw APIL. Not only is the
time to solution affected by this behavior which is a crucial quantity in FFT-heavy
applications. Moreover, in an HPC environment the runtime of applications needs to
be known before executing them in order to allow efficient and rapid job placement
on compute resources. From another perspective, this asserts a development pressure
on the developer interfacing with £ftw as she has to create infrastructure in order to
perform the planning of £ftw only once and reuse the resulting plan as much as possible.
Furthermore, based on these observations of Fig. 4 and Fig. 5 weighing plan time versus
execution time, it becomes more and more unclear for a user of fftw which plan rigor to
use in general.

3.4 Comparing CPU versus GPU runtimes

The last section finished by discussing a design artifact, that the £ftw authors introduced
in their API and which other FFT libraries adopted. Another important and common
question is whether GPU accelerated FFT implementations are really faster than their
CPU equivalents. Although this question cannot be answered comprehensively in our
study, there are several aspects to be explored. First of all, modern GPUs are connected
via the PCle bus to the host system in order to transfer data, receive instructions and
to be supplied with power. This imposes a severe bottleneck to data transfer and is
sometimes neglected during library design. Therefore, the time for data transfer needs
to be accounted for or removed from the measurement. gearshiffts results data model
offers access to each individual step of a transformation, see Fig. 1. Hereby it is possible
to isolate the runtime for the FFT transform.

Fig. 6 shows the runtime spent for computing the forward FFT for real single precision
input data. This illustration is a direct measure for the quality of the implementation and
the hardware underneath. For the 3D case in Fig. 6a fftw seems to provide compelling
performance if the input data is not larger than 1 MiB on a double socket Haswell Intel
Xeon E5 CPU. Above this limit, the GPU implementations offer a clear advantage by up
to one order of magnitude. The current Pascal generation GPUs used with cuFFT provide
the best performance, which does not come by surprise as both cards are equipped with
GDDR5X or HBM2 memory which are clearly beneficial for an operation that yields
rather low computational complexity such as the FFT. In the 1D case of Fig. 6b, the
same observations must be made with even more certainty. The cross-over of fftw and
the GPU libraries occurs at an earlier point of 64 KiB.

Another observation in Fig. 6a is that the general structure of the runtime curves
of GPU FFT implementations follows an inverse roofline curve [32]. That is for input
signals smaller than the roofline turning point at 1 MiB the FFT implementation appears
to be of constant cost, i.e. to be compute bound. Above the aforementioned threshold,
the implementation appears to be memory bound and hence exposes a linear growth
with growing input signals which corresponds to the O(nlogn) complexity observed in
Section 1 and validates the algorithmic complexity in [32] as well.
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Figure 6: Time for computing powerof2 out-of-place single-precision real-to-complex for-
ward transforms for 3D and for 1D shapes. Both figures use a logl0-versus-log2
scale. Curves on the Intel E5-2680v3 based node were obtained with fftw, the
data on Nvidia GPUs was obtained with cuFFT and c1FFT.

Finally, it is not to our surprise that the c1FFT results reported in Fig. 6 cannot be
considered optimal. As we executed c1FFT on Nvidia hardware interfacing with the
OpenCL runtime coming with CUDA and interfaced to the Nvidia proprietary driver,
OpenCL performance can not be considered a first-class citizen in this environment. Only
in Fig. 6b, the c1FFT runtimes are below those of fftw. These experiments should be
repeated on AMD hardware where the OpenCL performance is expected to be better.

3.5 Non-powerof2 transforms

It is often communicated, that input signals should be padded to powerof2 shapes in
order to achieve the highest possible performance. With gearshifft the availability and
quality of the common mathematical approaches across many FFT libraries can now be
examined in detail. For the sake of brevity, only the results for fftw (Intel E5-2680v3
CPU) and cuFFT (P100) are presented here.

Fig. 7 confirms that powerof2 transforms are generally faster than radix357 and
oddshape transforms. Excluding the long planning time fftw offers the fastest FFT
runtime until the turning point at 1 MiB, see Fig. 7a. However, looking at time to
solution in Fig. 7b c1FFT on the CPU outperforms fftw by 1 to 2 orders of magnitude
due to the long planning times of fftw. At very small input signal sizes, cuFFT lacks
behind c1FFT on the CPU until 1 KiB for powerof2 shapes, where cuFFT offers superior or
comparable runtimes thereafter. c1FFT only offers support for powerof2 and radix357
shape types but has almost the same performance for either. cuFFT shows an FFT
runtime difference of up to one order of magnitude on the P100 for large input signals
(Fig. 7a) of powerof2 and oddshape type, where the time to solution converges due to
planning and transfer penalties (Fig. 7a).

For a large range of input signal sizes between 27! MiB to 27 MiB a padding to
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Figure 7: £ftw and c1FFT on Intel E5-2680v3 CPU with 24 threads versus cuFFT on P100
GPU computing single-precision real-to-complex out-of-place forward trans-
forms of 3D shapes. Both figures use a logl0-versus-log2 scale.

powerof2 might be justified when using cuFFT if enough memory is available on the
device. For fftw non-powerof2 signals can be padded at signal sizes above 2732 MiB
= 128 KiB. c1FFT on CPU is only a good choice, when short planning times are more
important than transform runtime. c1lFFT provides similar performance on the P100 as
on CPU, but it is not shown here.

3.6 Data Types

It is a common practice that complex-to-complex transforms are considered more per-
formant than real-to-complex transforms. Therefore, in order to transform a real input
array, a complex array is allocated and the real part of each datum is filled with the
signal. The imaginary part of each datum is left at 0.

Fig. 8 restricts itself to larger signal sizes in order to aid the visualization. Note that
in Fig. 8a, a data point at the same number of elements of the input signal does have
different size in memory. fftw exposes a factor of 2 and more of runtime difference for
signals larger than 2'° elements comparing real and complex input data types in Fig. 8a.
Below this threshold, the performance can be considered identical except for very small
input signals although real FFTs always remain faster than complex ones. The situation
is different for cuFFT, where the overall difference is smaller in general. In the compute
bound region of cuFFT (below 2! elements), complex transforms perform equally well
than real transforms given the observed uncertainties. In the memory bound region
(above 2'9 elements), real transforms can be a factor of 2 ahead of complex ones which
is clearly related to twice the memory accesses.

If single-precision can be used instead of double-precision, then the possible perfor-
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Figure 8: Time for computing a forward FFT using 3D powerof?2 input signals using fftw
and cuFFT on respective hardware versus the number of elements in the input
signal. Fig. 8a computes a real-to-complex transform and compares it to a
complex-to-complex transform for single precision input data, whereas Fig. 8b
shows a real-to-complex transform for either single or double precision. Both
figures use a log2-versus-log2 scale.

mance gain can be estimated by Fig. 8b. On the high grade server GPU, the Nvidia
Tesla P100, the performance difference remains around 2x in the memory bound region
due to double the memory bandwidth required. The results for £ftw vary more around
1.5 to 2.5 fold regressions between single and double precision inputs across a wider input
signal range.

4 Summary

With this paper gearshifft is presented to the HPC community and other performance
enthusiasts as an open-source, vendor-independent and free FFT benchmark suite for
heterogeneous platforms. gearshifft is a C++14 modular benchmark code that al-
lows to perform forward and backward FFT transforms on various types of input data
(both in shape, memory organization, precision and data type). gearshifft’s design
offers an extensible architecture to accommodate FFT packages with very low overhead.
gearshifft’s design choices address both FFT practitioners, FFT library developers,
HPC admins or integrators and decision makers supporting a wide range of use cases.
To showcase the capabilities of gearshifft, a first study of three common FFT li-
braries, fftw, c1FFT and cuFFT is presented. The performances of CPU based imple-
mentations Haswell Xeon CPUs to state-of-the-art Pascal generation Nvidia GPUs are
compared. The results indicate that for input signal sizes of less than 1 MiB, the CPU
implementation is superior whereas for larger input data size the GPU offers better
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turn-around. The difference between runtimes of powerof2, radix357 and power-of-19
shaped input data was demonstrated to be negligible for fftw and non-negligible for
cuFFT transforms used in this study. The results further indicate runtime differences
when using complex versus real arrays and when comparing double versus single preci-
sion data types.

As we warmly welcome contributions of benchmarks from various pieces of hardware,
we hope to extend the gearshifft repository with many more data sets from platforms
used in the HPC arena of today and tomorrow. It is planned to run gearshifft on non-
x86 hardware to establish a basis for hardware performance comparisons. Connected
to this, we plan to explore more state-of-the-art FFT libraries such as Intel IPPS, Intel
MKL, AMD’s rocFFT, cusFFT etc. It is a future task to consolidate the benchmark
data structure and to open another benchmark paths for e.g. FFT callbacks, so that
many more analyses are possible than were presented in this paper both in terms of
performance exploration as well as energy consumption.
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