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Abstract. Molecular Dynamics is an important tool for computational
biologists, chemists, and materials scientists, consuming a sizable amount
of supercomputing resources. Many of the investigated systems contain
charged particles, which can only be simulated accurately using a long-
range solver, such as PPPM. We extend the popular LAMMPS molecular
dynamics code with an implementation of PPPM particularly suitable for
the second generation Intel Xeon Phi. Our main target is the optimiza-
tion of computational kernels by means of vectorization, and we observe
speedups in these kernels of up to 12x. These improvements carry over
to LAMMPS users, with overall speedups ranging between 2-3x, without
requiring users to retune input parameters. Furthermore, our optimiza-
tions make it easier for users to determine optimal input parameters for
attaining top performance.

1 Introduction

Molecular dynamics simulations are used to compute the evolution of systems
of atoms in fields as diverse as biology, chemistry, and materials science. Such
simulations target millions or billions of particles, are frequently run in parallel,
and consume a sizable portion of supercomputers’ cycles. Since in principle each
atom interacts with all the other atoms in the system, efficient methods to com-
pute the pairwise forces are vital. The most widespread method for electrostatic
interactions is the “Particle-Particle Particle-Mesh” (PPPM) method [1], which
makes it possible to efficiently compute even the interactions between distant
particles.

Due to its popularity, we target the open-source LAMMPS code [2], which
offers the PPPM method. LAMMPS is a C++ code designed for large parallel
simulations using MPI, and is written to be modular and extensible. LAMMPS
can be compiled with a variety of packages that provide different implementa-
tions of key methods for the calculation of short-range and long-range interac-
tions. For example, the USER-OMP package includes versions of methods such
as PPPM which are specifically designed for shared-memory parallelism. In this
paper, we extend the LAMMPS molecular dynamics simulator with a version
of PPPM that is especially suitable for architectures with wide vector registers,
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such as the Xeon Phi. In the past, long-ranged solvers have been optimized for
GPUs, with issues similar to those encountered with Xeon Phi accelerators [3,4].

On these systems, one of the main routes towards high-performance is the ex-
ploitation of the wide (512-bit) vector registers. To this end, we create vectorized
kernels for all the computational components that are not directly supported by
highly optimized math libraries (e.g. FFTs). These routines account for between
20% and 80% of the time spent in PPPM. As such, their optimization leads to
notable speedups in the overall performance of the simulation.

One challenge is that the innermost loops of said computational routines
are very short, with trip-counts between 3 and 7. This is a common problem
for vectorizing molecular dynamics even outside of PPPM. For example, it was
encountered by Höhnerbach et al. in their multi-platform vectorization of the
extremely short loops of the Tersoff potential [5]. It turns out that work can be
saved elsewhere by increasing these trip counts, simultaneously enabling efficient
vectorization. Similarly, work can be shifted away from poorly-scaling FFTs and
into newly-optimized functions, and, within the optimized functions, memory
bandwidth can be traded against additional computation.

In this paper, in addition to discussing vectorization techniques, we also pro-
vide insights into the parametrization of PPPM for performance. In particular,
we consider three tunable parameters: the real-space cutoff, the interpolation
order, and the differentiation mode. Many users will stick to the default choices
where such exist, since these promise accurate and reasonably performant calcu-
lations. Others will have taken time to tune these parameters for their particular
problems, but even expert users often make suboptimal choices that can up to
double time-to-solution for a given desired accuracy, depending on the prob-
lem [6]. We achieve 2-3x speedups for a wide range of input parameters, and our
optimizations also make the careful tuning of several parameters unnecessary by
making particular options superior to the others for almost all cases.

The code presented in this paper is contributed to the USER-INTEL package
of LAMMPS [7]. It has been shown that this package can not just yield impressive
speedups on Intel architecture, but also improve the energy efficiency of the
calculation [8].

2 Molecular Dynamics and PPPM

2.1 An algorithmic overview

The interaction between atoms in a molecular dynamics simulation is governed
by a so-called potential function. For example, the Lennard-Jones (LJ) and the
Coulombic (Coul) potentials are given by:

V
ij
LJ = 4ǫij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

, and V
ij
Coul =

C qi qj

ε rij
. (1)

For a given pair of atoms (i, j), the potential depends on the distance between
them, rij , as well as their charges qi and qj (in the Coulombic case), or the
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parameters ǫij and σij (in the Lennard-Jones case), which describe the minimum
of the potential function and its root. In order to obtain the forces on atoms,
MD simulations can compute these potential functions for all pairs of atoms,
but O(n2) pairs have to be evaluated, and this quickly becomes infeasible.

A simple solution is to introduce a cutoff. One only considers interactions
among atoms within a given cutoff radius rC of each other. Consequently, the
number of pairs to be evaluated decreases to O(nr3C). Since all the potential
functions (e.g., Eqn. 1) fall off with distance, the cutoff provides a reasonable
strategy to approximate the total potential on atoms.

There are, however, numerous situations in which long-range interactions
between atoms cannot be neglected, and instead have to be approximated nu-
merically. A plain cutoff strategy does not work well for Coulomb interactions,
which are relevant when a system contains charged particles or polar molecules,
because the potential falls off only as r−1. In contrast, the cutoff is perfectly fine
for the Lennard-Jones potential, as long as the system is uniform.

In non-uniform problems, such as those featuring an interface, even Lennard-
Jones interactions may need to be calculated using a long-ranged solver and can
not be approximated [9]. In these cases, it is necessary to approximate these long-
range interactions without explicitly computing pair-wise potential functions; for
this task, Particle-Particle Particle-Mesh is often the method of choice. PPPM
approximates long-range interactions in a periodic system by obtaining the po-
tential of the entire system of atoms as a function of space, discretized to a grid
[1]. While originally developed for electrostatics, the method was later adapted
to the r−6 term of the Lennard-Jones potential [10].

In this work, we focus on PPPM for electrostatics, i.e., the Coulomb potential.
PPPM uses an idea due to Ewald, and splits the potential into two components
[11]. The first component, the “short-ranged” part of PPPM, contains the dis-
continuity due to the r−1 term, and a smooth screening term that limits the
support to a small spherical region around a given atom; this component can
be calculated directly between each atom and its neighbors in a certain cutoff
radius rC . The second component is the “long-ranged” part of PPPM; due to
its smooth nature, this can be solved accurately on a grid.

The efficient solution of the long-ranged component is the key ingredient of
the PPPM method. Since we are operating with smooth quantities, the electro-
static potential is related to the charge distribution ρ via Poisson’s equation

∇
2Φ = −

ρ

ǫ0
. (2)

From the electrical potential Φ, one can compute the forces on all the atoms due
to it. The forces on an atom j with charge qj can be obtained from the gradient
of the potential evaluated at the particle’s position:

F j = −qj∇Φ. (3)

PPPM approximates these forces on each particle by proceeding in three steps:

1. First, particle charges are mapped to a grid using a stencil, obtaining a
discretized form of the charge distribution ρ.
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2. Second, Poisson’s equation (Eqn. 2) is solved in order to obtain the poten-
tial Φ. This is done by first taking the 3D Fourier transform of the charge
distribution, as Poisson’s equation is easier to solve in reciprocal space, and
then performing one or more inverse FFTs to obtain a result in real space.

3. Third, this result is mapped back to the atoms with the same stencil used
when mapping charges.

The forces are obtained from the gradient of the potential, and this gradi-
ent can be taken in reciprocal or real space, determined by the user-specified
differentiation mode. For ik differentiation, the gradient is calculated in recipro-
cal space, immediately after solving Poisson’s equation, and three inverse FFTs
bring it back into real space, where its components are mapped to the atoms. For
ad differentiation, one inverse FFT yields the scalar potential in real space, and
this is mapped to the atoms using different sets of coefficients for each component
of the gradient to be obtained.

Our optimizations focus especially on the mapping steps (steps 1 and 3).
Step 2 is not as interesting for manual optimization since it is dominated by
FFT calculations, for which highly optimized libraries exist. The mapping steps,
on the contrary, are deeply nested loops performing calculations on data that
is likely already in cache. We will show that optimizations, especially proper
vectorization, will speed up these steps by at least a factor of four.

2.2 Related Work

Besides LAMMPS, many other popular molecular dynamics codes contain long-
ranged solvers. Examples include, but are not limited to, Gromacs [12], DL POLY [13],
AMBER [14], Desmond [15], and NAMD [16]. These codes tend not to imple-
ment PPPM itself, in favor of related schemes such as PME [17], SPME [18],
and k-GSE [19]. The main differences with respect to PPPM lie in the function
used to interpolate atom charges onto the grid and back, and in the correspond-
ing Green’s function used to solve for the smooth part of the potential. There
also exist schemes for long-ranged force evaluation that are not based on Fourier
transforms, such as lattice Gaussian multigrid [20], Multilevel Summation [21],
and r-GSE [19].

2.3 Parametrization of PPPM

Since LAMMPS is used for a wide variety of problems, users have many choices
about input parameters for the target physical system. Several of these parame-
ters influence the accuracy and/or speed of the simulation, including the cutoff
distance (rC), the prescribed error in forces relative to a reference (ǫ), the stencil
size (S), and the differentiation mode, ik or ad.

rC expresses the distance within which pair-wise interactions are computed
directly, and outside of which the interactions are approximated using the PPPM
grid; the short-ranged calculations scale with r3C . The work done when comput-
ing FFTs is controlled by ǫ; LAMMPS automatically determines the coarseness
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of the FFT grid to satisfy this accuracy constraint, depending on the values
chosen for the other parameters. A 73 stencil (S = 7) causes writing to, and
reading from, about 2.7 times as many grid cells compared to the default 53

stencil. A higher-order stencil produces more accurate results, and LAMMPS
takes this into account when deciding the resolution of the PPPM grid. There-
fore, a higher-order stencil shifts work out of the FFT functions, and into the
mapping functions. Users can also choose between the ik and ad differentiation
modes described above, and LAMMPS again takes their different accuracies
into account when setting up the FFT grid, with the ik mode yielding a slightly
coarser grid.

Users will typically want to use a set of inputs that nearly minimize run-
time, subject to an accuracy constraint. Unfortunately, short of trial-and-error
for a specific problem it can be difficult to find a good set of parameters. In a
recent work [6], Fabregat et al. developed a method for automatically searching
the space of input parameters to find a good set, guided by cost and accuracy
models; their case studies suggest that even expert users systematically under-
estimate the expense of PPPM: they invariably predicted lower-than-optimal
cutoffs, which minimize the work done in computing pair interactions while
forcing a finer FFT grid. The impact of stencil size was not considered, leaving
the choice at LAMMPS’ default. In the next sections we demonstrate that an
appropriate choice of stencil size is needed to achieve good vectorization.

2.4 Profiling

In order to investigate the effects of the input parameters on runtime, we execute
our baseline on a single core of a KNL machine with a single thread. The system
is an Intel Xeon Phi 7210 chip (64 cores and 16GB of HBM RAM) in quadrant
and flat memory mode, connected to other nodes via OmniPath. Our software is
based on the May 11, 2016 version of LAMMPS with the RIGID, USER-OMP
and USER-INTEL packages enabled. It was compiled using the Intel C++ Com-
piler version 16.01 (build 20151021), and uses Intel MPI 5.0 (build 20150128).
The reference runs use the code provided by the USER-OMP package, and our
runs are based on code from USER-INTEL package running in mixed precision
mode. Our benchmark is an SPC/E water simulation [22], a benchmark provided
with LAMMPS. We modified it to have a cubic domain.

Since all the atoms in the system carry partial charges, the simulation uses
PPPM to calculate forces. Unless otherwise specified, the default settings that
we use are relative error ǫ = 10−4, and short-range cutoff rC = 5Å. The basecase
contains 36,000 atoms, and will later be scaled up for more extensive benchmarks.

Fig. 1 shows timings as the cutoff, relative error, and differentiation mode
vary. The vertical sections denote the time spent in FFTs (“PPPM FFT”), and
in PPPM aside from FFTs (“PPPM non-FFT”), the time spent in the pair-wise
short-ranged interactions (“Pair”), and everything else (“Other”).

For cutoff, there actually is a minimum of the runtime, i.e., reducing the
cutoff will not reduce runtime beyond a certain point where the long-ranged
part gets less efficient: The rC = 3Å case spends a disproportionate amount of
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Fig. 1. Profile of SPC/E water test case running single-threaded on one core of a KNL.
Left bar: ad differentiation, right bar: ik differentiation.

time in PPPM. The cutoff mostly impacts the “Pair” time—since it scales as
O(r3C)—and the “PPPM FFT” time—since it forces the grid to grow or shrink.

For ǫ, there of course is no minimum—lower accuracy results in faster simulations—
mostly due to less time spent in FFT calculations (i.e. smaller grids). Outliers
in FFT performance can be attributed to pathological cases (in terms of size) of
the FFT library.

In both panels of Fig. 1, the “Other” and the “PPPM non-FFT” sections are
largely unaffected by changes in cutoff or relative error. In both, ad differentia-
tion performs best (except for one outlier). For cutoff-optimal cases, the majority
of the runtime is spent on long-ranged calculation, suggesting that optimization
in that area might be quite fruitful.

3 Optimizations

The optimizations for the different stages of the algorithm are discussed here. In
particular, we cover the functions that map atoms to grid points and grid values
to atoms, the Poisson solver, and the routines responsible for the short-ranged
contribution.

3.1 Mapping Functions

All three mapping functions—Map-Charge and both the ik and the ad versions
of Distribute-Force—share the same structure: a loop over all atoms, the cal-
culation of stencil coefficients, and then a loop over stencil points. Map-Charge

multiplies the particle charge by the stencil coefficient and adds that value to a
point on the grid. Distribute-Force proceeds in a slightly different way depending
on the differentiation mode. The ik mode multiplies the grid values for each spa-
tial dimension at each grid point by the corresponding stencil coefficient, then
adds them to three totals, one for each dimension; after the loop over stencil
points, these components are multiplied by the atom’s charge and a scaling fac-
tor to obtain force components. The ad mode multiplies the scalar potential at
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a grid point by three different stencil coefficients to obtain a vector, which is
added on the atom; after the loop over stencil points, substantially more cal-
culation than is required for ik differentiation transforms these totals into the
components of the force vector.

The stencil coefficients are the product of three polynomials of order equal
to the stencil size, one for each dimension. The iteration over stencil points
consists of a triple loop (one for each dimension of the stencil). This represents
the bulk (80%+) of the work, and accounts for almost all the memory accesses
in the mapping functions. Map-Charge accesses only a single value at each grid
point, but does very little computation. The ik mode of Distribute-Force uses
three different values at each grid point. The ad mode uses only one value at
each grid point, but performs more floating point operations. The arithmetic
intensity of all these routines is relatively low, and memory access patterns will
determine the best approach to vectorization.

Since the number of grid points is typically comparable to or smaller than
the number of atoms, and NS3 stencil points are touched when looping over
N atoms, there is a great deal of data reuse. With so few calculations being
performed on data which is almost always found in cache, managing vectoriza-
tion overhead will prove to be vital. In general, we find that it is important to
minimize the amount of data shuffling or masking required to prepare for vec-
tor operations; whenever possible, a full vector should be pulled from memory,
operated on, and returned.

With an understanding of the structure of the mapping functions, we now
walk through our process of optimizing each one, pointing out what worked and
what did not. A summary of progressive speedups for each function is shown in
Fig. 2.
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Fig. 2. Speedups for different implementations of each of the three mapping functions
relative to the USER-OMP baseline version. Charge mapping timings were obtained
from simulations using ik differentiation.
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Function Map-Charge

Rethread: To avoid race conditions when writing to the grid, the USER-
OMP package has threads own disjoint chunks of the grid, and uses conditional
statements in the innermost loop over stencil points. By giving threads disjoint
sets of atoms and maintaining private copies of the grid—which are then summed
together—we achieve a ∼2x speedup.

Vector: We vectorize the innermost loop over stencil points, which features
unit stride memory accesses as it iterates through grid points. We target a new
default stencil size of 7, instead of 5, to make better use of 256-bit vector registers.
This implementation achieves another factor of ∼2 speedup (“vector” implemen-
tation), which is significant but not close to the theoretical 7x we might hope
for.

Simd8: Masking associated with the 7-iteration loop is a significant over-
heard. By explicitly setting the loop length to 8 and padding the stencil coef-
ficient arrays with zeros, we avoid masking and obtain a total of ∼6x speedup
over the re-threaded scalar version.

Precompute: Rather than evaluating polynomials to obtain the stencil co-
efficients for each atom every time step, we precompute 5000 values for each
polynomial and refer to the nearest entry in this lookup table instead. This
brings total speedup to over 12x of the baseline.

Function Distribute-Force (ik Differentiation)

Atom Simd: Since Distribute-Force performs reads from the grid rather
than writes, the atom loop can be vectorized easily, yielding a ∼2x speedup.
The gather operations required to read grid point values cause this to be a poor
choice.

Inner Simd: Reproducing the inner loop vectorization from Map-Charge,
setting the loop length to 8, produces a ∼3.7x speedup over the scalar imple-
mentation.

Repacking: Distribute-Force for ik differentiation uses three different grids
with their own force components. By modifying the Poisson solver to instead
output the x and y components interweaved, and the z component interweaved
with 0s, the innermost loop can be extended to 16 iterations and the x and y
components can be computed together by taking advantage of the 512-bit vector
register on Xeon Phi. This provides an additional ∼1.1x speedup.

Precompute: As with Map-Charge, the polynomial evaluations to obtain
stencil coefficients can be replaced with references to a lookup table, for a similar
∼1.1x additional speedup and a total speedup of ∼4.4x relative to the reference.

Function Distribute-Force (ad Differentiation)

Vector: Transferring over all of the optimizations from the ik mode of
Distribute-Force, except the inapplicable repacking of the Poisson solver out-
put, yields speedup below 3x relative to the reference. This is because the extra
work after the loop over stencil points has become relatively expensive.
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Split Atom: We split the loop over atoms in two. The first atom loop ends
after the triple loop over stencil points, having summed weighted potentials into
three arrays of length equal to the number of atoms. The second atom loop
operates on these arrays to obtain force components, and can be vectorized as
it contains no inner loops and has unit stride access to the weighted potential
arrays. This brings the overall speedup to just above 4x.

3.2 Poisson Solver

The Poisson solver is a poorly-scaling, communication-intense function which
performs 3D FFTs, solves Poisson’s equation in reciprocal space, and then per-
forms a number of inverse 3D FFTs depending on the differentiation mode (3
for ik and 1 for ad). These 3D FFTs are performed in parallel as a series of
1D FFTs with communication steps in between. The FFT functions are from
high-performance libraries (in our case MKL) and we do not attempt to optimize
them. Our optimization of the solver comes from three ideas.

Shift Work: Switching to a stencil size of 7 creates more work in the mapping
functions, but causes LAMMPS to choose a coarser grid resolution, requiring
fewer calculations to perform the FFTs.

2D FFTs: The series of 1D FFTs is inefficient [23]. We replace it with a 2D
FFT followed by a 1D FFT, and in the first communication step we ensure that
planes of data are located on each MPI rank. This saves one communication step
and is roughly (∼10%) faster. Even for poorly load-balanced cases, where the
number of necessary 2D FFTs is only slightly greater than the number of MPI
ranks, it does not perform worse.

Adjust Grid Sizes: The FFT calls of Intel’s MKL library do not perform
well for particular unfortunate values, which can catch users by surprise (com-
pare time spent in FFTs across the cases in Fig. 1). A simple fix that catches
many problem cases is to check whether the number FFT grid points in any
dimension is a multiple of 16, and increase it by 1 if necessary. Users will now
only rarely find that their simulations run substantially slower after making a
tiny change to their input file, and, as an added bonus, these simulations will
gain slightly improved accuracy.

3.3 Short-Ranged Interactions

To avoid shifting the bottleneck to the short-range calculation, it is desirable
that it be vectorized. Mike Brown of Intel contributed code vectorizing the pair
potential used in simulations containing electrostatic interactions (optionally
with cut off Lennard-Jones interactions), where his strategy was to vectorize
the loop over each atom’s neighbors. This achieves a ∼3x speedup (for example,
compare the time spent in “Pair” between the reference and optimized versions
in Fig. 3). We provide similar code compatible with the Buckingham potential,
optimized for PPPM and USER-INTEL, and also versions of pair potentials
compatible with PPPM for dispersion.
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4 Results

We now present comparisons between the reference and optimized versions of
LAMMPS using full simulations, profiling the code as in Fig. 1, to show how
the various parts of the code contribute to total runtime. We also investigate
the opaque way in which the user-facing knobs impact accuracy, and provide
evidence that our optimizations do not sacrifice accuracy. The experiments were
conducted on a single core, a full node, and multiple nodes. While the speedup
is both problem dependent and parameter dependent, the optimized version is
faster in every case simulated.

Because of our decision to target a new default stencil size of 7, it would not
be fair to make like-to-like comparisons between the reference and our optimized
versions. Further, LAMMPS’ input files do not even require an explicit choice of
stencil size, so many users will just allow it to take on its default value. Fig. 3
compares the two versions as stencil order varies for our baseline test cases, using
ik differentiation to demonstrate that the new value is faster for the optimized
version. We simulate the standard 5Å case on a single core and a 64x scaled-up
7Å case on a full KNL node, which are nearly-optimal cutoff radii for each case.
The trend in total runtime is expected: on both a single core and the full node
the reference version is fastest with a stencil size of 5 while the new version is
fastest with a value of 7. For all future cases presented, the reference code uses
S = 5 while ours uses S = 7.
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)

Stencil Size Comparison, ik
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Fig. 3. Profiles of SPC/E water as stencil size varies for both single-core and scaled-up
full-node cases. Left bar: reference, right bar: optimized.

4.1 Accuracy

Since the optimizations proposed involve both parameter-tuning and numerical
approximations, we now verify that our code is as accurate as the reference. To
this end, we compare to an Ewald summation run with a relative error of 10−5,
and a cutoff of 10Å.
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Version mode rc S precompute RMS error Version mode rc S RMS error

ref ik 7Å 7 - 0.0186 ref ad 7Å 7 0.0189
opt ik 7Å 7 - 0.0186 ref ik 3Å 7 0.5853
opt ik 7Å 7 500 points 0.0313 ref ik 5Å 7 0.0124
opt ik 7Å 7 5000 points 0.0188 ref ik 7Å 3 0.0197
opt ad 7Å 7 5000 points 0.0188 ref ik 7Å 5 0.0194

Table 1. RMS errors for force after one timestep compared to Ewald summation

As seen in Table 4.1, without stencil coefficient precomputation, the opti-
mized and reference versions obtain almost identical forces for both differen-
tiation modes. 5000 precomputed stencil polynomial evaluations are sufficient
to retain overall accuracy with our approximation. In addition, the optimized
version conserves momentum (the sum of forces on all atoms remains nearly
zero) and the macroscopic temperature difference between reference and opti-
mized simulations after 100 time steps is always small (∼0.1%), and nearly zero
without stencil precomputation.

Many users may not expect that their choice of cutoff can have a large effect
on accuracy, and LAMMPS’ internal accuracy model does not do as good of a job
with stencil size as it does with differentiation mode. After 100 time steps, the
temperature is almost 10 degrees higher for a 3Å cutoff than for cutoffs greater
than or equal to 4Å. In addition to speedup, our optimized version becomes
slightly more accurate by moving to a stencil size of 7.

4.2 Single-Core Simulations

We first compare simulations using our optimized version to the reference cases
we presented earlier in Fig. 1. Fig. 4 shows both versions as cutoff varies for
ik and ad differentiation, respectively. As with the reference version, there is a
runtime-optimal cutoff for the optimized version at 5Å where a balance is struck
between the pair interactions and the FFTs. Total speedup at this optimal cutoff
is 2.21x for ik and 2.75x for ad differentiation. With our optimizations, ad dif-
ferentiation goes from being only marginally faster at the runtime-optimal cutoff
to being 32% faster, making it a compelling choice even for serial simulations
where the FFTs do not take up much time.

The calculation of long-range interactions, inclusive of the mapping functions,
the FFTs, and various minor functions (PPPM FFT plus PPPM non-FFT), is
sped up by a factor of 3.44x for ad differentiation. The calculation of the long-
range interactions excluding the FFTs has actually sped up by a higher factor
of 3.61x despite the larger stencil requiring looping over 2.74 times as many
grid points. The calculation of pair interactions is sped up by about 2.5x. ad
differentiation is now faster than ik differentiation for every cutoff, due to the
smooth decrease in time spent performing FFTs as cutoff increases.

The relative penalty for choosing a poor cutoff has not changed much except
for cases where an unfortunate number of FFT grid points was doubling the cost
of FFTs. In general, an overestimate of the runtime-optimal cutoff is much less
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Fig. 4. Profiles of SPC/E water test case running single-threaded on one core of a KNL
as cutoff varies. Left bar: reference, right bar: optimized.

penalizing than an underestimate because the cost of the FFTs increases rapidly
as cutoff decreases. Because the optimized long-range calculations are sped up
by about as much as the optimized short-range calculations, users will find that
pre-existing input files and intuitions about runtime-optimal cutoffs still yield
good results.

Fig. 5 compares the optimized implementation to the reference as relative
error varies. Speedups are between 2.1x and 2.77x for all cases, without an ap-
parent pattern other than that ad differentiation has gained more from the
optimizations than ik differentiation. There is not a clear optimal relative er-
ror, since users will want to adjust this parameter depending on how important
accuracy is in the long-range calculation for their specific problems.
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Fig. 5. Profiles of SPC/E water test case running single-threaded on one core of a KNL
as PPPM relative error varies. Left bar: reference, right bar: optimized.



LAMMPS’ PPPM Long-Range Solver for the Second Generation Xeon Phi 13

4.3 OpenMP and MPI Parallelism

With the additional complication of parallelism, we do not attempt to deter-
mine optimal choices of input parameters for our test case, though users will go
through this complex process for their individual problems, often settling on a
suboptimal set of parameters [6]. Here we just show that our optimized version
is much faster than the reference for a range of cutoffs on a full KNL node, for
varying numbers of cores on up to two full nodes, and for varying numbers of
OpenMP threads per rank.

LAMMPS is intended to be scalable to very large numbers of cores, but this
scalability is highly dependent on the details of the simulation. As the number
of MPI ranks increases, the runtime-optimal input parameters change. Using
just one set of input parameters might result in poor scalability (if the chosen
set is optimal for small numbers of ranks) or good scalability (if the chosen set
is optimal for a large number of ranks). As the number of ranks grows, FFTs
and other functions requiring communication become relatively more expensive.
This increases the runtime-optimal cutoff and can also make using a stencil size
of 7 more efficient even for reference LAMMPS. Parallelism provides yet more
knobs for users to consider. These include the number of MPI ranks per node and
a number of OpenMP threads per rank. The optimal choice is again problem-
dependent, but generally LAMMPS should be run with around 1 core per rank
and 1-2 threads per core.

Fig. 6 contains results for running a proportionally scaled-up benchmark on
an entire KNL node with all 64 of its cores. Now we present results for cutoffs
from 4 to 9Å instead of 3 to 7 Å, since at 3Å the FFTs for both versions take
much longer. For reference LAMMPS the runtime-optimal cutoff is now at 7Å.
The optimized version is fastest at 6Å, although 7Å is only slightly slower. This
set of simulations features the same number of atoms per core as Fig. 4, but its
efficiency is reduced by parallelism overhead. For the single-core optimal cutoff of
5Å, this scaled-up simulation takes 2.5 times as long per atom with our optimized
code. It still takes about twice as long even at the new optimal cutoff of 6Å. The
reference version fares a little better, taking “only” twice as long at 5Å and 1.4
times as long at its new optimal cutoff of 7Å. If instead we compare the times
required at the new runtime-optimal cutoffs to that required for the single-core
optimal cutoff, the full node simulations take 1.8 and 2.1 times longer for the
reference and optimized codes, respectively. Scalability aside, however, the same
general patterns are apparent here as were seen earlier. Total speedup is about
2.4x for optimal cutoffs, lower than for the single-core case due to the relative
increase in the expense of communication-intensive functions.

As it appears on the LAMMPS website, the SPC/E water benchmark we use
here defaults to a cutoff of 9.8Å. This is of course far higher than the runtime-
optimal cutoff on a single core—the simulation takes more than twice as long
as at 5Å for reference LAMMPS and about twice as long for our optimized ver-
sion. However, this exhibits much better scalability since runtime-optimal cutoffs
are higher for higher core counts. This is because less time is spent performing
poorly-scaling FFTs while more time is spent computing short-range pair in-
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Fig. 6. Profiles of SPC/E water test case scaled up by 64x running single-threaded on
a full KNL node as cutoff varies, for ad differentiation. Left bar: reference, right bar:
optimized.

teractions. Fig. 7a shows core-seconds taken to simulate a fixed-size problem
as the number of cores used increases. There is one MPI rank per core and 1
thread per rank. For the 10Å case this scales well up to 32 cores, but for the
full KNL node parallel efficiencies are 82% for reference LAMMPS and 63% for
optimized LAMMPS. Running on 128 cores across two full nodes is very inef-
ficient; the optimized version actually runs faster on one node, in part due to
using an unfortunate number of FFT grid points, although it remains faster
than the reference. Both versions see a comparable increase in core-seconds as
communication costs rise, and this has a larger relative impact on the optimized
version because it was faster to begin with. These observations are consistent
with benchmarks published on the LAMMPS website, which exhibit large losses
in parallel efficiency after about 16 processors for a variety of systems when
running fixed-size benchmarks.
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10Å KNL Strong Scalability, ad

PPPM non-FFT PPPM FFT Pair Other

1 2 4 8 16 32 64 128
0

500

1,000

1,500

R OR OR OR OR OR OR OR O

1 2 4 8 16 32 64 128
0

50

100

Cores

T
im

e
(s
)
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Fig. 7. Strong and weak scalability comparisons up to 2 full KNL nodes. Left bar:
reference, right bar: optimized.
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More commonly, users will simulate large problems on large numbers of cores.
Fig. 7b shows core-seconds per atom as problem size and core count both vary,
such that there are 36k atoms per core in each simulation. Parallel efficiencies on
a full KNL node are now 85% and 71% for the reference and optimized versions,
respectively, and 79% and 60% for two full nodes. Again we see the optimized
version scaling less well because the rise in communication costs with core count
is roughly the same for both versions, but it remains 2-3x faster over the entire
range.

Users can also make use of OpenMP parallelism, by either assigning multiple
cores to each MPI rank or using multiple threads per physical core, or both. Fig.
8 shows profiles for the same 64x-scale water test case being simulated on a full
KNL node, where the number of MPI ranks and OpenMP threads per rank is
varied. We use a cutoff of 6Å, as this was close to the runtime-optimal cutoff
for this case on the full node when using 64 MPI ranks and 1 thread per rank.
Best results are obtained when using one MPI rank per core, which is expected
when not running on many nodes—the behavior on two full nodes is similar.
Slight performance gain is obtained by using two OpenMP threads per core,
which helps a little when computing the short-range interactions. The optimized
version behaves similarly to the reference, and is at least twice as fast except
when using too few MPI ranks.
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Fig. 8. Profiles of 64x-scale SPC/E water test case running on a full KNL node, for ad
differentiation, varying the number of MPI ranks and OpenMP threads per rank. The
reference user-omp implementation is on the left and our optimized implementation is
on the right. The reference cases were run with a stencil size of 5 and the optimized
cases with a stencil size of 7. Left bar: reference, right bar: optimized.

5 Conclusion

Efficient vectorization proved to be key to attaining significant speedups over
reference LAMMPS. For the PPPM functions, we tested several approaches and
found memory access patterns to be particularly important. However, because
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the contiguous memory accesses were to be found in loops over stencil points,
the stencil size limited vectorization efficiency. At the same time, as other parts
of the code were optimized, the FFTs became relatively more expensive. And
from the beginning we were concerned with users having difficulty choosing an
optimal stencil size.

All of these problems turn out to have the same solution. Targeting a higher
default stencil size allowed whole rows of a larger stencil to be computed at
once, enabling efficient vectorization. Work shifted away from the FFTs and into
newly-optimized functions when LAMMPS automatically adjusted the FFT grid
to preserve accuracy. And users who do not test a variety of stencil sizes are no
longer missing out on potential performance, because S = 7 is optimal for every
case and can be made the default. The relatively more expensive FFTs also
made another previously-hard choice much easier, as now ad differentiation is
significantly faster than ik differentiation due to its requiring only half as many
FFTs. Although not discussed here, most of our optimizations are applicable to
256-bit vector registers and yield significant speedup on Xeon architectures, and
similar speedup is also observed for different types of physical problems, such as
an interfacial system where half of the domain is a vacuum.

LAMMPS is an extremely flexible program that allows and requires users
to make numerous choices when simulating their different physical problems,
and our optimized code is a significant improvement over reference LAMMPS,
regardless of a user’s particular needs, for simulations which make use of the
PPPM method for electrostatics. We achieve 2-3x speedup across a wide range
of cutoff radii, for different accuracy requirements of the long-range solver, for
both differentiation modes, and for different approaches to parallelization.

Many of these choices have a large impact on performance and even on sim-
ulation accuracy, often in ways that are not intuitive and not transparent to
users as they try to work out how best to approach their problems. Some, like
the choice of stencil size, are sufficiently obscure that many users likely use the
default value, some without even knowing that they even had a choice. Other
users will have gone to great lengths to set up their simulations in the best pos-
sible way, and will have made nearly-optimal choices for their specific problems.
Our optimizations are particularly helpful to the first group because several of
the user-facing knobs now have clearly best settings for a range of problem sizes,
and these settings can be clearly communicated without much qualification as
to which cases they work for, or they can even be made the default selections.
Users with long experience and carefully-crafted input files will benefit from sig-
nificant speedup for their existing set of inputs and can also expect that the
optimal inputs for the new version are close to what they were already using.
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