Skip to main content

Counting Substrate Cycles in Topologically Restricted Metabolic Networks

  • Conference paper
  • First Online:
Book cover Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

  • 662 Accesses

Abstract

Substrate cycles in metabolic networks play a role in various forms of homeostatic regulation, ranging from thermogenesis to the buffering and redistribution of steady-state populations of metabolites. While the general problem of enumerating these cycles is \(\#P\)-hard, it is unclear if this result holds for realistic networks where e.g. pathological vertex degree distributions or minors may not exist. We attempt to address this gap by showing that the problem of counting directed substrate cycles (\(\#DirectedCycle\)) remains \(\#P\)-complete (implying \(\#P\)-hardness for enumeration) for any superclass of cubic weakly-3-connected bipartite planar digraphs, and at the limit where all reactions are reversible, that the problem of counting undirected substrate cycles (\(\#UndirectedCycle\)) is \(\#P\)-complete for any superclass of cubic 3-connected bipartite planar graphs where the problem of counting Hamiltonian cycles is \(\#P\)-complete. Lastly, we show that unless \(NP=RP\), no FPRAS can exist for either counting problem whenever the Hamiltonian cycle decision problem is NP-complete.

The original version of this chapter was revised: Incorrect capitalization has been corrected. The erratum to this chapter is available at 10.1007/978-3-319-58741-7_37

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994)

    Article  Google Scholar 

  2. Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248 (2000)

    Article  Google Scholar 

  3. Clark, M.G., Bloxham, D.P., Holland, P.C., Lardy, H.A.: Estimation of the fructose diphosphatase-phos-phofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochem. J. 134, 589–597 (1973)

    Article  Google Scholar 

  4. Kazak, L., et al.: A Creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015)

    Article  Google Scholar 

  5. Newsholme, E.A., Crabtree, B.: Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61–110 (1976)

    Google Scholar 

  6. Hervagault, J.F., Canu, S.: Bistability and irreversible transitions in a simple substrate cycle. J. Theor. Biol. 127, 439–449 (1987)

    Article  MathSciNet  Google Scholar 

  7. Adolfsen, K.J., Brynildsen, M.P.: Futile cycling increases sensitivity toward oxidative stress in Escherichia coli. Metab. Eng. 29, 26–35 (2015)

    Article  Google Scholar 

  8. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  10. Yamamoto, M.: Approximately counting paths and cycles in a graph. Discrete Appl. Math. 217, 381–387 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Acuna, V., et al.: Modes and cuts in metabolic networks: complexity and algorithms. BioSystems 95, 51–60 (2009)

    Article  Google Scholar 

  12. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27, 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Acuna, V., et al.: A note on the complexity of finding and enumerating elementary modes. BioSystems 99, 210–214 (2010)

    Article  Google Scholar 

  15. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  16. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  17. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liskiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theor. Comput. Sci. 304, 129–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karp, R.M., Luby, M.: Monte-Carlo algorithms for enumeration and reliability problems. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science (FOCS), pp. 56–64 (1983)

    Google Scholar 

  20. Dyer, M., Greenhill, C., Goldberg, L.A., Jerrum, M.: On the relative complexity of approximate counting problems. Algorithmica 38, 471–500 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plesnik, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8, 199–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25, 1293–1304 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5, 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3, 73–76 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Barish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Barish, R.D., Suyama, A. (2017). Counting Substrate Cycles in Topologically Restricted Metabolic Networks. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics