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Abstract. The relations between (restrictions of) Hindman’s Finite Sums Theorem and (variants of) Ramsey’s Theorem give rise
to long-standing open problems in combinatorics, computability theory and proof theory. We present some results motivated by
these open problems. In particular we investigate the restriction of the Finite Sums Theorem to sums of at most two elements,
which is the subject of a long-standing open question by Hindman, Leader and Strauss. We show that this restriction has the same
proof-theoretic and computability-theoretic lower bound that is known to hold for the full version of the Finite Sums Theorem. In
terms of reverse mathematics it implies ACA0. Also, we show that Hindman’s Theorem restricted to sums of exactly n elements
is equivalent to ACA0 for each n � 3, provided a certain sparsity condition is imposed on the solution set. The same results apply
to bounded versions of the Finite Union Theorem, in which such a sparsity condition is already built-in. Further we show that
the Finite Sums Theorem for sums of at most two elements is tightly connected to the Increasing Polarized Ramsey’s Theorem
for pairs introduced by Dzhafarov and Hirst. The latter reduces to the former in the technical sense known as strong computable
reducibility.
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1. Introduction and motivation
The Finite Sums Theorem by Neil Hindman [20] says that whenever the positive integers are coloured in finitely

many colours there exists an infinite set of positive integers such that all the finite non-empty sums of distinct
numbers from the set have the same colour. We denote this theorem by HT and use HTk to stand for its restriction to
k-colourings. Writing FS(X) for the set of non-empty finite sums of distinct elements of the set X, the conclusion of
Hindman’s Theorem is that there exists an infinite X ⊆ N (where N denotes the set of positive integers throughout
the paper) such that FS(X) is monochromatic.

There are some interesting long-standing open problems related to HT at the crossroads of combinatorics, proof
theory and computability theory. The following question was asked by Hindman, Leader and Strauss in [21], and
has been open since.

Question 12. Is there a proof that whenever N is finitely coloured there is a sequence x1, x2, . . . such that all xi

and all xi + xj (i �= j ) have the same colour, that does not also prove the Finite Sums Theorem?

It is very natural to recast the above question in the context of reverse mathematics, which is a framework for rigor-
ously comparing the relative strength of theorems from all areas of mathematics over a fixed base theory (see [22,31]
for excellent introductions to the topic). Traditionally such a base theory is the formal axiomatic system RCA0 (RCA0

is an acronym for Recursive Comprehension Axiom) capturing the intuitive idea of computable mathematics. De-
noting by HT�n the restriction of HT to (non-empty) sums of at most n distinct elements, and by HT�n

k the further
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restriction to k-colourings, a good formal rendering of Question 12 reads as follows: Is HT�2 enough to prove HT
over RCA0?

Pinning down the exact strength of Hindman’s Theorem is by itself one of the major open problems in reverse
mathematics (see [26, Question 9]). The seminal results of Blass, Hirst and Simpson in the late 1980’s leave indeed
a huge gap between the lower and upper bound. In terms of reverse mathematics these results place Hindman’s The-
orem no lower than the system ACA0 (Arithmetical Comprehension Axiom) and no higher than the much stronger
system ACA+

0 . The system ACA0 is equivalent to asserting that the Turing Jump of any set exists, and the system
ACA+

0 extends ACA0 by the axiom stating that the ω-th Turing jump is always defined. ACA0 is known to be equiv-
alent to RT3

2 (Ramsey’s Theorem for 2-colorings of triples) by the seminal work of Jockusch and of Simpson ([31,
Theorem III.7.6] or [22, Chapter 6]), so we have that HT implies RT3

2 over RCA0. On the other hand ACA+
0 was only

recently given a Ramsey-theoretic characterization in work of the first and fourth author, who showed [9] that the
system ACA+

0 is equivalent to a Ramsey-theoretic theorem due to Pudlák and Rödl [30] and Farmaki and Negrepon-
tis [16], which we denote by RT!ω

2 (see Definition 5.7). This theorem extends Ramsey’s Theorem to colourings of
objects of variable dimension, in particular to so-called exactly large sets of positive integers, where a set is exactly
large in case its cardinality is greater by one than its minimum element. The following inequalities summarize the
situation with respect to implications over the base theory RCA0:

RT!ω
2 → HT → RT3

2,

where at least one of the two implications does not reverse, because it is known that RT3
2 � RT!ω

2 (in fact,
∀n∀kRTn

k � RT!ω
2 ).

By a “solution to Hindman’s Theorem for a finite coloring c” we mean an infinite set H ⊆ N such that all
finite non-empty sums of distinct elements from H have the same c-color. In terms of computability theory, the
Blass–Hirst–Simpson bounds on HT can then be expressed as follows. On the one hand, there exists a computable
coloring c : N → 2 such that any solution to Hindman’s Theorem for the coloring c computes ∅′, the first Turing
Jump of the computable sets. On the other hand, for every computable coloring c : N → 2 there exists a solution
computable from ∅(ω+1), the (ω + 1)-th Turing Jump of the computable sets.

In [3] Blass advocated the study of restrictions of Hindman’s Theorem to sums of bounded length (i.e., number
of terms), conjecturing that the strength of HT grows with the length of the sums for which monochromaticity is
required. Only recently Dzhafarov, Jockusch, Solomon and Westrick [12] proved that the restriction of HT to sums
of at most 3 terms from the solution set, HT�3, already implies ACA0, matching the only known lower bound for HT

(in particular, HT�3
3 suffices).

One of our main results is that the same lower bound already holds for the restriction to sums of at most 2
elements, HT�2, i.e., the restriction of HT considered in [21, Question 12]. This means that the known upper and
lower bounds for HT and HT�2 are now the same, which might be read as indicating that the restriction of HT to
sums of at most two terms might be close in strength to the full theorem.

On the other hand, we prove that the same lower bound holds for a number of restricted forms of HT for which a
matching upper bound can also be proved. The first examples of principles with this property, at the level of ACA0,
were found in [7] and therein called “weak yet strong” principles. We improve and expand on [7] by showing,
for example, that Hindman’s Theorem for sums of exactly n elements is equivalent to ACA0, provided that n � 3
and a certain sparsity condition is imposed on the solution set. Such a condition, which we call, following [7], the
apartness condition, is crucial yet was not given a name in earlier work [4,12,19]. In our setting it means that the sets
of exponents in some fixed base of the elements of the homogeneous set do not intertwine. An analogous condition
is built-in in the formulation of Hindman’s Theorem in terms of finite unions (the Finite Unions Theorem), and
called the unmeshedness condition [3] or the block sequence condition [1]. We will observe that bounded versions
of the Finite Unions Theorem are equivalent to bounded versions of the Finite Sums Theorem with the apartness
condition.

Note that, in contrast to HT�n
k , the exact versions of Hindman’s Theorem – which we denote by HT=n

k when we
consider sums of exactly n distinct terms and k-colorings – are easily seen to follow from RTn

k : given a colouring
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f : N → k, let c : [N]n → k be defined by setting c(a1, . . . , an) = f (a1 + · · · + an). A solution H ⊆ N to RTn
k

for the instance c (i.e., an infinite homogeneous set X) is a solution to HT=n
k for instance f ; i.e. all sums of exactly

n distinct terms from H have the same color. We will prove, for example, that RT3
2 already follows from (and is

actually equivalent to) HT=3
2 with the apartness condition imposed on the solution set.

The argument just given is an example of a particularly simple and natural combinatorial reduction of the prin-
ciple HT=n

k to RTn
k : Starting from an instance f of HT=n

k we defined an instance c of RTn
k . From a solution X to

c we recovered a solution X′ to the original instance of HT=n
k (in that case X′ equals X). Proofs of this kind are

abundant in combinatorics. Furthermore observe that in the above example c is easily seen to be computable relative
to f and similarly X′ is computable relative to X (this is obvious since X = X′ in the example at hand). Such a
proof that RTn

k follows from HT=n
k is an instance of what is known in the literature as a strong computable reduction.

This notion, first defined in [13], has quickly become central in the computable and reverse mathematics literature
(see, e.g., [14] and references therein). We use the notation Q �sc P to indicate that a Ramsey-type theorem Q is
reducible to another Ramsey-type theorem P by a strong computable reduction. Not all proofs of an implication over
RCA0 have the form of a strong computable reduction. For example, it has been recently proved [28] that there is no
strong computable reduction from RTn

3 to RTn
2, despite the fact that a straightforward combinatorial argument exists

and that the two theorems are equivalent over RCA0. In the present paper, however, we only deal with positive re-
sults. For instance, we prove that an interesting restriction of Ramsey’s Theorem for pairs (the Increasing Polarized
Ramsey’s Theorem of Dzhafarov and Hirst’s [15], denoted IPT2

2) is strongly computably reducible to HT�2
4 (in fact

to HT=2
2 with the apartness condition imposed on the solution set).

The paper is organized as follows. In Section 2 we define the apartness condition and prove a simple lemma
about it, and discuss the equivalence of the bounded versions of the Finite Unions Theorem with bounded versions
of the Finite Sums Theorem with apartness. In Section 3 we prove ACA0 lower bounds for restrictions of Hindman’s
Theorem, including our main result that HT�2 implies ACA0 over RCA0. In Section 4 we deal with reductions
between Hindman’s Theorem and the Increasing Polarized Ramsey’s Theorem. In Section 5 we present a number of
other results that can be obtained by the arguments of the previous sections. In Section 6 we summarize our results
and discuss some open problems.

2. Hindman’s Theorem, apartness, and finite unions
We define two natural types of restrictions of Hindman’s Theorem based on bounding the length of sums for

which homogeneity is guaranteed. For X ⊆ N and n ∈ N we denote by FS�n(X) the set of non-empty sums of at
most n many distinct elements of X and by FS=n(X) the set of sums of exactly n many distinct elements of X.

Definition 2.1 (Hindman’s Theorem with bounded-length sums). Fix n, k � 1.

(1) HT�n
k is the following principle: For every coloring f : N → k there exists an infinite set H ⊆ N such that

FS�n(H) is monochromatic for f .
(2) HT=n

k is the following principle: For every coloring f : N → k there exists an infinite set H ⊆ N such that
FS=n(H) is monochromatic for f .

The principles HT�n
k were discussed in [3] (albeit phrased in terms of finite unions instead of sums) and first

studied from the perspective of Computable and Reverse Mathematics in [12], where the principles HT=n
k were also

defined.
As indicated above, some of our results highlight the crucial role of a property of the solution set – the so-called

apartness condition – that is central in Hindman’s original proof and in the proofs of the lower bounds in [4,7,12].
We use the following notation: Fix a base t � 2. For n ∈ N we denote by λt (n) the least exponent of n written

in base t , by μt(n) the greatest exponent of n written in base t . We will drop the subscript when clear from context.

Definition 2.2 (Apartness Condition). Fix t � 2. We say that a set X ⊆ N satisfies the t-apartness condition (or is
t-apart) if for all x, x′ ∈ X, if x < x′ then μt(x) < λt (x

′).
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Note that t-apartness is inherited by subsets.
For a Hindman-type principle P, let “P with t-apartness” denote the corresponding version in which the solution

set is required to satisfy the t-apartness condition. As will be observed below, it is significantly easier to prove
lower bounds on P with t-apartness than on P in all the cases we consider. In Hindman’s original paper it is shown
[20, Lemma 2.2] how 2-apartness can be ensured by a simple counting argument (proved in [19, Lemma 2.2])
under the assumption that we have a solution to the Finite Sums Theorem, i.e., an infinite H such that FS(H) is
monochromatic. In our terminology, we have that, for each k ∈ N, HTk is equivalent to HTk with 2-apartness. Note
that the counting argument used by Hindman [19, Lemma 2.2] requires very elementary arithmetic assumptions, and
that the set satisfying t-apartness is obtained from a general solution to HT by an algorithmic thinning out procedure
(as observed already in [4]). In other words, HT and HT with t-apartness are equivalent over RCA0.

Proposition 2.3 (Implicit in [19]). For each positive integers t and k, HTk and HTk with t-apartness are equivalent
over RCA0. The equivalence is witnessed by strong computable reductions.

Note that, to show the implication from HTk to HTk with t-apartness it is crucial that we start with a homogeneous
set H such that all finite sums of distinct elements from H have the same colour. Putting a bound on the length of
the sums would disrupt the argument. Thus, for bounded versions of HT, the situation might be different. However,
in typical situations, the choice of t in t-apartness does not matter. We prove below that HT�n

k with t-apartness and
HT=n

k with t-apartness are robust concepts and that it is sufficient to consider the case of t = 2. To show this in
detail we make a detour through another popular formulation of Hindman’s Theorem in terms of colorings of finite
subsets of the natural numbers (see, e.g., [2]). This version is called the Finite Union Theorem. Let Pfin(X) denote
the set of finite subsets of X. If (Xi)i∈N is a sequence of finite subsets of N, we denote by FU((Xi)i∈N) the set of all
finite unions of elements of (Xi)i∈N, i.e., FU((Xi)i∈N) = {⋃t∈F Xt : F a non-empty finite subset of N}.
Definition 2.4 (Finite Unions Theorem). FUTk: For every f : Pfin(N) → k there exists an infinite sequence (Xi)i∈N
of finite subsets of N such that if i < j then max(Xi) < min(Xj ) and such that FU((Xi)i∈N) is monochromatic.
FUT denotes ∀kFUTk .

A sequence (Xi)i∈N of finite subsets of N is called unmeshed or a block sequence if it satisfies the condition
that for each i < j then max(Xi) < min(Xj ). This condition is obviously akin to apartness and is part of the very
statement of the Finite Unions Theorem. If this requirement is dropped, then the theorem becomes equivalent to the
Infinite Pigeonhole Principle ∀kRT1

k as proved by Hirst in [23].
The equivalence of HT with FUT is well-known (see, e.g., [2]) and an inspection of the proof shows that it is

witnessed by strong computable reductions. Below we verify that the equivalence still holds between FUT�n
k (resp.

FUT=n
k ) and HT�n

k with t-apartness (resp. HT=n
k with t-apartness), for any t , where FUT�n

k and FUT=n
k have the

obvious meanings.
This shows that the principles HT�n

k with 2-apartness can be considered as fully natural bounded restrictions of
HT. Thus, we will only need to consider 2-apartness in what follows, despite our use of 3-apartness in Lemma 2.7.

Proposition 2.5. For each n, k, t � 2, HT�n
k with t-apartness is equivalent to FUT�n

k over RCA0. Moreover, these
principles are mutually strongly computably reducible. The same equivalences hold for HT=n

k with t-apartness and
FUT=n

k .

Proof. We give the proof for FUT�n
k and HT�n

k with t-apartness. For FUT=n
k and HT=n

k with t-apartness the argument
is exactly analogous.

Let c : Pfin(N) → k. Define d : N → k as follows: let m ∈ N. If λt (m) = 0 then d colors m arbitrarily.
Otherwise, d colors m as c colors the set of its base t exponents. By HT�n

k with t-apartness let H = {h1, h2, . . . }
(in increasing order) be a t-apart infinite set of positive integers such that FS�n(H) is monochromatic for d . Since
H is t-apart we can assume without loss of generality that for no h ∈ H we have λt (h) = 0. For each i ∈ N let



AUTHOR  C
OPY

L. Carlucci et al. / New bounds on the strength of some restrictions of Hindman’s Theorem 143

Si ⊆ N be the set of base t exponents of hi . Then (Si)i∈N is a block sequence in Pfin(N) such that c is constant on
FU�n((Si)i∈N).

Let d : N → k. Define c : Pfin(N) → k as follows: c colors S ∈ Pfin(N) as d colors t s1 + · · · + t sp where
S = {s1 < · · · < sp}. The values of d on other elements of N are irrelevant. Let (Si)i∈N be a block sequence such
that FU�n((Si)i∈N) is monochromatic for c. Let Si = {si,1 < · · · < si,pi

}. Then {xi : xi = t si,1 + · · · + t si,pi , i ∈ N}
is a t-apart solution to HT�n

k for d . �

Corollary 2.6. Over RCA0, HT�n
k with t-apartness (resp. HT=n

k with t-apartness) is equivalent to HT�n
k with s-

apartness (resp. HT=n
k with s-apartness), for any t, s � 2.

Henceforth we will use just apartness for 2-apartness. Note that, in what follows, all the results for HT�n
k with

apartness (resp. HT=n
k with apartness) also hold in the case of FUT�n

k (resp., for FUT=n
k ).

In some cases it is easy to show that the apartness condition can be enforced at no cost. For example the proof
of HT=n

k from RTn
k sketched above yields t-apartness for any t > 1 simply by applying Ramsey’s Theorem relative

to an infinite t-apart set. In some other cases the apartness condition can be ensured at the cost of increasing the
number of colours. This is the case of HT�n

k , as illustrated by the next lemma. The idea of the proof is from the first
part of the proof of [12, Theorem 3.1], with some needed adjustments.

Lemma 2.7 (RCA0). For all n � 2, for all k � 1, HT�n
2k implies HT�n

k with apartness. Furthermore, the implication
is established by a strong computable reduction.

Proof. We work in base 3 (this is without loss of generality by Corollary 2.6). Let f : N → k be given. For m > 0
let i(m) denote the coefficient of the least term of m written in base 3. Define g : N → 2k as follows:

g(m) :=
{

f (m) if i(m) = 1,

k + f (m) if i(m) = 2.

Let H be an infinite set of positive integers such that FS�n(H) is monochromatic for g of colour �. For
h, h′ ∈ FS�n(H) we have i(h) = i(h′).

We claim that for each j � 0 there is at most one h ∈ H such that λ3(h) = j . By way of contradiction suppose
otherwise, as witnessed by h, h′ ∈ H . Then i(h) = i(h′) and λ3(h) = λ3(h

′). Therefore i(h+h′) = 3−i(h) �= i(h),
but h + h′ ∈ FS�n(H). Contradiction.

Using the claim, we can computably obtain a 3-apart infinite subset H ′ of H . �

3. Bounded Hindman vs. arithmetical comprehension
In this section we first show that HT�2 implies ACA0 (hence RT3

2) over RCA0. This improves on the main result

of [12] that HT�3 implies ACA0. In particular we show that HT�2
4 implies ACA0. In terms of finite unions our proof

shows that FUT�2
2 implies ACA0. This should also be compared with Corollary 2.3 and Corollary 3.4 in [12] which

show that HT�2
2 implies the Stable Ramsey’s Theorem SRT2

2 over the slightly stronger base theory RCA0 + B�0
2 or,

equivalently, RCA0 + ∀kRT1
k . Then we go on to prove that HT=3

2 with apartness is equivalent to ACA0. In terms of
finite unions this shows that FUT=3

2 is equivalent to ACA0. Note that while HT=3
2 with apartness is easily reducible

to RT3
2, it is unknown whether ACA0 (and thus RT3

2) implies HT�2
2 over RCA0.

The lower bound proofs below are based on a significant simplification of the original argument of Blass, Hirst
and Simpson [4]. Towards the end of [3] Blass states without giving details that inspection of the proof of the lower
bound for HT in [4] shows that this bound also holds for the restriction of the Finite Unions Theorem to unions of at
most two sets. While our Proposition 3.1 confirms this conclusion, we would like to stress that from an inspection of
the proof in [4] one can glean that sums of 3 elements are sufficient, as later proved in [12]. Indeed, while apparently
only sums of 2 terms are used, in one crucial step one of the summands is itself a sum of length 2.
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3.1. Sums of at most two terms
Let us recall that in RCA0 we have that for every n there exists some � such that for each x < n, x ∈ rg(f ) if and only
if x ∈ rg(f ��). This is a special case of a general principle known as strong �0

1-collection (or strong �0
1-bounding,

see [31, Exercise II.3.14], [18, Thm I.2.23 and Definition I.2.20]). This simple fact will be used in our lower bound
arguments below.

Proposition 3.1. HT�2
2 with apartness (eq. FUT�2

2 ) implies ACA0 over RCA0.

Proof. Assume HT�2
2 with apartness and consider an injective function f : N → N. We have to prove that the range

of f exists (this is well-known to be equivalent to proving ACA0, see [31, Lemma III.1.3 and Theorem III.7.6]).
For a positive integer n, written as 2n0 + · · · + 2nr in base 2 notation, we call j ∈ {0, . . . , r} important in n if

some value of f �[nj−1, nj ) is below n0. Here n−1 := 0. The colouring g : N → 2 is defined as follows:

g(n) := card{j : j is important in n} mod 2.

Note that g is computable relative to f . By HT�2
2 with apartness, there exists an infinite set H ⊆ N such that H is

apart and FS�2(H) is monochromatic w.r.t. g. We claim that for each n ∈ H and each x < λ(n), x ∈ rg(f ) if and
only if x ∈ rg(f �μ(n)). This will give us an algorithm for deciding whether any given x is in the range of f : find
the smallest n ∈ H such that x < λ(n) and check whether x is in rg(f �μ(n)).

It remains to prove the claim. In order to do this, consider n ∈ H and assume that there is some element below
n0 = λ(n) in rg(f ) \ rg(f �μ(n)).

Let � be such that for each x < λ(n), x ∈ rg(f ) if and only if x ∈ rg(f ��). By apartness, and the fact that H is
infinite, there is m ∈ H with λ(m) � � > μ(n). Write n + m in base 2 notation,

n + m = 2n0 + · · · + 2nr + 2nr+1 + · · · + 2ns ,

where n0 = λ(n) = λ(n + m), nr = μ(n), and nr+1 = λ(m). Clearly, j � s is important in n + m if and only if
either (i) j � r and j is important in n or (ii) j = r + 1; hence, g(n) �= g(n + m). This contradicts the assumption
that FS�2(H) is monochromatic, thus proving the claim. �

Theorem 3.2. HT�2
4 implies ACA0 over RCA0.

Proof. By Proposition 3.1, Lemma 2.7 and Corollary 2.6. �

3.2. Sums of exactly three terms, with apartness
We next extend the argument in Proposition 3.1 to show that HT=3

2 with apartness implies ACA0 (hence RT3
2) over

RCA0. Since HT=3
2 with apartness is also easily deducible from RT3

2, we obtain an equivalence.

Theorem 3.3. HT=3
2 with apartness (eq., FUT=3

2 ) is equivalent to ACA0 over RCA0.

Proof. The upper bound, that is the implication from RT3
2 to HT=3

2 with apartness, follows by applying the argument
proving HT=n

k from RTn
k sketched in Section 1. Thus, it remains to prove the lower bound.

We argue in the base theory RCA0 assuming HT=3
2 with apartness. Consider an injective function f : N → N.

We have to prove that the range of f exists. The relation j is important in n and the colouring g : N → 2 are defined
as in the proof of Proposition 3.1.

By HT=3
2 with apartness, there exists an infinite set H such that H is apart and FS=3(H) is monochromatic w.r.t.

g. Let r < 2 be the colour of FS=3(H) under g. We describe a method for algorithmically deciding membership in
the range of f relative to the set H .
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Claim 1. For each n, k ∈ H , if n < k and g(n + k) = r then for each x < λ(n),

x ∈ rg(f ) ⇐⇒ x ∈ rg
(
f �μ(k)

)
.

To prove Claim 1, let n, k ∈ H be such that n < k and g(n + k) = r . As in the proof of Proposition 3.1, let � be
such that for all x < λ(n),

x ∈ rg(f ) ⇐⇒ x ∈ rg(f ��).

Then, take m ∈ H such that λ(m) > �. Now, if x ∈ rg(f ) \ rg(f �μ(k)) for some x < λ(n), then the number of
important digits in n + k + m is greater by one than the number of important digits in n + k. Then, g(n + k + m) =
1 − g(n + k) = 1 − r which contradicts the fact that r is the colour of FS=3(H). Thus, Claim 1 is proved.

Claim 2. For each n ∈ H there exists k ∈ H such that n < k and g(n + k) = r .

To prove Claim 2, fix n and, again, let � be such that for all x < λ(n),

x ∈ rg(f ) ⇐⇒ x ∈ rg(f ��).

Take any k ∈ H such that λ(k) > �. For any m ∈ H , if k < m, then g(n + k) = g(n + k + m) = r . This proves
Claim 2.

We now describe an algorithm for deciding membership in rg(f ) given access to H . For an input x, find n ∈ H

such that x < λ(n). Then, find k ∈ H such that n < k and g(n + k) = r . By Claim 2 this part of computation ends
successfully. Finally, check whether x ∈ rg(f �μ(k)). By Claim 1 this is equivalent to x ∈ rg(f ). �

Let us conclude this section with some remarks on the relations between the principles HT=n
k with apartness and

HT=�
p with apartness for arbitrary n, � � 3 and k, p � 2. Prima facie it is not obvious that, say, HT=3

2 with apartness

implies HT=2
8 with apartness. Yet the proofs of our results above allow us to show that some of these principles are

equivalent over RCA0.

Proposition 3.4. For each n � 3 and k � 2, HT=3
2 with apartness is equivalent to HT=n

k with apartness and to
ACA0 over RCA0.

Proof. The proof of Theorem 3.3 obviously shows that, for n � 3, HT=n
2 with apartness implies ACA0 over RCA0.

On the other hand, for each n � 1, RTn
k implies HT=n

k with apartness. Finally, it is known that for each n � 3 and
k � 2, the principle RTn

k is equivalent to ACA0 over RCA0. Thus, ACA0 implies HT=n
k with apartness. This concludes

the proof. �

We finally observe that, in some cases an implication from HT=m
k to HT=n

k (with m > n) can be witnessed by a
strong computable reduction.

Proposition 3.5. For any n,m � 2 and k � 2, if n divides m then HT=n
k is strongly computably reducible to HT=m

k .

Proof. Let f : N → k. Let m = nd . Let H = {h1, h2, . . . } ⊆ N with h1 < h2 < · · · be a solution for the instance
f of HT=m

k . Let H+ consist of the sums of d many consecutive terms of H , i.e., H+ = {h1 +· · ·+hd, hd+1 +· · ·+
h2d+1, . . . }. Then FS=n(H+) is monochromatic. �
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4. Bounded Hindman and Polarized Ramsey
We here consider the principle HT�2 from Question 12 of [21] from the point of view of strong computable

reductions. Before our Theorem 3.2 the only known lower bounds on HT�2
k principles were those of Dzhafarov et

al. [12] showing that HT�2
2 is not provable in the base theory RCA0 and that the Stable Ramsey’s Theorem for pairs

SRT2
2 follows from HT�2

2 +B�0
2 . SRT2

2 is just Ramsey’s Theorem for 2-colourings of [N]2 restricted to colourings –
called stable colourings – that eventually stabilize with respect to the second coordinate. After our conference paper
[8] appeared, Csima et al. published new lower bounds on HT=2

2 ([10], see Remark 1 below for a discussion of these
results).

In this section we uncover a tight connection between HT�2 and the Increasing Polarized Ramsey’s Theorem for
pairs IPT2

2 introduced by Dzhafarov and Hirst in [15], which is known to be strictly stronger than SRT2
2 (Corollary

4.12 of [29]). We show that IPT2
2 is strongly computably reducible to HT�2

4 . As a reverse mathematical implication,

this is weaker than the one from HT�2
4 to RT3

2 in our Theorem 3.2. However we do not know whether the latter can
be witnessed by a strong computable reduction.

We start by recalling the definition of the Increasing Polarized Ramsey’s Theorem.

Definition 4.1 (Increasing Polarized Ramsey’s Theorem). For a pair of positive integers n and k, IPTn
k is the follow-

ing principle.

Whenever [N]n is k-coloured then there exists a sequence (H1, . . . , Hn) of infinite subsets of N such that all
edges of the form {x1, . . . , xn} with x1 < · · · < xn, xi ∈ Hi have the same colour.

A sequence of sets H1, . . . , Hn satisfying the above homogeneity property is referred to as an increasing p-
homogeneous sequence. IPT2

2 can be read as the following restriction of RT2
2: given a 2-colouring of the complete

graph on N, we look for an infinite bipartite graph whose forward edges all have the same colour (such a graph is
sometimes called a skew bipartite graph). It is not known whether IPT2

2 is strictly weaker than RT2
2.

We first show that IPT2
2 reduces in the sense of �sc to HT=2

2 with apartness. When this result appeared (Theorem
3 in [8]), no lower bounds on HT=2

2 without apartness were known (see Remark 1 below for further details).

Theorem 4.2. IPT2
2 is strongly computably reducible to HT=2

2 with apartness.

Proof. Let c : [N]2 → 2 be given. Define f : N → 2 as follows:

f (n) :=
{

0 if n = 2m for some m or λ(n) = 0,

c(λ(n), μ(n)) otherwise.

Note that f is well-defined since λ(n) < μ(n) if n is not of the form 2m. The other condition in the first case of the
definition of f (λ(n) = 0) is to avoid applying c on pairs with 0 as the first coordinate.

Let H = {h1 < h2 < · · · } ⊆ N witness HT=2
2 with apartness for f . Note that (by the apartness condition) we

can assume without loss of generality that 0 < λ(h1) and thus 0 < λ(hi) for all i ∈ N. Let

H1 := {
λ(h2i−1) : i ∈ N

}
, H2 := {

μ(h2i ) : i ∈ N
}
.

We claim that (H1,H2) is a solution to IPT2
2 for c.

First observe that we have

H1 = {
λ(h1), λ(h3), λ(h5), . . .

}
, H2 = {

μ(h2), μ(h4), μ(h6), . . .
}
,

with λ(h1) < λ(h3) < λ(h5) < · · · and μ(h2) < μ(h4) < μ(h6) < · · · . This is so because λ(h1) � μ(h1) <

λ(h2) � μ(h2) < · · · by the apartness condition. Let the colour of FS=2(H) under f be k < 2. We claim that
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c(x1, x2) = k for every increasing pair (x1, x2) ∈ H1 ×H2. Note that (x1, x2) = (λ(hi), μ(hj )) for some i < j (the
case i = j is impossible by construction of H1 and H2). We have

c(x1, x2) = c
(
λ(hi), μ(hj )

) = c
(
λ(hi + hj ), μ(hi + hj )

) = f (hi + hj ) = k,

since FS=2(H) is monochromatic for f with colour k. This shows that (H1,H2) is an increasing p-homogeneous
sequence for c. �

Corollary 4.3. IPT2
2 is strongly computably reducible to FUT�2

2 and to HT�2
4 .

Proof. Note that the relation �sc is transitive. That IPT2
2 �sc FUT�2

2 follows from Theorem 4.2 and Proposition 2.5.

The fact that IPT2
2 �sc HT�2

4 follows from Theorem 4.2 and Lemma 2.7. �

5. Other restrictions of Hindman’s Theorem
In this section we present results on some restrictions of Hindman’s Theorem of a different flavour. These

restrictions are not obtained by merely bounding the number of terms of the sums for which monochromaticity is
guaranteed. Instead, it is required that all sums whose length belongs to some structured set of integers have the
same colour. Nevertheless, some bounds on their strength can be obtained by adapting the previous arguments.

5.1. Weak yet strong principles
The first author investigated in [7] a family of restrictions of HT that admit proofs from Ramsey’s Theorem yet
realize the Blass–Hirst–Simpson lower bound, i.e., they are equivalent to ACA0. Our results from the previous
sections (Theorem 3.3 and Proposition 3.4) show that the principles HT=n

k with apartness are a “weak yet strong”
family in this sense. One might read this “weak yet strong” phenomenon as a warning not to over-interpret the lower
bounds for HT�2 obtained in the previous sections. For X,A ⊆ N we denote by FSA(X) the set of all numbers that
are non-empty sums of a-many distinct elements from X, for some a ∈ A (e.g., in this notation, FS(X) is FSN(X)

and FS{�n}(X) is FS{1,2,...,n}(X)). The simplest instance of the “weak yet strong” phenomenon treated in [7] is the
following Hindman–Brauer Theorem (with 2-apartness):

Whenever N is 2-coloured there is an infinite and 2-apart set H ⊆ N and there exist positive integers a, b such
that FS{a,b,a+b,a+2b}(H) is monochromatic.

We complement the results from [7] by showing that some prima facie weaker restrictions of Hindman’s Theorem
share the same properties of the Hindman–Brauer Theorem.

Definition 5.1. HT∃{a<b}
2 is the following principle: Whenever N is 2-coloured there exists an infinite set H ⊆ N

and positive integers a < b such that FS{a,b}(H) is monochromatic.

Theorem 5.2. HT∃{a<b}
2 with apartness is equivalent to ACA0 over RCA0.

Proof. We first prove the upper bound. Given f : N → 2 let c : [N]3 → 8 be defined as follows:

c(x1, x2, x3) := 〈
f (x1), f (x1 + x2), f (x1 + x2 + x3)

〉
.

Fix an infinite and apart set H0 ⊆ N. By RT3
8 applied to colourings of triples from H0 we get an infinite (and 2-apart)

set H ⊆ H0 monochromatic for c. Let the colour of [H ]3 be (c1, c2, c3), a binary sequence of length 3. Then, for
each i ∈ {1, 2, 3}, f restricted to FS=i (H) is a constant function with value ci . Obviously for some 3 � b > a > 0
it must be that ca = cb. Then FS{a,b}(H) is monochromatic under f .

The lower bound is proved by a minor adaptation of the proof of Proposition 3.1. As the n in that proof take an
a-term sum. Then take a (b − a)-term sum as the m. �
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Note that the upper bound part of the previous theorem establishes that HT∃{a<b}
2 with apartness is strongly

computably reducible to RT3
8. The same lower bound proof yields that the following Hindman–Schur Theorem with

apartness from [7] implies RT3
2:

Whenever N is 2-coloured there is an infinite and apart set H ⊆ N and there exist positive integers a, b such that
FS{a,b,a+b}(H) is monochromatic.

Indeed, the latter principle implies HT∃{a<b} with apartness. Provability from RT3
2 is shown in [7] by an argument

similar to the upper bound part of Theorem 5.2. The proof shows indeed that the Hindman–Schur Theorem with
apartness is strongly computably reducible to RT6

26 . The number 6 comes from the Ramsey number for ensuring a
monochromatic triangle and from the standard proof of Schur’s Theorem from the finite Ramsey Theorem (see, e.g.,
[17]).

Let us observe that the proof of Theorem 3.3 works in the case of HT=a
2 with apartness, for any fixed a � 3 by

taking a sum of a − 2 elements in place of n. This leads us to the following definition and corollary.

Definition 5.3. Let HT∃{a�3}
2 be the following principle: For every colouring f : N → 2 there exists an infinite set

H ⊆ N and there exists a number a � 3 such that FS{a}(H) is monochromatic for f .

Theorem 5.4. HT∃{a�3}
2 with apartness is equivalent to ACA0, over RCA0.

Note that the latter result, coupled with the results of the previous section, shows that the principles HT=n
k with

apartness form a weak yet strong family in the sense of [7].

5.2. Increasing polarized Hindman’s Theorem
We define an (increasing) polarized version of Hindman’s Theorem. We prove that the case of pairs and 2 colours
with an appropriately defined notion of apartness is equivalent to IPT2

2. Indeed the two principles are strongly com-
putably inter-reducible.

Definition 5.5 ((Increasing) Polarized Hindman’s Theorem). Fix n � 1. PHTn
2 (resp. IPHTn

2) is the following prin-
ciple: For every 2-colouring f of N there exists a sequence (H1, . . . , Hn) of infinite sets such that for some colour
k < 2, for all (resp. increasing) (x1, . . . , xn) ∈ H1 × · · · × Hn, f (x1 + · · · + xn) = k.

We impose an apartness condition on a solution (H1, . . . , Hn) of IPHTn
2 by requiring that the union H1 ∪· · ·∪Hn

is apart. We denote by “IPHTn
2 with apartness” the principle IPHTn

2 with this apartness condition on the solution set.

Theorem 5.6. IPT2
2 and IPHT2

2 with apartness are equivalent over RCA0. Furthermore, the two principles are mu-
tually strongly computably reducible.

Proof. We first prove that IPHT2
2 with apartness �sc IPT2

2. Given f : N → 2 define c : [N]2 → 2 by setting
c(x, y) := f (2x + 2y). Let (H1,H2) be a solution of IPT2

2 for c. Let the colour under c of all increasing pairs in
H1 × H2 be k < 2. Let H+

i = {2x : x ∈ Hi}, for i ∈ {1, 2}. The set H+
1 ∪ H+

2 is apart by construction. Obviously
we have that for any increasing pair (2x1 , 2x2) ∈ H+

1 × H+
2 , f (2x1 + 2x2) = c(x1, x2) = k. Therefore (H+

1 ,H+
2 ) is

a solution to IPHT2
2 with apartness for f .

Next we prove that IPT2
2 �sc IPHT2

2 with apartness. Let c : [N]2 → 2 be given. Define f : N → 2 by setting
f (n) := c(λ(n), μ(n)) if n is neither a power of 2 nor such that λ(n) = 0, and f (n) = 0 otherwise. Let (H1,H2)

be an apart solution to IPHT2
2 for f , of colour k < 2. By apartness we can assume without loss of generality that

0 < λ(hi) for all i ∈ N. Let H = {h1 < h2 < h3 < · · · } be such that h2i−1 ∈ H1 and h2i ∈ H2 for each i ∈ N.
Then set H+

1 := {λ(h2i−1) : i ∈ N} and H+
2 := {μ(h2i ) : i ∈ N}. We claim that (H+

1 ,H+
2 ) is an increasing
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p-homogeneous pair for c. Let (x1, x2) ∈ H+
1 × H+

2 be an increasing pair. Then for some h ∈ H1 and h′ ∈ H2 such
that h < h′ we have λ(h) = x1 and μ(h′) = x2. Therefore

c(x1, x2) = c
(
λ(h), μ

(
h′)) = c

(
λ
(
h + h′), μ(

h + h′)) = f
(
h + h′) = k,

regardless of the choice of (x1, x2). �

5.3. Exactly large sums, with apartness
By analogy with the Pudlák-Rödl [30] theorem RT!ω

2 on colourings of exactly large sets we consider a restriction of
Hindman’s Theorem to exactly large sums, i.e., sums whose set of terms is an exactly large set. As noted earlier, the
Pudlák-Rödl theorem is known to imply HT over RCA0 (yet no combinatorial proof is known).

Let us introduce some terminology and notation and state the Pudlák-Rödl theorem. A finite set S ⊆ N is exactly
large, or !ω-large, if |S| = min(S)+1. Exactly large sets are strictly related to Schreier sets in Banach Space Theory
(see [16]), while their supersets – called relatively large sets – play a prominent role in the study of unprovability
results for first-order theories of arithmetic (see [24,27]).

Definition 5.7 (Ramsey’s Theorem for exactly large sets). RT!ω
2 is the following principle:

Whenever the exactly large subsets of an infinite set X ⊆ N are coloured in 2 colours, there exists an infinite set
H ⊆ X such that all exactly large subsets of H have the same colour.

The strength of RT!ω
2 was studied by the first and fourth author in [9] and proved there to be much beyond the

strength of Ramsey’s Theorem.
We now formulate our analogue for Hindman’s Theorem. Given a set X of natural numbers, the sums of integers

whose underlying set of terms is an exactly large set in X are called exactly large sums (from X). We denote by
FS!ω(X) the set of numbers that can be expressed as sums of an exactly large subset of X.

Definition 5.8 (Hindman’s Theorem for Exactly Large Sums). HT!ω
2 denotes the following principle: For every

colouring f : N → 2 there exists an infinite set H ⊆ N such that FS!ω(H) is monochromatic under f .

Besides being a restriction of HT, HT!ω
2 (with t-apartness, for any t > 1) has an easy direct proof from RT!ω

2 .
Given f : N → 2 just set c(S) := f (

∑
s∈S s), for S an exactly large set (to get t-apartness, restrict c to an infinite t-

apart set). Consistently with the previous conventions, we use HT!ω
2 with 2-apartness to denote the principle obtained

from HT!ω
2 by imposing that the solution is a 2-apart set. We note, however, that for the principle HT!ω

2 the choice of
t in the t-apartness conditon might matter.

The argument of Theorem 3.3 can be easily adapted to show that HT!ω
2 with 2-apartness implies ACA0. In the

proof of Theorem 3.3 take, instead of n, an almost exactly large sum n0 + n1 + · · · + nn0−2 of elements of H . The
argument then proceeds unchanged.

Proposition 5.9. HT!ω
2 with apartness implies ACA0 over RCA0.

Furthermore, a number of strong computable reductions can be established for Hindman’s Theorem for exactly
large sums. For example, we have the following result.

Proposition 5.10. IPHT2
2 with apartness is strongly computably reducible to HT!ω

2 with apartness.

Proof. Let f : N → 2 be given, and let H = {h1, h2, h3, . . . } with h1 < h2 < h3 < · · · be an infinite 2-apart set
such that FS!ω(H) is monochromatic for f of colour k < 2. Let S1, S2, S3, . . . be such that each Si is an exactly
large subset of H ,

⋃
i∈N Si = H , and max Si < min Si+1, for each i ∈ N. Let si = ∑

s∈Si
s. Let Hs := {s1, s2, . . . }.

Hs is 2-apart and consists of the sums of consecutive disjoint exactly large subsets of H . Let Ht = {t1, t2, . . . } (in
increasing order) be the set consisting of the elements from Hs minus their largest term (when written as !ω-sums).
Note that distinct elements of Hs share no term, because Hs is 2-apart. Let H1 := Ht and H2 := {si − ti : i ∈ N}.
Then (H1,H2) is a 2-apart solution for IPHT2

2. Note that both H1 and H2 are computable relative to H . �
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Proposition 5.11. HT!ω
k implies HT=2

k over RCA0, for each k ∈ N.

Proof. Let c be a k-coloring of N and let X be a solution to HT!ω
k for c. We reason by cases.

Case 1. X contains infinitely many odd elements. Let d1 < d2 < d3 < · · · be the odd elements in X and assume,
without loss of generality, that d1 > 1. Consider the exactly large set D = {d1, d2, . . . , dd1+1} and let

Xo = {x ∈ X : x > dd1−1}.

Let

s = d1 + d2 + · · · + dd1−1.

Observe that s is even. Let

x′
1 < x′

2 < x′
3 < · · ·

be an increasing enumeration of Xo. Consider the set H = {h1, h2, h3, . . . } where

hi = s

2
+ x′

i .

We have that, for all i < j :

hi + hj = s + x′
i + x′

j = d1 + d2 + · · · + dd1−1 + x′
i + x′

j .

Therefore H is an infinite solution to HT=2
k for c.

Case 2 can be treated analogously. The details are left to the reader. �

Other results on HT!ω
2 were proved by the third author in his BSc. Thesis [25]. We believe that the study of the

strength of HT!ω
2 is of interest.

Remark 1. Most of our results in this paper deal with restrictions of the Finite Sums Theorem with the apartness
condition or, equivalently (in view of Proposition 2.5), on restrictions of the Finite Unions Theorem. As implied
by Lemma 2.7 and witnessed by Theorem 3.2, some corollaries on restrictions of the Finite Sums Theorem HT�n

k

without the apartness condition can also be obtained from bounds on restrictions with apartness. To obtain lower
bounds for the restrictions HT=n

k without apartness seems instead to require different methods. Only very recently,
after the conference version [8] appeared and a draft of the present paper was circulated, a lower bound on HT=2

2
without the apartness condition was obtained by Csima et alii [10]. The proof features a very interesting technique
derived from probabilistic arguments in combinatorics and gives as a corollary that HT=2

2 implies, over RCA0, the
Rainbow Ramsey Theorem for pairs RRT2

2. Note that RRT2
2 is strictly weaker than IPT2

2 (for example the latter
implies SADS while the former doesn’t, see [11,15]) which we showed is a lower bound to HT=2

2 with apartness.
Combining the main results of [10] with some of our results presented above some corollaries on restrictions of

the Finite Sums Theorem without apartness can be easily obtained. An inspection of the proofs in [10] shows that
in general they apply if the homogeneity condition with respect to a coloring c of N in 2 colors is weakened to the
following: for all x < y < z we have c(x+z) = c(y+z). Moreover, the computability-theoretic and proof-theoretic
lower bounds for HT=2

2 proved in [10] can be proved for the following principles studied above:

• IPHT2
2: The main arguments in [10] apply almost unchanged to this principle.

• HT!ω
2 : By Proposition 5.11 this principle implies HT=2

2 .
• HT∃{a<b} and HT∃{a�3}: both of these are easily seen to imply IPHT2

2. So by the first item they imply RRT2
2.
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Table 1

Implications over RCA0 (�,�) and strong combinatorial reductions (�sc, �sc). We abbreviate “with apartness” by “w. ap”

Principle: Lower Bound Upper Bound

HT ≡ FUT � RT3
2 [4] � RT!ω

2 [4,9]

HT
�2
2 � RRT2

2 [10] � RT!ω
2 [4,9]

HT
�2
2 + ∀kRT1

k
� SRT2

2 [12] � RT!ω
2 [4,9]

FUT
�2
2 ≡ HT

�2
2 w. ap. � RT3

2 (Prop. 3.1) � RT!ω
2 [4,9]

HT
�2
4 � RT3

2 (Th. 3.2), �sc IPT2
2 (Cor. 4.3) � RT!ω

2 [4,9]

HT
∃{a<b}
2 � RRT2

2 (Remark 1) � RT3
2, �sc RT3

8 (Th. 5.2)

HT
∃{a<b}
2 w. ap. � RT3

2 (Th. 5.2) � RT3
2, �sc RT3

8 (Th. 5.2)

HT
∃{a�3}
2 � RRT2

2 (Remark 1) � RT3
2 [7]

HT
∃{a�3}
2 w. ap. � RT3

2 (Th. 5.4) � RT3
2, �sc RT6

26 [7]

HT=2
2 � RRT2

2 [10] �sc RT2
2 (obvious)

HT=3
2 � RRT2

2 [10] �sc RT3
2 (obvious)

FUT=2
2 ≡ HT=2

2 w. ap. �sc IPT2
2 (Th. 4.2) �sc RT2

2 (obvious)

FUT=3
2 ≡ HT=3

2 w. ap. � RT3
2 (Th. 3.3) �sc RT3

2 (obvious)

IPHT2
2 � RRT2

2 (Remark 1) � IPT2
2 (Th. 5.6)

IPHT2
2 w. ap. �sc IPT2

2 (Th. 5.6) �sc IPT2
2 (Th. 5.6)

HT!ω
2 � RRT2

2 (Remark 1) �sc RT!ω
2 (obvious)

HT!ω
2 w. ap. � RT3

2 (Prop. 5.9) �sc RT!ω
2 (obvious)

6. Conclusion and open questions
Our results are summarized in Table 1, along with previously known results. In the table we use Ramsey-theoretic

statements instead of equivalent theories (thus RT3
2 for ACA0 and ∀kRT1

k instead of B�0
2).

Theorem 3.2, showing that the RT3
2 lower bound known for HT already holds for HT�2, might be read as indi-

cating that the latter restriction is as strong as the full theorem, thus pointing to a negative answer to Question 12
of [21]. On the other hand, many of our additional results confirm the “weak yet strong” phenomenon uncovered
in [7]: the known lower bounds on Hindman’s Theorem hold for restricted versions for which – contrary to the
HT�n restrictions studied in [12] – a matching RT3

2 upper bound is known. Analogously, the IPT2
2 lower bound for

HT�2 already holds for the principle HT=2
2 with apartness, which is provable from RT2

2 (for another example at this
level, see [6]). Our results also highlight the role of the apartness condition on the solution set. They also apply
to bounded versions of the Finite Unions formulation of Hindman’s Theorem, in which an analogous condition is
already built-in.

Many natural questions remain, besides the main open problems on HT and HT�2 (Question 9 of [26] and
Question 12 of [21]). The question of whether some of the known implications between Ramsey-type theorems
and Hindman-type theorems can be witnessed by strong computable reductions is of interest. We expect that many
separations are within reach of currently available methods. Some separations can be gleaned from our results and
known results from the literature. For example, RT4

8, RT3
9 �sc HT∃{a,b}

2 with apartness, and RT4
2, RT3

4 �sc HT=3
2 with

apartness. To see this, note that on the one hand we have HT∃{a,b} with 2-apartness �sc RT3
8 by the upper bound

proof in [7], and HT=3
2 with 2-apartness �sc RT3

2 by the trivial proof. On the other hand, RT4
k �sc RT3

k , RT3
9 �sc RT3

8
and RT3

4 �sc RT3
2 (see, e.g., [28]). Note that the separations can strengthened to computable reducibility.

We would like to single out the following two questions which seem to be of some general combinatorial
interest.

Question 1. Is there a strong computable reduction of IPT3
k to HT�n

� , for some n, k, � � 2?
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On the one hand we know that the implication from HT�2
4 to IPT3

2 holds over RCA0. This follows from The-
orem 3.2 and the equivalence of IPT3

2 with RT3
2 (see [15]). On the other hand, we do not know how to lift the

combinatorial reduction IPT2
2 �sc HT�2

4 of Corollary 4.3 to higher exponents.

Question 2. Is there a strong computable reduction of HT to RT!ω
2 ?

Combining the results of [4] and [9] we know that the implication from RT!ω
2 to HT holds over RCA0. Can this

be witnessed by a strong computable reduction? Is there a combinatorial proof of Hindman’s Theorem from the
Pudlák-Rödl Theorem?
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