
ar
X

iv
:1

70
2.

08
08

4v
2

 [
cs

.I
T

]
 1

3
Ju

l 2
01

7

On Algorithmic Statistics for space-bounded

algorithms

Alexey Milovanov

National Research University Higher School of Economics,

Moscow Institute of Physics and Technology,

Moscow State University,

almas239@gmail.com

August 27, 2018

Abstract

Algorithmic statistics studies explanations of observed data that
are good in the algorithmic sense: an explanation should be simple
i.e. should have small Kolmogorov complexity and capture all the
algorithmically discoverable regularities in the data. However this idea
can not be used in practice because Kolmogorov complexity is not
computable.

In this paper we develop algorithmic statistics using space-bounded
Kolmogorov complexity. We prove an analogue of one of the main
result of ‘classic’ algorithmic statistics (about the connection between
optimality and randomness deficiences). The main tool of our proof is
the Nisan-Wigderson generator.

1 Introduction

In this section we give an introduction to algorithmic statistics and present
our results.

We consider strings over the binary alphabet {0, 1}. We use |x| to denote
the length of a string x. All of the logarithms are base 2. Denote the
conditional Kolmogorov complexity1 of x given y by C(x|y).

1The definition and basic properties of Kolmogorov complexity can be found in the
textbooks [5, 13], for a short survey see [11].

1

http://arxiv.org/abs/1702.08084v2

1 INTRODUCTION 2

1.1 Introduction to Algorithmic Statistics

Let x be some observation data encoded as a binary string, we need to
find a suitable explanation for it. An explanation (=model) is a finite set
containing x. More specifically we want to find a simple model A such that
x is a typical element in A. How to formalize that A is ‘simple’ and x is a
‘typical element’ in A? In classical algorithmic statistics a set A is called
simple if it has small Kolmogorov complexity C(A)2. To measure typicality
of x in A one can use the randomness deficiency of x as an element of A:

d(x|A) := log |A| − C(x|A).

The randomness deficiency is always non-negative with O(log |x|) accuracy,
as we can find x from A and the index of x in A. For most elements x in any
set A the randomness deficiency of x in A is negligible. More specifically,
the fraction of x in A with randomness deficiency greater than β is less than
2−β .

There is another quantity measuring the quality of A as an explanation
of x: the optimality deficiency :

δ(x,A) := C(A) + log |A| − C(x).

It is also non-negative with logarithmic accuracy (by the same reason). This
value represents the following idea: a good explanation (a set) should not
only be simple but also should be small.

One can ask: why as explanations we consider only sets—not general
probability distributions? This is because for every string x and for every
distribution P there exists a set A ∋ x explaining x that is not worse than
P in the sense of deficiencies defined above3.

Theorem 1 ([15]). For every string x and for every distribution P there
exists a set A ∋ x such that C(A|P) ≤ O(log |x|) and 1

|A| ≥
1
2P (x).

Kolmogorov called a string x stochastic if there exists a set A ∋ x such
that C(A) ≈ 0 and d(x|A) ≈ 0. The last equality means that log |A| ≈
C(x|A) hence log |A| ≈ C(x) because C(A) ≈ 0. So, δ(x,A) is also small.

2Kolmogorov complexity of A is defined as follows. We fix any computable bijection
A 7→ [A] from the family of finite sets to the set of binary strings, called encoding. Then
we define C(A) as the complexity C([A]) of the code [A] of A.

3The randomness deficiency of a string x with respect to a distribution P is defined
as d(x|P) := − logP (x) − C(x|P), the optimality deficiency is defined as δ(x,P) :=
C(P)− logP (x)− C(x).

1 INTRODUCTION 3

For example, an incompressible string of length n (i.e. a string whose
complexity is close to n) is stochastic—the corresponding set is {0, 1}n.
Non-stochastic objects also exist, however this fact is more complicated—
see [12, 15].

1.2 Space-bounded Algorithmic Statistics

As mentioned by Kolmogorov in [4], the notion of Kolmogorov complexity
C(x) has the following minor point. It ignores time and space needed to
produce x from its short description. This minor point can be fixed by in-
troducing space or time bounded Kolmogorov complexity (see, for example,
[2] or [14]). In this paper we consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

The distinguishing complexity of a string x with space boundm is defined
as the minimal length of a program p such that

• p(y) = 1 if y = x;

• p(y) = 0 if y 6= x;

• p uses at most m bits of memory on every input.

We denote this value by CDm(x). If for some x and m such a program p does
not exist then CDm(x) := ∞. We say that p distinguishes x (from other
strings) if p satisfies the first and the second requirements of the definition.

In this definition p(y) denotes V (p, y) for a universal Turing machine V .
A Turing machine is called universal if for every machine U and for every
q there exists p such that V (p, y) = U(q, y) for every y, |p| < |q| + O(1)
and V uses space at most O(m) if U uses space m on input (q, y). Here the
constant in O(m) depends on V and U but does not depend on q 4.

Now we extend this notion to arbitrary finite sets. The distinguishing
complexity of a set A with space bound m is defined as the minimal length
of a program p such that

• p(y) = 1 if y ∈ A;

• p(y) = 0 if y /∈ A;

• p uses space m on every input.

4Such an universal machine does exist – see [5].

1 INTRODUCTION 4

Denote this value as CDm(A).
The value CDa(x|A) is defined as the minimal length of a program that

distinguishes x by using space at most m and uses A as an oracle. The value
CDa(B |A) for an arbitrary finite set B is defined the same way.

How to define typicality of a string x in a set A? Consider the following
resource-bounded versions of randomness and optimal deficiencies:

da(x|A) := log |A| − CDa(x|A),

δb,d(x,A) := CDb(A) + log |A| − CDd(x).

One can show that these values are non-negative (with logarithmic accuracy)
provided a ≥ p(|x|) and d ≥ p(|x|+ b) for a large enough polynomial p.

We say that a set A is a good explanation for a string x (that belongs
to A) if CDr(A) ≈ 0 (with O(log |x|) accuracy) and log |A| ≈ CDm(x).
Here r and m are some small numbers. For such A the values dm(x|A) and
δr,m(x,A) are small.

It turns out that every string has a good explanation. Indeed, let x be
a string such that CDm(x) = k. Define a set A ∋ x as {y | CDm(y) ≤ k}.
The log-size of this set is equal to k up to a non-negative constant and hence
log |A| = CDm(x). Note that A can be distinguished by a program of length
O(log(k +m)) that uses poly(m) space.

So, for space-bounded algorithms all strings have good explanations (in
other words, they are stochastic).

1.3 Distributions and Sets

Recall that in the classical algorithmic statistics for every distribution P and
every x there is a finite set A ∋ x that is not worse than P as an explanation
for x. It turns out that this the case also for space-bounded algorithmic
statistics (otherwise we could not restrict ourselves to finite sets).

Before we formulate this result we give a definition of the complexity of
a probability distribution P with space bound m that is denoted by Cm(P).
This value is defined as the minimal length of a program p without input
and with the following two properties. First, for every x the probability of
the event [x output by p] is equal to P (x). Second, p uses space at most m
(always). If such a program does not exist then Cm(P) := ∞.

Theorem 2. There exist a polynomial r and a constant c such that for every
string x, for every distribution P and for every m there exists a set A ∋ x
such that CDr(m+n)(A) ≤ Cm(P) + c log(n + m) and 1

|A| ≥ P (x)2−c logn.
Here n is length of x.

1 INTRODUCTION 5

The main tool of the proof of Theorem 2 is the theorem of Nisan “RL ⊆
SC”, more precisely its generalization—Theorem 1.2 in [8].

1.4 Descriptions of Restricted Type

So far we considered arbitrary finite sets (or more general distributions)
as models (statistical hypotheses). We have seen that for such class of
hypotheses the theory becomes trivial. However, in practice we usually
have some a priori information about the data. We know that the data was
obtained by sampling with respect to an unknown probability distribution
from a known family of distributions. For simplicity we will consider only
uniform distributions i.e. a family of finite sets A.

For example, we can consider the family of all Hamming balls as A.
(That means we know a priory that our string was obtain by flipping certain
number of bits in an unknown string.) Or we may consider the family that
consists of all ‘cylinders’: for every n and for every string u of length at most
n we consider the set of all n-bit strings that have prefix u. It turns out that
for the second family there exists a string that has no good explanations
in this family: the concatenation of an incompressible string (i.e. a string
whose Kolmogorov complexity is close to its length) and all zero string of
the same length. (We omit the rigorous formulation and the proof.)

Restricting the class of allowed hypotheses was initiated in [16]. It turns
out that there exists a direct connection between randomness and optimality
deficiencies in the case when a family is enumerable.

Theorem 3 ([16]). Let A be an enumerable family of sets. Assume that
every set from A consists of strings of the same length. Let x be a string of
length n contained in A ∈ A. Then:

(a) d(x|A) ≤ δ(x,A) +O(log(C(A) + n)).

(b) There exists B ∈ A containing x such that:

δ(x,B) ≤ d(x|A) +O(log(C(A) + n)).

In our paper we will consider families with the following properties:

• Every set from A consists of strings of the same length. The family of
all subsets of {0, 1}n that belong to A is denoted by An.

• There exists a polynomial p such that |An| ≤ 2p(n) for every n.

• There exists an algorithm enumerating all sets fromAn in space poly(n).

2 PROOF OF THEOREM ?? 6

The last requirement means the following. There exists an indexing of An

and a Turing machine M that for a pair of integers (n; i) and a string x in
the input outputs 1 if x belongs to i-th set of An and 0 otherwise. On every
such input M uses at most poly(n) space.

Any family of finite sets of strings that satisfies these three conditions is
called acceptable. For example, the family of all Hamming balls is acceptable.
Our main result is the following analogue of Theorem 3.

Theorem 4. (a) There exist a polynomial p and a constant c such that for
every set A ∋ x and for every m the following inequality holds

dm(x|A) ≤ δm,p(x,A) + c log(Cm(A)).

Here p = p(m+ n) and n is the length of x.
(b) For every acceptable family of sets A there exists a polynomial p such

that the following property holds. For every A ∈ A, for every x ∈ A and for
every integer m there exists a set B ∋ x from A such that

• log |B| ≤ log |A|+ 1;

• CDs(B) ≤ CDm(A)− CDs(A|x) +O(log(n+m)).

Here s = p(m+ n) and n is the length of x.

A skeptical reader would say that an analogue of Theorem 3 (b) should
has the following form (and we completely agree with him/her).

Hypothesis 1. There exist a polynomial p and a constant c such that for
every set A ∋ x from A and for every m there exists a set B ∈ A such that

δp,m(x,B) ≤ dp(x|A) + c log(n+m).

Here p = p(m + n), n is the length of x and A is an acceptable family of
sets.

We argue in Subsection 2.1 why Theorem 4 (b) is close to Hypothesis 1.

2 Proof of Theorem 4

of Theorem 4(a). The inequality we have to prove means the following

CDp(x) ≤ CDm(x|A) + CDm(A) + c log(CDm(A) + n)

(by the definitions of optimality and randomness deficiencies).

2 PROOF OF THEOREM ?? 7

Consider a program p of length CDm(x|A) that distinguishes x and uses
A as an oracle. We need to construct a program that also distinguishes x
but does not use any oracle. For this add to p a procedure distinguishing A.
There exists such a procedure of length CDm(A). So, we get a program of
the length that we want (additional O(log(CDm(A))) bits are used for pair
coding) that uses poly(m) space.

So, for every x and A ∋ x the randomness deficiency is not greater than
the optimal deficiency. The following example shows that the difference can
be large.

Example 1. Consider an incompressible string x of length n, so C(x) =
n (this equality as well as further ones holds with logarithmic precision).
Let y be n-bit string that is also incompressible and independent of x, i.e.
C(y |x) = n. By symmetry of information (see [13, 5]) we get C(x|y) = n.

Define A := {0, 1}n \{y}. The randomness deficiency of x in A (without
resource restrictions) is equal to 0. Hence, this is true for any resource
restrictions (C(x|A) is not greater than CDm(x|A) for every m). Hence, for
any m we have dm(x|A) = 0. On the other hand δpm(x,A) = n for all p and
large enough m. Indeed, take m = poly(n) such that CDm(x) = n. Since
C(A) = n we have CDq(A) = n for every q.

So, we can not just let A = B in Hypothesis 1. In some cases we have to
‘improve’ A (in the example above we can take {0, 1}n as an improved set).

2.1 Sketch of proof of Theorem 3(b)

The proof of Theorem 4 (b) is similar to the proof of Theorem 3 (b). There-
fore we present the sketch of the proof of Theorem 3 (b).

Theorem 3 states that there exists a set B ∈ A containing x such that
δ(x|B) ≤ d(x,A). (Here and later we omit terms of logarithmic order.)
First we derive it from the following statement.

(1) There exists a set B ∈ A containing x such that
|B| ≤ 2 · |A| and C(B) ≤ C(A)− C(A|x).
For such B the δ(x|B) ≤ d(x,A) easily follows from the inequality

C(A) − C(A|x) − C(x) ≤ −C(x|A). The latter inequality holds by sym-
metry of information.

To prove (1) note that
(2) there exist at least 2C(A|x) sets in A containing x whose complexity

and size are at most C(A) and 2 · |A|, respectively.
Indeed, knowing x we can enumerate all sets from A containing x whose

parameters (complexity and size) are not worse than the parameters of A.

2 PROOF OF THEOREM ?? 8

Since we can describe A by its ordinal number in this enumeration we con-
clude that the length of this number is at least C(A|x) (with logarithmic
precision).

Now (1) follows from the following statement.
(3) Assume that A contains at least 2k sets of complexity at most i and

size at most 2j containing x. Then one of them has complexity at most i−k.
(We will apply it to i = C(A), j = ⌈log |A|⌉ and k = C(A|x).)
So, Theorem 4 (b) is an analogue of (2). Despite there is an analogue

of symmetry of information for space-bounded algorithms (see [6] and Ap-
pendix) Hypothesis 1 does not follow Theorem 4 (b) directly. (There is some
problem with quantifiers.)

Proof of (3) is the main part of the proof of Theorem 3, the same thing
holds for Theorem 4.

In the next subsection we derive Theorem 4 (b) from Lemma 2.2 (this is
an analogue of the third statement). In the proof of Lemma 2.2 we use the
Nisan-Wigderson generator.

2.2 Main lemma

We will derive Theorem 4 (b) from the following

Lemma. For every acceptable family of sets A there exist a polynomial p
and a constant c such that the following statement holds for every j.

Assume that a string x of length n belongs to 2k sets from An. Assume
also that every of these sets has cardinality at most 2j and space-bounded
by m complexity at most i. Then one of this set is space-bounded by M
complexity at most i− k + c log(n+m). Here M = m+ p(n).

Theorem 4 (b) from Lemma 2.2. Denote by A′ the family of all sets in An

containing x whose parameters are not worse than those of A.

A′ := {A′ ∈ An | x ∈ A′,CDm(A) ≤ CDm(A′), log |A′| ≤ ⌊log |A|⌋}.

Let k = logA′.
We will describe A in k + O(log(n + m)) bits when x is known. The

sets in A′ (more specifically, their programs) can be enumerated if n,m and
log |A| are known. This enumeration can be done in space poly(m+n). We
can describe A by its ordinal number of this enumeration, so

CDs(A|x) ≤ k +O(log(n+m)).

Here s = poly(m+ n).
Theorem 4 (b) follows from Lemma 2.2 for i = CDm(A) and j =

⌊log |A|⌋.

2 PROOF OF THEOREM ?? 9

2.3 Nisan-Wigderson generator. Proof of the main lemma

Define
Ai,j

n,m := {A′ ∈ An | CDm(A′) ≤ i, log |A′| ≤ j}

for an acceptable family of sets A.
Define a probability distribution B as follows. Every set from Ai,j

n,m

belongs to B with probability 2−k(n + 2) ln 2 independently.
We claim that B satisfies the following two properties with high proba-

bility.
(1) The cardinality of B is at most 2i−k+2 · (n+ k)2 ln 2.
(2) If a string of length n is contained in at least 2k sets from Ai,j

n,m then
one of these sets belongs to B.

Lemma. The family B satisfies the properties (1) and (2) with probability
at least 1

2 .

Proof. Show that B satisfies every of these two properties with probability
at least 3

4 .
For (1) it follows from Markov’s inequality: the cardinality of B exceeds

the expectation by a factor of 4 with probability less than 1
4 . (Of course we

can get a rather more stronger estimation.)
To prove it for (2) consider a string of length n that belongs to at least

2k sets from Ai,j
n,m. The probability of the event [every of these 2k sets does

not belong to B] is at most

(1− 2−k(n+ 2) ln 2)2
k

≤ 2−n−2 (since 1− x ≤ e−x).

The probability of the sum of such events for all strings of length n is at
most 2n2−n−2 = 1

4 .

Using Lemma 2.3 we can prove existence of a required set whose un-
bounded complexity is at most i−k+O(log(n+m)). Indeed, by Lemma 2.3
there exists a subfamily that satisfies the properties (1) and (2). The lexi-
cographically first such family has small complexity—we need only know i,
k, n and m to describe it. Note, that k and i are bounded by poly(n): since
A is acceptable log |An| = poly(n) and hence k is not greater than poly(n).
We can enumerate all sets from An, so space-bounded complexity of every
element of An (in particular, i) is bounded by polynomial in n. Now we
can describe a required set as the ordinal number of an enumeration of this
subfamily.

However, this method is not suitable for the polynomial space-bounded
complexity: the brute-force search for the finding a suitable subfamily uses

2 PROOF OF THEOREM ?? 10

too much space (exponential). To reduce it we will use the Nisan-Wigderson
generator. The same idea was used in [7].

Theorem 5 ([9, 10]). For every constant d and for every positive polynomial
q(m) there exists a sequence of functions Gm : {0, 1}f → {0, 1}m where
f = O(log2d+6 m) such that:

• Function Gm is computable in space poly(f);

• For every family of circuits Cn of size q(v) and depth d and for large
enough n it holds that:

|Pr
x
[Cm(Gm(x)) = 1]− Pr

y
[Cm(y) = 1]| <

1

m
,

where x is distributed uniformly in {0, 1}f , and y is distributed uni-
formly in {0, 1}m.

We will use this theorem for m = 2i+n. Then f is a polynomial in i+ n
(if d is a constant), hence f = poly(n). Every element whose complexity is
at most i corresponds to a string of length i in the natural way. So, we can
assign subfamilies of Ai,j

n,m to strings of length m.
Assume that there exists a circuit of size 2O(n) and constant depth that

inputs a subfamily of Ai,j
n and outputs 1 if this subfamily satisfies properties

(1) and (2) from Lemma 2.3, and 0 otherwise. First we prove Lemma 2.2
using this assumption.

Compute Gm(y) for all strings y of length f until we find a suitable
one, i.e. whose image satisfies our two properties. Such a string exists by
Lemma 2.3, Theorem 5 and our assumption. Note that we can find the
lexicographically first suitable string by using space m+poly(n), so bounded
by space m+poly(n) the complexity of this string is equal to O(log(n+m)).

So, if we can construct a constant depth circuit of the needed size that
verifies properties (1) and (2) then we are happy. Unfortunately we do
not know how to construct such a circuit verifying the first property (there
exist problems with a computation of threshold functions by constant-depth
circuits—see [3]). However, we know the following result.

Theorem 6 ([1]). For every t there exists a circuit of constant depth and
poly(t) size that inputs binary strings of length t and outputs 1 if an input
has at most log2 t ones and 0 otherwise.

To use this theorem we make a little change of the first property. Divide
Ai,j

n into 2i−k parts of size 2k. The corrected property is the following.

3 PROOF OF THEOREM ?? 11

(1)∗ The family of sets B contains at most (n + k)2 sets from each of
these parts.

Lemma. The family of sets B satisfies properties (1)∗ and (2) with proba-
bility at least 1

3 .

The proof of this lemma is not difficult but uses cumbersome formulas.
We present the proof of Lemma 2.3 in Appendix.

of Lemma 2.2. It is clear that property (1)∗ implies property (1). Hence
by using Lemma 2.2 and the discussion above, it is enough to show that
properties (1)∗ and (2) can be verified by constant depth circuits of size
2O(i+n).

Such a circuit exists for property (1)∗ by Theorem 6.
The second property can be verified by the following 2-depth circuit.

For every string of length n containing in 2k sets from Ai,j
n there exists a

corresponding disjunct. All of these disjuncts go to a conjunction gate.

3 Proof of Theorem 2

Theorem 2 would have an easy proof if a program that corresponds to a
distribution P could use only poly(n) random bits. Indeed, in such case we
can run a program with all possible random bits and so calculate P (x) for
every x in polynomial space. Hence, we can describeA as the set of all strings
whose the probability of output is at least 2−k, where 2−k ≥ P (x) > 2−k−1.

In the general case (when the number of random bits is exponentially
large) we will use the following theorem.

Theorem 7 ([8]). Let f be a probabilistic program, that uses at most r(n)
space on inputs of length n for some polynomial r. Assume that f always
outputs 0 or 1 (in particular, f never loops). Then there exists a determin-
istic program f̂ with the following properties:

(a) f̂ uses at most r2(n) space on inputs of length n;
(b) if Pr[f(x) = 1] > 2

3 then f̂(x) = 1. If Pr[f(x) = 1] < 1
3 then

f̂(x) = 0;
(c) |f̂ | ≤ |f |+O(1). 5

5Theorem 1.2 in [8] has another formulation: it does not contain any information about

|f̂ |. However, from the proof of the theorem it follows that a needed program (denote it

as f̂1) is got from f by using an algorithmic transformation. Therefore there exists a

3 PROOF OF THEOREM ?? 12

of Theorem 2. If the complexity of distribution P (bounded by space m) is
equal to infinity then we can take {x} as A.

Else P can be specified by a program g. Consider the integer k such
that: 2−k+1 ≥ P (x) ≥ 2−k. We can assume that k is not greater than
n—the length of x—else we can take {0, 1}n as A.

Note, that we can find a good approximation for P (y) running g expo-
nentially times.

More accurately, let us run g for 2100k
2

times. For every string y denote
by ω(y) the frequency of output of y. The following inequality holds by
Hoeffding’s inequality

Pr[|w(y) − P (y)| > 2−k−10] <
1

3
.

Hence by using program g we can construct a program f that uses poly(n)
space (on inputs of length n) such that

(1) if P (y) > 2−k−1 and |y| = n then Pr[f(y) = 1] > 2
3 ;

(2) if P (y) < 2−k−2 then Pr[f(y) = 0] > 2
3 .

Now using Theorem 7 for f we get a program f̂ such that |f̂ | ≤ |g| +
O(log n). By the first property of f we get f̂(x) = 1. From the second
property it follows that the cardinality of the set {y | f̂(y) = 1} is not
greater than 2k+2. So, this set satisfies the requirements of the theorem.

Remark 1. Another proof of Theorem 2 was done by Ricky Demer at Stack-
exchange – http://cstheory.stackexchange.com/questions/34896/can-every-distribution-producible-by-a-probabilistic-pspace-machine-be-produced.

Open question

Does Hypothesis 1 hold?

Acknowledgments

I would like to thank Nikolay Vereshchagin and Alexander Shen for useful
discussions, advice and remarks.

This work is supported by RFBR grant 16-01-00362 and supported in
part by Young Russian Mathematics award and RaCAF ANR-15-CE40-
0016-01 grant. The study has been funded by the Russian Academic Excel-
lence Project ‘5-100’.

program f̂ that works functionally like f̂1 such that |f̂ | ≤ |f |+O(1).
Also, Theorem 1.2 does not assume that Pr[f(x)] can belong to [1

3
; 2

3
]. However, this

assumption does not used in the proof of Theorem 1.2.

http://cstheory.stackexchange.com/questions/34896/can-every-distribution-producible-by-a-probabilistic-pspace-machine-be-produced

REFERENCES 13

References

[1] Ajtai M., Approximate counting with uniform constant-depth circuits,
Advanced in computational complexity theory – American Mathematical
Society, 1993, pp. 1–20.

[2] Buhrman, H.; Fortnow, L.; and Laplante, S., Resource-Bounded Kol-
mogorov Complexity Revisited. SIAM Journal on Computing, 31(3):
887-905. 2002.

[3] Furst, M., Saxe, J.B. and Sipser, M. Math. Systems Theory (1984),
Volume 17, Issue 1, pp 13–27

[4] A.N. Kolmogorov, Three Approaches to the Quantitative Definition of
Information Problems of Information Transmission , 1(1), 4–11 (1965).
English translation published in: International Journal of Computer
Mathematics, 2, 157–168 (1968).

[5] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity
and its Applications, Third Edition, Springer-Verlag, New York, 2008

[6] L. Longpré, Resource Bounded Kolmogorov Complexity, A Link Be-
tween Computational Complexity and Information Theory, Ph. D. The-
sis, 1986, Cornell University, Ithaca, NY.

[7] Musatov D., Improving the Space-Bounded Version of Muchnik’s Con-
ditional Complexity Theorem via “Naive” Derandomization, Theory of
computing systems, 2014, vol. 55, no.2, pp. 299–312.

[8] N. Nisan, RL ⊆ SC. Journal of Computional Complexity, vol. 4, pages
1–11, 1994.

[9] N. Nisan, Pseudorandom bits for constant depth circuits. Combinator-
ica, 1991, vol. 11, pp. 63–70.

[10] Nisan N., Wigderson A., Hardness vs randomness, Journal of Computer
and System Sciences, 1994, Volume 49 Issue 2, Pages 149–167

[11] A. Shen, Around Kolmogorov complexity: basic notions and results.
Measures of Complexity. Festschrift for Alexey Chervonenkis. Editors:
V. Vovk, H. Papadoupoulos, A. Gammerman. Springer, 2015. ISBN:
978-3-319-21851-9

REFERENCES 14

[12] A. Shen The concept of (α, β)-stochasticity in the Kolmogorov sense,
and its properties. Soviet Mathematics Doklady, 271(1):295–299, 1983

[13] A. Shen, V. Uspensky, N. Vereshchagin Kolmogorov complexity and
algorithmic randomness. MCCME, 2013 (Russian). English translation:
http://www.lirmm.fr/˜ashen/kolmbook-eng.pdf

[14] M. Sipser. A complexity theoretic approach to randomness. In Proceed-
ings of the 15th ACM Symposium on the Theory of Computing, pages
330-335, 1983.

[15] N. Vereshchagin and P. Vitányi, Kolmogorov’s Structure Functions with
an Application to the Foundations of Model Selection, IEEE Trans-
actions on Information Theory 50:12 (2004), 3265–3290. Preliminary
version: Proceedings of 47th IEEE Symposium on the Foundations of
Computer Science, 2002, 751–760.

[16] N.K. Vereshchagin, P.M.B. Vitányi Rate Distortion a nd Denoising of
Individual Data Using Kolmogorov Complexity IEEE Transactions on
Information Theory,56:7 (2010). 3438–3454

Appendix

Symmetry of Information

Define CDm(A,B) as the minimal length of a program that inputs a pair
of strings (a, b) and outputs a pair of boolean values (a ∈ A, b ∈ B) using
space at most m for every input.

Lemma (Symmetry of information). Assume A,B ⊆ {0, 1}n. Then

(a) ∀m CDp(A,B) ≤ CDm(A) +CDm(B |A)+O(log(CDm(A,B)+m+n))

for p = m+ poly(n+CDm(A,B)).

(b) ∀m CDp(A) +CDp(B |A) ≤ CDm(A,B) +O(log(CDm(A,B) +m+ n))

for p = 2m+ poly(n+CDm(A,B)).

of Lemma 3 (a). The proof is similar to the proof of Theorem 4 (a).

of Lemma 3 (b). Let k := CDm(A,B). Denote by D the family of sets
(U, V) such that CDm(U, V) ≤ k and U, V ⊆ {0, 1}n. It is clear that |D| <

http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

REFERENCES 15

2k+1. Denote by DA the pairs of D whose the first element is equal to A.
Let t satisfy the inequalities 2t ≤ |DA| < 2t+1.

Let us prove that

• CDp(B |A) does not exceed t significantly;

• CDp(A) does not exceed k − t significantly.

Here p = m+O(n).
We start with the first statement. There exists a program that enumer-

ates all sets from DA using A as an oracle and that works in space 2m+O(n).
Indeed, such enumeration can be done in the following way: enumerate all
programs of length k and verify the following condition for every pair of
n-bit strings. First, a program uses at most m space on this input. Second,
if a second n-bit string belongs to A then the program outputs 1, and 0
otherwise. Since some program loops we need aditional m+O(n) space to
take it into account.

Append to this program the ordinal number of a program that distin-
guishes (A,B). This number is not greater than t + 1. Therefore we have
CDp(B |A) ≤ t+O(log(CDm(A,B) +m+ n)).

Now let us prove the second statement. Note that there exist at most
2k−t+1 sets U such that |DU | ≥ 2t (including A). Hence, if we construct
a program that enumerates all sets with such property (and does not use
much space) then we will win—the set A can be described by the ordinal
number of this enumeration.

Let us construct such a program. It works as follows:
enumerate all sets U that are the first elements from D, i.e. we enumerate

programs that distinguish the corresponding sets (say, lexicographically).
We go to the next step if the following properties holds. First, |DU | ≥ 2t,
and second: we did not meet set U earlier (i.e. every program whose the
lexicographical number is smaller does not distinguish U or is not the first
element from a set from D).

This program works in 2m+poly(n+CDm(A,B)) space (that we want)
and has length O(log(CDm(A) + n+m)).

of Lemma 2.3. Let us show that B satisfies property (1)∗ with probability
at most 2−n. Since B satisfies property (2) with probability at most 1

4 (see
the proof of Lemma 2.3) it would be enough for us.

For this let us show that every part is ‘bad’ (i.e. has at least (n +
k)2 +1 sets from B) with probability at most 2−2n. The probability of such
event is equal to the probability of the following event: a binomial random

REFERENCES 16

variable with parameters (2k, 2−k(n + 2) ln 2) is greater than (n + k)2. To
get the needed upper bound for this probability is not difficult however the
correspondent formulas are cumbersome. Take w := 2k, p := 2−k(n+2) ln 2
and v := (n+ k)2. We need to estimate

w∑

i=v

(
w

i

)
pi(1− p)w−i < w ·

(
w

v

)
pv(1− p)w−v < w ·

(
w

v

)
pv < w

(wp)v

v!
.

The first inequality holds since wp = (n+ 2) ln 2 ≤ (n+ k)2 = v. Now note
that wp = (n+ 2) ln 2 < 10n. So

w
(wp)v

v!
<

2k(10n)(n+k)2

((n+ k)2)!
≪ 2−2n.

	1 Introduction
	1.1 Introduction to Algorithmic Statistics
	1.2 Space-bounded Algorithmic Statistics
	1.3 Distributions and Sets
	1.4 Descriptions of Restricted Type

	2 Proof of Theorem 4
	2.1 Sketch of proof of Theorem 3(b)
	2.2 Main lemma
	2.3 Nisan-Wigderson generator. Proof of the main lemma

	3 Proof of Theorem 2

